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S U M M A RY

Mutations are usually thought of as random due to their inherent unpredictability. However, such
randomness is not uniform because some molecular changes in DNA sequences are more likely
to occur than others. Here we refer to adaptation as mutation-biased when the mutations that
are more likely to occur are also more likely to contribute to adaptation. In this thesis, we have
integrated empirical data with computational and theoretical approaches to study the conditions
for, and consequences of, mutation-biased adaptation.

Early theoretical work used synthetic genotype-phenotype landscapes (i.e., a mapping from
genotypes to a quantitative phenotype) to study the conditions for mutation-biased adaptation.
In Chapter 2, we characterised 746 empirical genotype-phenotype landscapes of transcription
factor binding affinities to study the influence of mutation bias on adaptive evolution of increased
binding affinity. We found that such empirical landscapes exhibit composition bias, namely
the enrichment of a particular type of mutation in the adaptive mutational trajectories of the
landscape. We aggregated mutations into two classes: transitions (purine-purine or pyrimidine-
pyrimidine changes) and transversions (purine-pyrimidine or vice-versa), and we quantified
composition bias relative to the null expectation that there is one transition possible per every two
transversions. Our results uncover composition bias among the accessible mutational trajectories
towards adaptive peaks, and show that such composition bias can interact with mutation bias to
influence the rate of adaptation, the evolution of genetic diversity and mutational robustness, as
well as the predictability of evolution.

To what extent does mutation bias influence the process of adaptation? To address this question,
in Chapter 3, we developed a statistical framework to quantify the influence of mutation bias on
the spectrum of missense mutations underlying adaptive evolution. More specifically, we used
negative binomial regression to model the observed frequencies of adaptive codon-to-amino acid
substitutions by incorporating empirical estimates of codon frequencies and neutral per-nucleotide
mutation rates. We separately applied this approach to three large data sets of adaptive changes in
Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. In all three cases, we found
that mutation bias has a proportional influence on the spectra of adaptive substitutions. Moreover,
evolutionary simulations revealed that the influence of mutation bias on adaptive evolution is
modulated by different factors, such as mutation supply and the breadth and heterogeneity of
the mutational target for adaptation.

A central tenet of evolutionary theory is that mutation rates are uncorrelated with fitness effects.
That is, a mutation with a large fitness effect is expected to arise at the same rate as a mutation
with a small fitness effect. Technological advances, such as deep-sequencing and mutation-
accumulation approaches, are now making it possible to characterise the actual associations
between these mutation rates and fitness effects. However, such associations may differ depending
on whether they are characterised before or after adaptation takes place. This is because adaptation
is jointly conditioned on what is mutationally likely and on what is selectively favored, and such
joint conditioning can induce non-causal associations between the causal variables (e.g., mutation
rates and selection coefficients), a phenomenon known as Berkson’s paradox. In Chapter 4, we
studied the possible non-causal associations between mutation rates and selection coefficients that
adaptation can induce combining theoretical and computational approaches, as well as analyses
of large data sets of adaptive changes. Our results showed that such non-causal associations can
emerge under a variety of evolutionary conditions and in different biological systems, including
viruses and cancer.

In Chapter 5, we highlight the major conclusions of this thesis, and provide potential directions
for future research.
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R É S U M É

Les mutations sont généralement considérées comme aléatoires en raison de leur inhérente
imprévisibilité. Ce caractère aléatoire n’est cependant pas uniforme car certains changements
moléculaires dans les séquences d’ADN sont plus susceptibles de se produire que d’autres.
Nous qualifions ici l’adaptation de biaisée par la mutation lorsque les mutations qui ont le plus
de chances de se produire sont également plus probables de contribuer à l’adaptation. Dans
cette thèse, nous avons intégré des données empiriques à des approches computationnelles et
théoriques afin d’étudier les conditions et les conséquences de l’adaptation par mutation.

Les travaux théoriques précédents utilisaient des paysages génotype-phénotype synthétiques
(c’est-à-dire une correspondance entre les génotypes et un phénotype quantitatif) pour étudier
les conditions de l’adaptation biaisée par la mutation. Dans le Chapitre 2, nous avons caractérisé
746 paysages génotype-phénotype empiriques d’affinités de liaison de facteurs de transcription
pour étudier l’influence du biais de mutation sur l’évolution adaptative d’une affinité de liaison
plus forte. Nous avons constaté que ces paysages empiriques présentent un biais de composition,
à savoir l’enrichissement d’un type particulier de mutation dans les trajectoires mutationnelles
adaptatives du paysage. Pour cela, nous avons regroupé les mutations en transitions (changements
purine-purine ou pyrimidine-pyrimidine) et en transversions (purine-pyrimidine ou vice-versa),
et nous avons quantifié le biais de composition par rapport à l’hypothèse nulle selon laquelle il se
produit une transition pour deux transversions. Nous avons trouvé un biais de composition parmi
les trajectoires mutationnelles accessibles vers des pics adaptatifs, et nous avons montré que ce
biais de composition peut interagir avec le biais de mutation pour influencer le taux d’adaptation,
l’évolution de la diversité génétique et la robustesse des mutations, ainsi que la prédictibilité de
l’évolution.

Dans quelle mesure les biais mutationnels peuvent-ils influencer le processus d’adaptation ?
Pour répondre à cette question, nous avons développé, dans le Chapitre 3, un cadre statistique
pour quantifier l’influence du biais de mutation sur le spectre des mutations faux-sens qui sous-
tendent l’adaptation. Plus précisément, nous avons utilisé une régression binomiale négative pour
modéliser les fréquences observées des substitutions adaptatives de codons en acides aminés en
incorporant des estimations empiriques des fréquences de codons et des taux de mutation neutres
par nucléotide. Nous avons appliqué cette approche séparément à trois grands jeux de données de
changements adaptatifs chez Saccharomyces cerevisiae, Escherichia coli et Mycobacterium tuberculosis.
Dans chacun des cas, nous avons constaté que le biais de mutation a une influence proportionnelle
sur les spectres de substitutions adaptatives. Cependant, les simulations évolutives ont montré
que cette influence peut être modulée par différents facteurs, tels que le nombre de mutations par
génération et l’ampleur et l’hétérogénéité de la cible mutationnelle pour l’adaptation.

L’un des principes centraux de la théorie de l’évolution est que les taux de mutation ne sont
pas corrélés aux effets de la fitness. En d’autres termes, on s’attend à ce qu’une mutation ayant
un effet important sur la fitness se produise au même rythme qu’une mutation avec un faible
effet sur la fitness. Les progrès technologiques, tels que les approches de séquençage profond
et d’accumulation de mutations, permettent aujourd’hui de caractériser les associations réelles
entre ces taux de mutation et les effets de la fitness. Toutefois, ces associations peuvent être
différentes selon qu’elles sont caractérisées avant ou après l’adaptation. En effet, l’adaptation est
conditionnée conjointement par ce qui est susceptible de muter et ce qui est sélectivement favorisé,
et ce conditionnement conjoint peut induire des associations non causales entre les variables
causales (c’est-à-dire les taux de mutation et les coefficients de sélection), un phénomène connu
sous le nom de paradoxe de Berkson. Dans le Chapitre 4, nous avons étudié les associations non
causales possibles entre les taux de mutation et les coefficients de sélection que l’adaptation peut
induire, en combinant des approches théoriques et computationnelles ainsi que des analyses
viii



de jeux de données sur les changements adaptatifs. Nos résultats ont montré que de telles
associations non causales peuvent émerger dans de nombreuses conditions évolutives et dans
différents systèmes biologiques, y compris les virus et le cancer.

Dans le Chapitre 5, nous soulignons les principales conclusions de cette thèse et proposons de
potentielles directions pour les recherches futures.
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1
I N T R O D U C T I O N

1.1 mutation bias

Natural selection acts on phenotypic variation to cause adaptive evolutionary change. Such
phenotypic variation is often caused by mutational processes that generate heritable genetic
variation. Mutation is therefore integral to adaptation, and understanding how mutation causes
adaptive phenotypic variation is central to understanding evolution.

There are different types of genetic mutations, which can be characterised by their underlying
molecular change. Single point mutations, for instance, consist of the exchange of one nucleotide
for another, but also more than one nucleotide can be subject to exchanges (i.e., so-called
multinucleotide mutations), and insertions and deletions of genetic information of variable length
can occur as well. There are further levels of aggregation within mutation types, for example in the
case of single point mutations, it is common to discriminate between transitions (purine-to-purine
or pyrimidine-to-pyrimidine changes) and transversions (purine-to-pyrimidine or pyrimidine-to-
purine changes) (Fig. 1.1a). Moreover, mutation types can also be characterised by their molecular
change in a given genetic context, like an C>T point mutation given the surrounding DNA
sequence (e.g., C>T in the context TCC in Fig. 1.1b). A large body of empirical work has explored
the distribution of mutational types in diverse organisms, uncovering pervasive heterogeneities
in the rate of occurrence of the different mutation types [1]–[10].

Mutation bias is the general term that captures a wide range of such heterogeneities in the rates
at which genetic changes occur. Mutation bias may refer to asymmetries in mutation rates for
different types of mutations or to heterogeneity in the rates of genetic changes at different specific
genomic regions [11]–[15]. Such biases have been widely reported in studies that experimentally
characterised mutation patterns in neutral evolution [8]–[10], [16]. For example, Mycobacterium
smegmatis, a non-pathogenic bacterium often used to experimentally study other Mycobacteria
species, exhibits an unusual A:T>C:G mutation bias in mutation accumulation experiments [10].
However, such biases are not only observed among neutral mutations but have further been found
in mutation patterns linked to adaptation in a variety of biological systems [17]–[26]. For instance,
in a dataset of adaptive mutations that increase hemoglobin affinity to oxygen in high-altitude
birds, an enrichment was found for amino acid replacements associated to mutations in CpG
dinucleotide regions [22]. These genomic regions are of particular interest for mutation bias
research because they are hotspots of nucleotide point mutations due to the effect of cytosine
methylation on DNA damage and repair, and exhibit mutation rates several-fold higher than
other regions [27], [28].

Mutation-biased adaptation occurs when the mutations that are more likely to happen are
also more likely to contribute to adaptation. A further challenge in identifying mutation-biased
adaptation from empirical data is to determine whether an enrichment for some type of mutation
relates to its higher mutation rate or rather to an inherent selective advantage for that particular
mutation type. For example, transition mutations are considered to be less disruptive than
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Figure 1.1: Schematic representation of two mutation spectra. a. Bar plot of a mutation spectrum
describing the relative rates of the six possible nucleotide changes. b. Bar plot of a mutation
spectrum describing the relative rates of the six possible nucleotide changes specified by the
identity of the bases that immediately flank the mutated base. In this example, C>T mutations
in the the context of TCC are the type of transition that occurs most often, whereas C>A
mutations in the context of CCG are the type of transversion that occurs most often.

transversions for two reasons. The first one is that the standard genetic code is more robust
to transition mutations, because these mutations are more likely to preserve the biochemical
properties of amino acids [29], [30]. The second reason is that, because purines and pyrimidines
differ in size, transition mutations are less likely to cause structural changes to the DNA double
helix [31]. Nevertheless, evidence for significant selective differences across different mutation
types remains inconclusive [32]–[34].

1.2 empirical characterisation of mutation bias

To comprehensively characterise the spontaneous rate of newly arisen mutations has proven
challenging for a variety of reasons. Perhaps the most evident one is the fact that mutations often
lead to changes in phenotype that have fitness consequences ( [35], [36]) that could potentially bias
the estimates [15]. Other reasons include the rather low magnitudes of mutation rates (especially
in eukaryotes [37], [38]), the stochastic behavior of mutation processes, and its dependence both
on genetic background and on environmental and physiological conditions [39]–[42]. Initial
efforts to estimate mutation rates relied upon strategies such as the study of polymorphisms
in natural populations, or parent-offspring genotype comparisons —whenever the mutation
rates were sufficiently high to count several mutations in a single generation (for an extensive
review see [43]). For instance, a study of single-nucleotide polymorphisms within a variety of
bacterial species showed that mutation is AT-biased in every case they analysed, with C/G to T/A
transitions being the most frequent mutation [4]. Studies like this one, however, rely on several
assumptions (e.g. constant population sizes, the absence of epistasis or uniform selective pressure
across sites). More recently, the combination of mutation accumulation (MA) experiments with
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Figure 1.2: Schematic representation of a mutation accumulation experiment. In each of the n MA
replicate lines, a clonal ancestral population is plated using a single colony. Each colony
results from growth and replication of a single cell. At each of the t bottleneck transfers, one
randomly chosen colony is propagated (indicated by the arrows). If the founding cell in this
colony had a mutation (indicated by alternative colors), all of its progeny colonies will also
contain that mutation. Adapted from [48].

high-throughput sequencing methods has become a widely employed procedure to empirically
estimate mutation rates that overcome such challenges [44].

In such MA experiments (Fig. 1.2), new mutations are allowed to accumulate for several
generations in independent replicate evolving lines. These lines are derived from an inbred
ancestral population under recurrent extreme bottlenecks each generation. Such bottlenecks
enhance evolutionary divergence thanks to the accumulation of mutations by genetic drift (with
the exception of the lethal mutations), so that the strength of selection is drastically reduced.
Hence, MA studies provide a robust approach to empirically estimate the occurrence of mutations
in virtually neutral conditions. The further integration of high-throughput sequencing methods
allow for the precise characterisation of the spontaneous mutation rates for different mutation
classes across the whole genome, uncovering mutation biases in a variety of contexts [5], [6], [9],
[10], [45]–[47].

1.3 the role of mutation bias in adaptive evolution

How do such mutational biases influence the process of adaptation? Historically, adaptation
was principally depicted as a process consisting of the redistribution of abundant pre-existing
variation [49]–[52]. In such a depiction, novel variation, for example in the form of new genetic
mutations, was not absolutely necessary for adaptation because selection could act upon the
abundant variation already present in the population. Thus, selection was considered the sole
creative agent of adaptive evolutionary change, and therefore its driving force. There were
two main arguments against mutation’s potential to drive adaptive evolutionary change: First,
mutation rates are small in comparison to selection coefficients. Thus, for mutation to influence
the course of adaptation in this view, the mutation rates should be unrealistically high [53], [54].
Second, mutation, like genetic drift, was considered a mere diffusive factor due to its stochastic
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nature. Mutations were therefore considered undirected relative to the direction of adaptive
evolution [55].

An alternative depiction of adaptation emerged with the development of molecular biology,
where evolutionary change was considered as a sequence of different amino acid substitu-
tions [56]–[58], each determined by a particular mutation. In such models of sequential fixation
events, or origin-fixation models, evolutionary change consists of events in which a variant is
introduced into a population by mutation, and then is accepted or rejected based on its individual
fitness effects [59]–[61]. This alternative view is by no means neglecting the importance of selec-
tion, since after all, selection preserves its discriminatory nature, and beneficial alleles are still the
ones contributing to adaptation. However, directionality is no longer an attribute restricted to
selection, because out of the set of possible favorable mutations, evolving populations will follow
the adaptive trajectories directed by newly arisen molecular changes. Thus, heterogeneities in
the rates of emergence of these different beneficial variants are potentially capable of directing
adaptive outcomes.

1.4 genotype-phenotype landscapes

Understanding how mutation, which acts at the level of genotypes, can cause phenotypic variation,
is a fundamental task in biology research, with relevant implications for the understanding of
development, disease and adaptive processes [62]–[64]. A genotype-phenotype landscape is an
abstract mapping that portrays the associations between genotype and a quantitative phenotype.
In such a representation, genotype sequences are discrete points in genotype space, and they are
connected by the underlying mutation that changes one genotype into another. The quantitative
phenotype is then assigned to each genotype, for example, it could describe the binding energy
of a DNA sequence to a specific protein. Most of our knowledge about such landscapes comes
from computational models that predict the mapping of genotypes onto phenotypes in a variety
of biological systems [65]–[67]. Understanding the structure of genotype-phenotype landscapes
has important evolutionary consequences [68]–[71], for example, for the evolution of genetic
diversity [68].

A fitness landscape is a particular type of genotype-phenotype landscape in which the pheno-
type associated to each genotype is its fitness (i.e., a quantification of reproduction and/or survival
rate) [72], [73]. Adaptive evolution in such landscapes can be seen as a hill-climbing process that
leads evolving populations towards adaptive peaks. Here, each adaptive step is characterised
by the necessary mutation that connects the two genotypes, and the corresponding change in
"elevation" that reflects the fitness change. The topographical properties of such landscapes have
important evolutionary consequences [61], [74], [75], more specifically for the evolution of sex [76],
[77], speciation [78] and the predictability of evolution [79], [80]. For example, let us consider
the simple case of two genetic changes that are separately deleterious, but jointly they confer
a selective advantage. Such a non-additive relationship in the fitness effects of these mutations,
known as reciprocal sign epistasis [81], implies a local valley that would impede the population
from reaching that genotype with higher fitness, trapping the population in a sub-optimal peak.
The increase of epistatic interactions in the landscapes, and the concomitant increase in local
peaks, will diminish the likelihood that the population will eventually reach the optimal peak [61],
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Figure 1.3: Schematic representation of a simple two-locus model with two adaptive peaks. In this
model, peak 1 has a higher selection coefficient than peak 2 (S1 > S2), but peak 2 has a higher
mutation rate (µ2 > µ1).

[75], [82], [83]. Overall, our understanding of adaptive evolution can greatly benefit from the
implementation of genotype-phenotype landscape models.

1.5 mutation-biased adaptation on synthetic landscapes

What evolutionary conditions allow for mutation-biased adaptation? Early theoretical work used
simple synthetic landscapes to investigate this question [84], [85]. For example, in a simple two-
locus model consisting of two adaptive peaks with different selection coefficients and mutation
rates (Fig. 1.3), mutation bias can increase the probability with which an evolving population
converges on the sub-optimal, but mutationally-favored peak [84]. The extent to which it does,
however, depends upon population genetic conditions. If the dynamics of the adaptive process
depend on events that introduce novel variants, mutation bias will then influence which type of
genetic change goes to fixation. The reason is that, when the mutation supply is low, mutations
are rarely introduced in the population, thus the first adaptive mutation to occur and reach a
substantial frequency is likely to go to fixation on a first-come-first-served basis. Therefore, under
such conditions, mutationally-favored changes have a higher chance to go to fixation [84]. In
contrast, when mutations occur more frequently in the population, there is an interplay between
the relative difference between mutation rates and selection coefficients [84]. Recent analytical
work found the exact expressions for the conditions needed for mutation-biased adaptation (i.e.,
the fixation of mutationally-favored variants) for a single-locus synthetic landscape, showing
the specific threshold that the differences in mutation rates between mutational classes must
exceed with respect to those in selection coefficients [86]. Both studies concur on the fact that,
as mutation supply increases, therefore increasing clonal interference, the influence of mutation
bias on adaptation will decrease, because late-arising variants with larger selection coefficients
prevent the fixation of the early-arising variants that are favored by mutation [84], [86].

This growing body of theoretical work [84]–[86] sheds light both on the conditions in which
mutation bias can act as a dispositional force in adaptive evolution, and on the evolutionary
consequences of such mutational patterns on different aspects of adaptive processes.
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1.6 empirical characterisation of genotype-phenotype landscapes

There is one main limitation of using synthetic landscapes to study evolutionary processes such
as mutation-biased adaptation. Namely, one must make strong assumptions about their structural
properties. However, the empirical characterisation of landscapes skirt this issue. How do the
structural properties of empirical landscapes influence mutation-biased adaptation? This is an
open question. A rigorous approach to construct such empirical landscapes would require an
exhaustive assignment of phenotypes or fitness measures to all possible genotype sequences of
a given length, an extremely challenging task. For example, for a DNA alphabet composed of
four nucleotides, ACTG, genotype space grows exponentially as 4L, where L is the genotype’s
length. Thus, genotype space is usually referred to as hyper-astronomically large: all possible
DNA sequences of even a short length would possess more mass than the whole observable
universe [87]. However, over the last decade we have witnessed the development of novel high-
throughput experimental techniques that allow for the empirical measurement of quantitative
phenotypes or fitness for a relatively large number of genotypes in a parallel manner [88]–[91].
This number of genotypes is only a fraction of a much larger landscape, they nevertheless improve
our understanding of the structures of landscapes in different biological domains [92]–[94]. For
example, transfer RNAs are relatively short RNA molecules that carry amino acids to ribosomes
for protein synthesis, and mutations in such molecules are associated with several human diseases,
such as deafness and heart deficiency [95]. One study used deep sequencing to quantify the
fitness effects of 207 point mutations in a transfer RNA gene, under high-temperature stress in
the species model Saccharomyces cerevisiae. Three aspects of their results are worth highlighting:
First, in correspondence with the neutral evolution theory, they found that most mutations are
either neutral or deleterious, whereas only around 1% were beneficial. Second, they uncovered
pervasive epistatic interactions between mutations. And third, the fitness measurements were
correlated with the correct folding of the secondary structure of the transfer RNA molecules [96].
Overall, studies like this one can both provide more realistic landscape depictions and uncover
the biophysical basis of fitness landscapes.

Transcription factor-DNA interactions

Given the immensity of sequence space, a sensible approach to empirically characterise and
analyse complete genotype-phenotype landscapes is to focus on short sequences [97], [98].
Eukaryotic transcription factor DNA binding sites are usually around 10 nucleotides long [99],
which makes them ideal candidates for such characterisation [100], [101]. Transcription factors
control when and where transcriptional processes, namely the conversion of DNA to RNA, occur.
They do so, along with other proteins, by attaching to DNA binding sites, to further recruit or
block the recruitment of RNA polymerase binding to DNA. That is why mutations in DNA
binding sites are highly relevant to understand transcription factor-DNA interactions: they can
change the identity of the transcription factor that is able to engage in binding, as well as alter
the affinity with which the site is bound [102]. Such binding interactions and their regulatory
consequences are both crucial for organismal development and function [103], as well as for the
evolution of phenotypic diversity [104], [105].
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The benefit of understanding transcription factor-DNA interactions in this context is two-fold.
It can reveal the structural properties of empirical genotype-phenotype landscapes [75], [106],
while providing valuable information about the evolution of regulatory elements [75], [107], [108].

1.7 associations between mutation rates and selection coefficients

Recent mutation accumulation experiments allow for the accurate characterisation of species-
specific patterns of mutation bias (for an extensive review see [109]). Such a picture of mutation
bias, in addition to the study of empirical fitness landscapes, could serve as valuable information
to assess the underlying associations between mutation rates and selection coefficients for a
large amount of adaptive mutations. The actual associations between these quantitative traits
remains an open question that is of particular importance because one of the main axioms of
evolutionary theory establishes an independence between the rates of occurrence of random
mutations and their corresponding effects [110]. This means that the probability with which a
particular mutation occurs is unrelated to its phenotypic, and potentially selective outcomes. This
proposition is central to most models of adaptive evolution, including origin-fixation models:
first a random mutation occurs, and then selection increases or decreases its frequency. They
are two independent processes. The integration of empirically characterised mutation rates and
selection coefficients to evolutionary models could provide important information about these
fundamental factors of adaptive processes, reshaping our expectations about the correspondence
between what is selectively beneficial and what is mutationally likely.

1.8 empirical applications of mutation bias

What are the implications of mutation-biased adaptation beyond evolutionary theory? The
incorporation of mutation bias has improved the accuracy of a variety of evolutionary models [25],
[111], [112]. For example, models of protein evolution were able to recapitulate patterns of
empirical amino acid substitution, by integrating mutation bias, the structure of the genetic
code and selection for protein thermodynamic stability [113]. Moreover, mutation bias has been
observed in the evolution of resistance to multiple human-produced toxins, including insecticides,
anti-parasitic and anti-viral drugs [21]. This can improve our understanding of such adaptive
processes, allowing for the limitation of the proliferation of dangerous biological agents such as
microbial pathogens and parasites.

One of the most threatening biological issues for our society are pandemics. A variety of
SARS-CoV-2 genome investigations have uncovered mutation biases strongly favoring uracil
content [114], while selection seems to go against uracil content [115], [116]. This has potential
implications for vaccine development, because increasing uracil content could function as a
strategy for the production of attenuated versions of viruses [115]. In addition, given the repeated
evolution patterns of SARS-CoV-2 variants, studies characterising the role of mutation bias on
virus adaptation may shed light on the forecasting of vaccine resistance, potentially leading to the
development of vaccines that can confer longer-term immunity.

Cancer is another evolutionary process that affects human health. The evolutionary processes
behind the transition from healthy somatic cells to cancer are being increasingly explored in recent
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years [117]–[119]. For example, APOBEC (Apolipoprotein B mRNA Editing Catalytic Polypeptide-
like) is a family of evolutionarily conserved proteins that bind RNA and single-stranded DNA,
and are associated with DNA hypermutation and promiscuous RNA editing when there is loss
of cellular control in APOBEC activity. A study of APOBEC-induced mutations in carcinoma cells
found that the relative selective advantage of mutations for the cancer phenotype often differed
from their prevalence. This means that variants with low selection coefficient but high mutation
rates were recurrently observed, whereas some variants barely occurred despite having high
selection coefficients due to their low mutation rates [118].

Overall, the incorporation of mutation bias in models of adaptive evolution on a variety of
research domains can both expand our understanding of adaptive processes and provide more
accurate descriptions of evolutionary outcomes.
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1.9 thesis outline

This thesis focuses on the evolutionary conditions for mutation-biased adaptation, and its potential
consequences in different facets of evolution, from the evolution of eukaryotic gene regulation
to the predictability of microbial evolution. We employ a combination of empirical data with
computational and theoretical approaches to tackle the previously stated open questions. The
thesis consists of two studies that have been published (Chapter 2 and Chapter 3), and a third
study that is currently in an advanced stage of preparation (Chapter 4).

In Chapter 2, we construct empirical genotype-phenotype landscapes of transcription factor
binding affinities for 746 transcription factors from 129 eukaryotic species. In such landscapes, we
uncover the presence of composition bias, namely the prevalence of a particular type of mutation
in the mutational paths of the landscape. The type of mutation we consider was a transition
mutation, and we measure its prevalence relative to the null expectation that one transition
occurs for every two transversions. We find that composition bias is common among accessible
mutational paths to a landscape’s global adaptive peak. We also show that such composition bias
can interact with mutation bias to influence both the probability that the population will reach
the optimal peak, and the predictability of the evolutionary process.

In Chapter 3, we study to what extent mutation bias shapes the spectrum of missense mutations
underlying adaptation. For this, we use negative binomial regression to model observed numbers
of adaptive codon-to-amino acid substitutions as a function of codon frequencies and neutral
per-nucleotide mutation rates. We separately apply this approach to three large data sets of
missense changes associated with adaptation in Saccharomyces cerevisiae, Escherichia coli, and
Mycobacterium tuberculosis. We find that, in all three cases, mutation bias has a strong and roughly
proportional influence on the spectra of mutations associated to adaptation. We additionally
perform population genetic simulations and find that the predictive power of our framework
depends on multiple factors, including mutation supply and the breadth and heterogeneity of the
mutational target for adaptation.

In Chapter 4, we perform an initial exploration of the non-causal associations between mutation
rates and selection coefficients induced by adaptive processes. For this, we combine theoretical
and computational approaches, as well as analyses of large data sets of adaptive changes. Our
results show that non-causal associations between mutation rate and selection coefficients can
emerge under a variety of evolutionary conditions. This suggest that such associations may be
different depending on whether they are determined from the subset of mutations that reached
fixation, or from the complete set of adaptive mutations.

In Chapter 5, we discuss the main conclusions of this thesis, and highlight future research
directions.
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2.1 abstract

Mutation is a biased stochastic process, with some types of mutations occurring more frequently
than others. Previous work has used synthetic genotype-phenotype landscapes to study how such
mutation bias affects adaptive evolution. Here, we consider 746 empirical genotype-phenotype
landscapes, each of which describes the binding affinity of target DNA sequences to a transcription
factor, to study the influence of mutation bias on adaptive evolution of increased binding affinity.
By using empirical genotype-phenotype landscapes, we need to make only few assumptions about
landscape topography and about the DNA sequences that each landscape contains. The latter
is particularly important because the set of sequences that a landscape contains determines the
types of mutations that can occur along a mutational path to an adaptive peak. That is, landscapes
can exhibit a composition bias — a statistical enrichment of a particular type of mutation relative
to a null expectation, throughout an entire landscape or along particular mutational paths —
that is independent of any bias in the mutation process. Our results reveal the way in which
composition bias interacts with biases in the mutation process under different population genetic
conditions, and how such interaction impacts fundamental properties of adaptive evolution, such
as its predictability, as well as the evolution of genetic diversity and mutational robustness.

author summary

Mutation is often depicted as a random process due its unpredictable nature. However, such
randomness does not imply uniformly distributed outcomes, because some DNA sequence
changes happen more frequently than others. Such mutation bias can be an orienting factor in
adaptive evolution, influencing the mutational trajectories populations follow toward higher-
fitness genotypes. Because these trajectories are typically just a small subset of all possible
mutational trajectories, they can exhibit composition bias - an enrichment of a particular kind
of DNA sequence change, such as transition or transversion mutations. Here, we use empirical
data from eukaryotic transcriptional regulation to study how mutation bias and composition bias
interact to influence adaptive evolution.

2.2 introduction

Mutation exhibits many forms of bias, both in genomic location and toward particular DNA
sequence changes [1]. For instance, a bias toward transitions (mutations that change a purine to a
purine, or a pyrimidine to a pyrimidine), relative to transversions (mutations that change a purine
to a pyrimidine, or vice versa; Fig. 2.1a), has been widely observed in studies of mutation spectra,
such as those based on reversion assays [2], [3], mutation accumulation experiments [4]–[6],
sequence comparisons of closely related species [7]–[10], and analyses of putatively neutral
polymorphisms in natural populations [11]. Because mutation provides the raw material of
evolution, mutation bias may influence adaptive evolutionary change [12]–[14]. Indeed, transition
bias has influenced the adaptive evolution of phenotypes as different as antibiotic resistance
in Mycobacterium tuberculosis [15] and increased hemoglobin-oxygen affinity in high-altitude
birds [16].
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Adaptive evolution is often conceptualized as a hill-climbing process in a genotype-phenotype
landscape, in which each location or coordinate corresponds to a genotype in an abstract genotype
space, and the elevation of each location corresponds to fitness or some related quantitative
phenotype [17], [18]. The topography of a genotype-phenotype landscape influences a wide range
of evolutionary phenomena [19]–[21], including the evolution of genetic diversity, mutational
robustness, and evolvability, as well as the predictability of the evolutionary process itself [19]. It
also influences landscape navigability — the ability of an evolving population to reach the global
adaptive peak via DNA mutation and natural selection [22]. Smooth, single-peaked landscapes
are highly navigable, whereas rugged landscapes are not, because evolving populations can
become trapped on local peaks [23], which frustrates further adaptive change [19], [21], [24].

Previous work has studied the interplay of mutation bias and landscape topography, and
its influence on adaptive evolution, using synthetic genotype-phenotype landscapes [25], [26].
These studies have revealed that in single-peaked landscapes, mutation bias does not influence
navigability, although it can influence the adaptive trajectory to the global peak, such that
the average composition of the sequences in the trajectory reflects the sequence bias of the
mutation process [26]. In this sense, mutation bias can be thought of as an “orienting factor”
in evolution [25], which may affect predictability by making some mutational trajectories more
likely than others. For example, in a simple two-locus model with two adaptive peaks of different
heights, mutation bias increases the probability with which an evolving population converges
on the suboptimal, but mutationally-favored peak [25]. Mutation bias is therefore capable of
influencing the navigability of rugged landscapes. The extent to which it does, however, depends
upon population genetic conditions [25]. Specifically, when the mutation supply is low, the first
adaptive mutation to reach a substantial frequency is likely to go to fixation (“first-come-first-
served”), and a bias in mutation supply will therefore influence which genetic changes drive
adaptation. In contrast, when the mutation supply is high, the fittest adaptive mutation is likely
to go to fixation (“pick-the-winner”), and a bias in mutation supply will have less of an effect on
adaptation.

The study of genotype-phenotype landscapes is currently being transformed by methodological
advances, including those in genome editing and in massively parallel assays such as deep
mutational scanning [15], [20], [24], [27]. These facilitate the assignment of phenotypes to a large
number of genotypes, and thus allow for the construction of empirical genotype-phenotype
landscapes directly from experimental data. Examples include the "splicing-in" of exons [28], the
binding preferences and enzymatic activities of macromolecules [29]–[32], the gene expression
patterns of regulatory circuits [33], and the carbon utilization profiles of metabolic pathways [34].
In nearly all of these examples, the genotype-phenotype landscape is necessarily incomplete,
representing only a small fraction of a much larger landscape, which cannot be constructed in its
entirety due to the hyper-astronomical size of the corresponding genotype space [18]. Complete
landscapes — those in which a phenotype is assigned to all possible genotypes — can only be
constructed for systems with sufficiently small genotype spaces.

Transcription factor-DNA interactions are one such system [22], [35]–[37]. Transcription factors
are regulatory proteins that bind DNA to induce or inhibit gene expression [38]. The DNA
sequences they bind are typically short (6-12nt) [39], which makes it possible to exhaustively
characterize transcription factor binding preferences and thus to construct complete genotype-
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phenotype landscapes of transcription factor binding affinities [22]. In such landscapes, genotypes
are short DNA sequences (transcription factor binding sites), and the phenotype of a sequence
is its relative binding affinity for a transcription factor. Understanding how DNA mutations
affect transcription factor binding affinity is important because such mutations are commonly
implicated in disease [40], [41], as well as in evolutionary adaptations and innovations [42],
[43]. Previous work on these landscapes has revealed that they are highly navigable [22]. They
tend to contain few adaptive peaks, which comprise binding sites that are both mutationally
robust and accessible, meaning that it is typically possible to reach these peaks via a series
of mutations that only move “uphill.” These peaks often comprise multiple sequences, which
facilitates the evolution of genetic diversity in high-affinity binding sites [22], [36]. Additionally,
these landscapes often interface and overlap with one another, which has implications for the
evolvability of transcription factor binding sites [35], [36].

There are two features that differentiate these landscapes from other empirical landscapes. First,
they are complete. They comprise a measure of relative binding affinity for all possible DNA
sequences of length eight. Second, data are available for many such landscapes, which facilitates
statistical analyses of how landscape properties influence adaptive evolution. Moreover, in contrast
to synthetic landscapes, these empirical landscapes make very few assumptions about topography
and about the DNA sequences each landscape contains. The latter is particularly important in the
context of mutation bias, because the set of sequences a landscape contains determines the kinds
of mutations that are present in adaptive mutational trajectories. For example, the TATA-binding
protein binds sequences enriched for thymines and adenines, which means that most of the
mutations present in this protein’s genotype-phenotype landscape are transversions (A > T or
T > A). Such composition bias — an enrichment of a particular type of mutation relative to a
null expectation, throughout an entire landscape or along particular mutational paths — likely
interacts with mutation bias to influence various aspects of adaptive evolution, such as landscape
navigability, enhancing it when mutation is biased toward transversions, and hindering it when
mutation is biased toward transitions. However, to our knowledge, the interaction between
mutation bias and composition bias, and its influence on adaptive evolution, has not been studied,
neither in the context of synthetic nor empirical genotype-phenotype landscapes.

Here, we study this interaction and its influence on adaptive evolution using 746 empirical
genotype-phenotype landscapes of transcription factor binding affinities, under the assumption of
selection for increased binding affinity (although selection does not always act to increase binding
affinity [44], [45]). We find that when the mutation supply is low, mutation bias can increase
or decrease landscape navigability as well as the predictability of evolution, depending upon
whether mutation bias is aligned with composition bias in the adaptive trajectories to the global
peak (i.e., both forms of bias are toward the same type of mutation — transitions or transversions).
When the mutation supply is high, mutation bias does not influence navigability, as expected
on theoretical grounds [25], but it can influence how a population is distributed throughout the
landscape, which has implications for the evolution of genetic diversity, mutational robustness,
and evolvability. Taken together, our results show that mutation bias and composition bias interact
to influence adaptive evolution under a broad range of population genetic conditions.
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2.3 results

Genotype-phenotype landscapes exhibit composition bias in accessible mutational paths

We used protein-binding microarray data [46], [47] to construct empirical genotype-phenotype
landscapes of transcription factor binding affinities for 746 transcription factors from 129 eukary-
otic species, representing 48 distinct DNA binding domain structural classes (Methods; Table
S1). For each transcription factor, these data include an enrichment score (E-score) — a proxy for
relative binding affinity — for all possible 32, 896 DNA sequences of length eight. We constructed
one landscape per transcription factor, using only those DNA sequences that specifically bound
the transcription factor, as indicated by an E-score exceeding 0.35 [22], [35], [36]. We represented
each landscape as a genotype network, in which nodes are transcription factor binding sites
and edges connect nodes if their corresponding sequences differ by a single point mutation
(Fig. 2.1b) [35]. For some transcription factors (⇠37%), the genotype network fragmented into
several disconnected components. When this occurred, we only considered the largest component,
which always comprised more than 100 bound sequences. We refer to this as the dominant
genotype network. We discarded non-dominant components because they usually comprised
few sequences and rarely met our size requirement of 100 sequences. (Fig. S2.1). Each dominant
genotype network formed the substrate of a genotype-phenotype landscape, whose surface was
defined by the relative affinities (E-scores) of the network’s constituent binding sites [22]. We
accounted for noise in the protein binding microarray data using a noise threshold d, which
allowed us to determine whether two DNA sequences differed in their binding affinity [22]
(Methods). We refer to a mutation as accessible if it increases binding affinity more than d, and
we refer to a series of accessible mutations as an accessible mutational path (Fig. 2.1c).

We developed a measure of composition bias on the unit interval, which we applied to entire
landscapes and to accessible mutational paths (Methods). It is based on the null expectation
that one transition occurs per every two transversions. When this measure equals 0.5, there is
no composition bias. Values below 0.5 imply a composition bias toward transversions, whereas
values above 0.5 imply a composition bias toward transitions. Fig. 2.2a shows the distribution of
composition bias across all 746 landscapes. When considering all mutations in a landscape, we
observed variation in composition bias ranging from 0.19 to 0.75, but as a whole, this distribution
did not differ from our null expectation of one transition per every two transversions (black
distribution in Fig. 2.2a, one-sample t test, t745 = �0.4310, p = 0.66). In contrast, when we
considered accessible mutational paths to the global peak, we found significant composition
bias toward transversions (white distribution in Fig. 2.2a, one-sample t test, t745 = �14.3941,
p< 10�40). This bias was sometimes extreme. For example, for 68 transcription factors, fewer than
1 in 7 mutations on an accessible mutational path were transitions, more than a three-fold decrease
relative to our null expectation. Such composition bias varied among transcription factors from
different DNA binding domain structural classes (Fig. 2.2b). For example, AT hook transcription
factors had a strong bias toward transversions, because their binding sites are enriched for
adenine and thymine bases, and thus have a very low GC content. At the opposite extreme were
transcription factors with a basic helix-loop-helix domain (bHLH), which had a bias toward
transitions, because the sequences they bind are more neutral in terms of GC content (average
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Figure 2.1: Genotype-phenotype landscapes of transcription factor binding affinities and their compo-
sition bias. (a) Transitions are mutations from a purine to a purine, or from a pyrimidine to a
pyrimidine. Transversions are mutations from a purine to a pyrimidine, or vice versa. (b) The
dominant genotype network for the yeast transcription factor Sum1. Each node corresponds to
a DNA sequence that binds Sum1 with an E-score > 0.35. Node size is proportional to number
of connections (bigger = more) and color to binding affinity (darker = higher). Two nodes
are connected by an edge if their corresponding sequences differ by a single point mutation
(e.g., see inset), either a transition (blue edges) or a transversion (green edges). (c) Schematic
representation of a genotype-phenotype landscape, and an accessible mutational path to the
global peak involving four transversions and one transition.
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GC content = 0.61). Landscapes with either many high or many low GC content sequences were
more likely to exhibit composition bias toward transversion mutations (Fig. S2.2). Overall, we
observed more extreme bias toward transversions than toward transitions in accessible mutational
paths (Fig. 2.2a), a bias that became even more pronounced as we increased the noise parameter d

(Fig. S2.3). This is because transversions tend to cause larger changes in binding affinity [48], and
thus have larger regulatory effects [49] — a phenomenon we observed mainly near the global
peak (Fig. S2.4). Because these distributions deviate so strongly from our null expectation, we
focus on the composition bias of accessible mutational paths in all subsequent analyses, and we
refer to this simply as composition bias for brevity.

To test the sensitivity of these observations to our use of E-score as a proxy for relative binding
affinity, we considered an alternative proxy — the median signal intensity Z-score — which is
available for 713 of the 746 transcription factors in our dataset. We found a strong correlation
between the composition bias calculated from the two scores (Pearson’s correlation coefficient
r = 0.7212, p< 10�10) (Fig. S2.5), and although composition bias often varied quantitatively
among the two scores, it did not often vary qualitatively. That is, it was uncommon for landscapes
to switch from exhibiting a composition bias toward transversions to a composition bias toward
transitions, or vice versa. There were only 83 transcription factors (12%) for which such switching
occurred, and of these roughly half (⇠48%) exhibited little to no composition bias when using
E-scores (in the range (0.45, 0.55)). We therefore used E-scores for the rest of our analyses. In
addition, we tested the sensitivity of our results to an alternative, less conservative definition of
an accessible mutational path, which included any mutational steps that did not decrease binding
affinity beyond some threshold (d - our noise parameter). Fig. S2.6 shows that this alternative
definition of accessibility results in composition biases that are highly similar to those observed
under our initial more conservative definition, which we therefore use for the rest of our analyses,
unless otherwise noted.

Mutation bias interacts with composition bias to influence landscape navigability

We first explored how mutation bias and composition bias interact to influence adaptive evolution
when the mutation supply is low and selection is strong. Under these population genetic condi-
tions, only one mutation is present in the population at any time [50], which makes the process
amenable to modeling as a random walk in genotype space (Methods). In this framework, each
time step corresponds to the number of generations needed for a mutation to go to fixation, and
the fixation probability of a mutant is proportional to its binding affinity and to the likelihood of
that particular type of mutation occurring. The latter was determined by a mutation bias parame-
ter a, which is defined similarly to our measure of composition bias (Methods). Specifically, when
a = 0.5 there is no bias in mutation supply, values of a below 0.5 mean that the mutation supply
is biased toward transversions, whereas values above 0.5 mean that the mutation supply is biased
toward transitions.

As a measure of landscape navigability, we calculated the probability of reaching the global
peak (Methods). Fig. 2.3 shows how mutation bias and composition bias interact to influence
landscape navigability. We found that mutation bias could either enhance or diminish landscape
navigability, relative to an unbiased mutation supply, depending upon whether the bias in
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Figure 2.2: Accessible mutational paths exhibit composition bias toward transversions. (a) The black
bars show the distribution of composition bias across entire landscapes. The white bars show
the distribution of composition bias across accessible mutational paths to the global peak,
starting from the 10% of binding sites with the lowest affinities in each landscape. Gray
indicates the overlap in the distributions. Data pertain to all 746 landscapes. (b) Composition
bias of accessible mutational paths, with landscapes grouped by DNA binding domain
structural class. Numbers in parentheses indicate the number of transcription factors per class
in our dataset.

mutation supply aligned with the composition bias of the accessible mutational paths in the
landscape (i.e., the two forms of bias were toward the same kind of mutations — transitions
or transversions). This effect is clearly seen when comparing the value of mutation bias that
maximizes the probability of reaching the global peak across the five panels of Fig. 2.3 (dashed
vertical lines), which group landscapes according to their composition bias. Fig. S2.7 shows the
correlation between the mutation bias that maximizes Ppeak and composition bias, measured using
two different definitions of accessible mutational paths. Landscapes with extreme composition
bias exhibited increased sensitivity to mutation bias, relative to landscapes without composition
bias. For example, for landscapes with a strong composition bias toward transversions (Fig. 2.3a),
the probability of reaching the global peak increased from 0.12 with a strong mutation bias
toward transitions to 0.31 with a strong mutation bias toward transversions — a 2.6-fold increase.
In contrast, for landscapes without composition bias (Fig. 2.3c), only a 1.7-fold increase in the
probability of reaching the global peak was obtained by varying the bias in mutation supply.

Overall, landscapes with strong composition bias were more navigable than those with inter-
mediate or no bias, in that they had higher probabilities of reaching the global peak. We reasoned
this is because landscapes with strong composition bias tend to contain fewer binding sites than
those with intermediate or no bias (Fig. S2.8), and the probability of evolving to a landscape’s
global peak decreases with the number of binding sites in the landscape (as shown in Fig. S2.9
for an unbiased mutation supply). In addition, our finding that navigability will be enhanced
when mutation bias and composition bias are aligned and diminished otherwise is insensitive
to whether selection acts to increase or decrease binding affinity (Fig. S2.10). This is important
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Figure 2.3: Mutation bias interacts with composition bias to influence landscape navigability. The
probability Ppeak of reaching the global peak is shown for 19 different values of the mutation
bias parameter a. The solid vertical lines indicate no bias in mutation supply (a = 0.5) and the
dashed vertical lines indicate the value of a that maximizes Ppeak. Landscapes are grouped
based on their composition bias and the distribution of composition bias per panel is shown
on top of each panel. The number of landscapes per panel is indicated is the bottom left
corner.

because low-affinity binding sites often drive gene expression, for example in developmental
enhancers [44], [45].

Mutation bias interacts with composition bias to influence the predictability of evolution

When the mutation supply is low, a bias in mutation supply can influence an evolving population’s
adaptive trajectory through a genotype-phenotype landscape, making some mutational paths
more likely than others [25], [26]. Mutation bias may therefore influence the predictability of
evolution. We next explored how mutation bias interacts with composition bias to influence
the predictability of evolution, quantifying predictability using a measure of path entropy [51]
(Methods). This measure takes on low values when an evolving population tends to take few
mutational paths to the global peak, each with high probability. It takes on high values when
an evolving population tends to take many mutational paths to the global peak, each with low
probability. It is therefore inversely related to the predictability of evolution. Fig. S2.11 shows the
relationship between path entropy and the mutation bias parameter a for 50 randomly chosen
landscapes.

As expected, we found that mutation bias is considerably more likely to increase the pre-
dictability of evolution than to decrease it, in line with the notion of mutation bias as an orienting
factor in evolution [25]. Across all landscapes, there was at least one mutation bias value that
decreased path entropy relative to when there was no mutation bias (Fig. 2.4a), and on average
73% of mutation bias values decreased path entropy relative to when there was no mutation
bias (Fig. S2.12). Moreover, a mutation bias toward transitions minimized path entropy more



2.3 results 27

often than one toward transversions (Fig. 2.4a). Mutation bias therefore readily increases the
predictability of evolution. Fig. 2.4b shows how the misalignment between mutation bias and
composition bias usually leads to the minimization of path entropy, thus increasing predictability.
For landscapes with little to no composition bias, a strong mutation bias toward transitions was
more likely to minimize path entropy than a strong mutation bias toward transversions. This
is because in landscapes with no composition bias there are twice as many transversions than
transitions, so a mutation bias toward transitions represents a greater evolutionary constraint
in such cases. To determine the extent to which entropy changes in response to mutation bias,
we calculated the ratio of the entropy observed in the absence of mutation bias to the minimum
entropy caused by mutation bias (entropyno bias/entropymin), for each landscape. Path entropy
decreased by an average of approximately 2-fold and 3-fold in the most extreme mutation biases
toward transversions and transitions, respectively (Fig. 2.4c).

Perhaps counter-intuitively, we found that mutation bias can also decrease the predictability of
evolution. For 693 landscapes (93%), there was at least one mutation bias value that increased
path entropy relative to when there was no mutation bias (Fig. 2.4d), and on average across
all 746 landscapes, 27% of mutation bias values increased path entropy relative to when there
was no mutation bias (Fig. S2.12). To explore this further, we determined the mutation bias
parameter a that maximized path entropy for each landscape. Fig. 2.4d shows the distribution of
this parameter, which varied across the full range of a values considered. We hypothesized that
the value of a that maximizes path entropy will be positively correlated with composition bias,
such that path entropy will be maximized when these biases are aligned. Fig. 2.4e reveals this
positive correlation, which is statistically significant, but weak in explanatory power (Spearman’s
rank correlation coefficient r = 0.13, p < 10�4). The reason is that our measure of composition
bias does not capture how mutations are distributed across accessible mutational paths, which
strongly influences the value of a that maximizes path entropy (Fig. S2.13). In addition, Fig. 2.4f
shows the relative change in entropy (entropymax/entropyno bias) in relation to the mutation bias
parameter a that maximized path entropy. It reveals that path entropy increased by up to 7-fold,
and that the largest increases were associated with the most extreme biases in mutation supply,
either toward transitions or toward transversions. In these cases, evolution became less predictable
because an evolving population could traverse a greater diversity of accessible mutational paths.
In sum, these analyses reveal that mutation bias and composition bias interact to influence the
predictability of evolution, in most cases increasing predictability, but in many others decreasing
it. Thus, whether mutation bias acts as an orienting or dispersive factor in evolution depends
upon the prevalence and type of composition bias in the landscape.

Mutation bias influences the distribution of polymorphic populations in genotype-phenotype landscapes

We next explored how mutation bias influences adaptive evolution when the mutation supply
is high and selection is strong. Under these population genetic conditions, multiple mutations
coexist in the population and compete for fixation. Because this process is challenging to model
analytically, we used computer simulations of a Wright-Fisher model of evolutionary dynamics
(Methods). As in our previous analyses, we used the probability of reaching the global peak as
a measure of landscape navigability. We found that mutation bias has no effect on navigability
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Figure 2.4: Mutation bias interacts with composition bias to impact the predictability of evolution.
(a) Distribution of the mutation bias parameter a that minimizes path entropy for each
landscape. (b) Mutation bias parameter that minimizes path entropy, shown in relation to
composition bias. (c) Relative entropy change (entropyno bias/entropymin), shown in relation
to the mutation bias parameter a that minimizes path entropy. (d) Distribution of the mutation
bias parameter a that maximizes path entropy for each landscape. (e) Mutation bias parameter
that maximizes path entropy, shown in relation to composition bias. (f) Relative entropy
change (entropymax/entropyno bias), shown in relation to the mutation bias parameter a that
maximizes path entropy. Data in all panels pertain to all 746 landscapes.
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in this “pick-the-winner” regime (Fig. S2.14), as expected on theoretical grounds [25]. However,
we reasoned that mutation bias may still influence other properties of an evolving population,
specifically those that depend upon the population’s distribution in the landscape. To explore
this possibility, we used a measure called an overlap coefficient, which quantifies the similarity
of two populations as the proportion of individuals that are common to both (Methods). This
coefficient takes on its minimum value of 0 when there are no individuals in common between
two populations; it takes on its maximum value of 1 when both populations are identical, having
the same individuals in the same proportions. We applied this measure to pairs of populations
after they had evolved for 1000 generations, reaching steady state (Fig. S2.15). As a baseline for
comparison, we first calculated the overlap coefficient for pairs of replicate populations. That is,
pairs of populations with identical initial conditions, but with different random number generator
seeds (Fig. 2.5a). This allowed us to assess how different we expect two evolved populations to be
at steady state, due solely to the stochastic nature of the evolutionary simulations. For replicate
populations, the overlap coefficient ranged from 0.912 to 1, with a median of 0.976 and a 75th
percentile of 0.817 (Fig. 2.5b). This indicates that while the stochastic nature of the evolutionary
simulation can cause large changes in a polymorphic population’s distribution in a landscape,
it usually does not. Replicate populations tend to converge on highly similar distributions. In
contrast, when we calculated the overlap coefficient for pairs of evolved populations with identical
initial conditions (including identical random number generator seeds), but different values of
the mutation bias parameter, we observed far less overlap (two-sample Kolmogorov-Smirnov test,
D= 0.2695, p < 10�31). Specifically, the overlap coefficient ranged from 0.692 to 1, with a median
of 0.908 and a 75th percentile of 0.274 (Fig. 2.5b). This indicates that mutation bias often has a
strong influence on an evolved population’s distribution in a genotype-phenotype landscape.
The strength of this influence depends upon how different the mutation bias values are in the
populations being compared (Fig. 2.5c), with larger differences corresponding to larger changes
in population distribution, a trend that also holds for infinitely large populations (Fig. S2.16).

Mutation bias and composition bias interact to influence the evolution of genetic diversity and mutational
robustness in polymorphic populations

We next asked how mutation bias interacts with composition bias to influence the evolution
of genetic diversity. We reasoned that when mutation bias is aligned with composition bias,
evolving populations will be less constrained in their exploration of the landscape and will
therefore accumulate greater genetic diversity. To explore this possibility, we measured the genetic
diversity of populations at steady state using Shannon’s diversity index (Methods). This measure
takes on its maximum value of 1 when the population comprises all possible individuals in
equal proportions. For DNA sequences, this means that all four bases are equally likely to
appear at all positions in the sequence. The measure takes on its minimum value of 0 when
the population comprises N copies of just a single individual. Fig. 2.6a-e shows that mutation
bias can either increase or decrease genetic diversity, relative to an unbiased mutation supply,
and depending on whether mutation bias aligns with composition bias. This effect was most
pronounced in landscapes with strong composition bias, either toward transversions (Fig. 2.6a)
or transitions (Fig. 2.6e), and when the mutation supply was high. For example, in landscapes
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Figure 2.5: Evolving polymorphic populations are more sensitive to changes in mutation bias than to
the stochastic nature of the evolutionary simulations. (a) Schematic figure of our experimental
design. For each landscape and combination of population size and mutation rate (Nµ), we
considered 10 replicates for each of 10 different initial conditions and 19 values of the mutation
bias parameter a. Importantly, we used the replicate number to seed the random number
generator of each evolutionary simulation, facilitating the comparison of variation across
replicates versus across the mutation bias parameter a. For example, the matrix elements
indicated in gray contain the information necessary to compare the effects of the mutation bias
parameter with the stochasticity of the evolutionary simulations, for one initial condition. (b)
Overlap coefficient for pairs of evolved populations that differ in random number generator
seed (“Replicates”) or in mutation bias parameter (“Mutation bias”). Notches indicate medians,
whiskers indicate the 25th and 75th percentiles, and cross symbols indicate outliers. (c) Overlap
coefficient for pairs of evolved populations, shown in relation to the difference in their mutation
bias parameters.
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with a strong composition bias toward transversions (Fig. 2.6a), a bias in mutation supply could
change genetic diversity 1.9-fold when Nµ = 50, but had almost no effect when Nµ = 5. In these
cases, genetic diversity could reach levels higher than those observed on landscapes with little to
no bias (Fig. 2.6c). Calculating genetic diversity using nucleotide diversity p results in similar
patterns (Fig. S2.17). Specifically, diversity increases when mutation bias aligns with composition
bias and decreases otherwise. To further illustrate how mutation bias and composition bias
interact to influence population diversity, we show in Fig. S2.18 the allele frequency spectra
of populations evolved on two different landscapes, which we chose as illustrative examples
because of their strong composition bias toward transversions (Fig. S2.18a) and toward transitions
(Fig. S2.18b). As expected, the allele frequency spectra reflect the sequence bias of the mutation
process, with more transition polymorphisms present when mutation is biased toward transitions
and more transversion polymorphisms present when mutation is biased toward transversions.
These examples also illustrate two different ways in which the interaction between mutation
bias and composition bias influence the frequency of mutations in the population. In Fig. S2.18a,
polymorphisms are present, but they are rare, and the sequence that evolves to the highest
frequency is the same as in the absence of mutation bias. In contrast, in Fig. S2.18b some transition
polymorphisms come to dominate the population, such that the sequence that evolves to the
highest frequency is not the same as in the absence of mutation bias.

We then explored the potential consequences of these changes in genetic diversity. First, we
characterized how mutation bias and composition bias interact to influence the mutational
robustness of binding sites in evolved populations at steady state. We quantified the mutational
robustness of an individual binding site as the fraction of all possible mutations to that site that
created another site that was also part of the landscape [35], [37]. The mutational robustness of a
population of binding sites was then simply calculated as the average mutational robustness of
its constituent sites. Fig. 2.6f-j shows that mutation bias can increase or decrease the mutational
robustness of an evolved population, relative to an unbiased mutation supply, especially in
landscapes with strong composition bias, either toward transversions (Fig. 2.6f) or transitions
(Fig. 2.6j). In contrast, for landscapes with little to no composition bias (Fig. 2.6h), only the
most extreme values of mutation bias influenced mutational robustness. For landscapes with
strong composition bias, the changes in mutational robustness caused by mutation bias mirrored
the changes observed for genetic diversity (compare Fig. 2.6a and e to Fig. 2.6f and j). In these
landscapes, therefore, a decrease in genetic diversity was associated with a decrease in mutational
robustness. Moreover, we observed that populations evolving on landscapes with composition
bias tended to be less mutationally robust at steady state. The reason is that landscapes with
composition bias tended to comprise genotypes with fewer mutational neighbors, relative to
landscapes without composition bias (Fig. S2.19). When mutation bias aligned with composition
bias, those genotypes with more mutational neighbors were more likely to evolve, because the
mutation bias oriented the population toward those genotypes.

Mutation bias influences the evolvability of polymorphic populations

Because mutational robustness is a cause of evolvability [21], [52], [53], we explored whether
mutation bias and composition bias interact to influence evolvability — defined in this context
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Figure 2.6: Mutation bias interacts with composition bias to influence the evolution of genetic diversity
and mutational robustness. (a-e) The average genetic diversity and (f-j) mutational robustness
of evolved populations at steady state is shown for 19 different values of the mutation bias
parameter a, and for each of three different values of mutation supply Nµ (see legend). The
solid vertical lines indicate no bias in mutation supply (a = 0.5). Landscapes are grouped
based on their composition bias and the distribution of composition bias per panel is shown
on top of each panel as in Fig. 2.3.
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as the ability of mutation to bring forth new binding phenotypes (Methods) [35]. To test this,
we calculated the average number of transcription factors that bind the one-mutant neighbors
of any individual in the population at steady state, and computed the difference between these
averages for populations with a strong mutation bias toward transversions (a = 0.05), relative
to an unbiased mutation supply (a = 0.5), as well as toward transitions (a = 0.95), relative
to an unbiased mutation supply. Fig. S2.20 shows how a bias in mutation supply affected the
evolvability of polymorphic populations for 128 transcription factors from Arabidopsis thaliana
and 128 transcription factors from Mus musculus, the two species with the most transcription
factors in our dataset. In approximately 70% of the landscapes, mutation bias had no influence
on evolvability. However, in the remaining 30% of landscapes, mutation bias could increase or
decrease the number of transcription factors accessible via point mutation. In A. thaliana, this
ranged from plus or minus 6 transcription factors (⇠ 5%), whereas in M. musculus this ranged
from plus 12 to minus 7 transcription factors (between ⇠ 5% and ⇠ 9%). These observations
suggest that mutation bias is capable of orienting evolving populations both toward and away
from more evolvable regions of genotype-phenotype landscapes. However, this effect is apparently
independent of composition bias. This may seem counterintuitive at first glance, because the
interaction between mutation bias and composition bias influences both genetic diversity and
mutational robustness, two properties that facilitate evolvability [53]. However, the global peaks of
the landscapes considered here are sufficiently narrow that any increase of diversity or robustness
within them is not sufficient to cause a change in the number of phenotypes accessible via
mutation. Said differently, the fraction of sequence space covered by these peaks is too small to
facilitate mutational access to the landscapes of other transcription factors. We speculate that in
landscapes with broader, mesa-like peaks, mutation bias and composition bias could interact to
influence evolvability.

2.4 discussion

The mapping of genotype to phenotype influences how mutation brings forth phenotypic vari-
ation [54]. Biases in this map can therefore influence evolution [55]. For example, so-called
phenotypic bias – that most phenotypes are realized by few genotypes, but a few phenotypes are
realized by many genotypes – can cause a phenomenon known as the “arrival of the frequent”,
wherein phenotypes evolve not because they are the most fit, but rather because they are the most
common [56], [57]. Moreover, phenotypes can exhibit a bias in their mutational connectivity to
other phenotypes, such that phenotype-changing mutations are more likely to lead to common
phenotypes than to uncommon phenotypes, thus reducing the ability of mutation to bring forth
phenotypic variation [58].

Here, we used empirical genotype-phenotype landscapes of transcription factor binding affini-
ties to study a different form of bias, namely composition bias. This describes the prevalence of
a particular kind of mutation in a landscape, or in a subset of mutational paths in a landscape,
relative to a null expectation. The kind of mutation we considered was a transition mutation, and
we measured its prevalence relative to the null expectation that one transition occurs for every two
transversions. We found that composition bias is common among accessible mutational paths to a
landscape’s global adaptive peak, and that for a large diversity of transcription factor families, this
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bias is toward transversions. We showed that such composition bias can interact with mutation
bias to influence the navigability of genotype-phenotype landscapes and the predictability of
evolution, as well as the evolution of genetic diversity and mutational robustness.

Such interaction was most pronounced in landscapes with strong composition bias, and when
the bias in mutation supply was either aligned or in opposition with composition bias. Estimates
of base-substitution mutation spectra are available for at least five of the species studied here [59]:
Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces
cerevisiae. Transforming the reported transition:transversion ratios to our mutation bias parameter
a results in values that range from roughly the null expectation of one transition per two
transversions (a = 0.47 for C. elegans) to a strong bias toward transitions (0.83 in Arabidopsis
thaliana — a 4.8-fold increase over the null expectation). Our results therefore suggest that
biologically-realistic values of mutation bias can influence the evolution of transcription factor
binding sites, specifically for transcription factors whose genotype-phenotype landscapes exhibit
composition bias, either toward transitions or transversions.

Ideally, we could detect the influence of such an interaction on the evolution of transcription
factor binding sites in vivo. Previous work used single nucleotide polymorphism and functional
genomics data to show how the topology and topography of a genotype-phenotype landscape
influences the evolution of binding site diversity in A. thaliana and S. cerevisiae [22], [36]. For
example, transcription factors with broad global peaks were found to exhibit more diversity
in their high-affinity binding sites than transcription factors with narrow global peaks [22]. It
would be desirable to use such data to study how mutation bias and composition bias interact
to influence the evolution of transcription factor binding sites in vivo. For example, one could
ask whether the binding sites of transcription factors with a strong composition bias toward
transversions exhibit less diversity in genomic regions prone to transition mutations than in other
genomic regions, as our results suggest they would. However, such an analysis is complicated
because one would need to identify functional binding sites for the same transcription factor in
genomic regions that differ in mutation bias, but not in mutation rate. While some regulatory
regions are more prone to transition mutations than others, such as CpG-rich promoters, which
are susceptible to C>T transitions due to the spontaneous deamination of 5-methylcytosines,
these regions also exhibit elevated mutation rates [60].

It may be possible to overcome this challenge with experiments. For example, a single low-
affinity binding site for an activating transcription factor could be used to seed two separate
populations of binding sites, where the two populations differ in their mutation bias. This could
be achieved by introducing mutations with error-prone PCR, using enzymes that differ in their
mutation spectra, but have similar mutation rates. The mutated binding sites could then be cloned
into plasmids upstream of a reporter gene, such as yellow fluorescence protein, transformed into
bacterial cells, and exposed to selection for increased fluorescence using flow-activated cell sorting.
This process of mutation and selection could then be repeated for several rounds, cloning the
mutated binding sites back into the ancestral plasmid backbone and transforming the plasmids
into fresh bacterial cells before each round of selection to ensure that increased fluorescence is
driven by mutations in the binding site, rather than by mutations in the protein or elsewhere in
the bacterial genome. By comparing replicate experiments for different binding site seeds and for
transcription factors that vary in their composition bias, it may be possible to determine if and
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how mutation bias and composition bias interact to influence the in vivo evolution of increased
affinity in transcription factor binding sites.

Our analysis makes two key assumptions, the caveats of which are worth highlighting. The first
is our assumption of selection for increased binding affinity. Low-affinity binding sites are also
commonly employed to regulate gene expression, particularly for the auto-regulation of high-copy
number transcription factors in bacteria [61] and during the development of multicellular organ-
isms [44], [45], [62]. The second assumption is that of a linear relationship between the selective
advantage conferred by a mutation and the change in binding affinity that the mutation causes. In
reality, this relationship is likely non-linear, site-specific, and dependent upon local transcription
factor concentrations. Relaxing these two assumptions will transform the topographies of the
landscapes studied here, and will alter the composition biases of their accessible mutational
paths. Such transformations are therefore likely to affect landscape navigability. However, we
do not anticipate they will affect the way in which mutation bias and composition bias interact
to influence landscape navigability. Regardless of the particular topographical properties of the
landscape under investigation, navigability will be enhanced when mutation bias and composition
bias are aligned, and diminished otherwise.

While we focused our study on transcription factor-DNA interactions, composition bias is likely
to exist in other genotype-phenotype landscapes as well. For example, many RNA binding proteins
target sequences enriched for guanine and uracil [63], and their binding affinity landscapes will
therefore exhibit a composition bias toward transversions. Additionally, composition bias is
not limited to genotype-phenotype landscapes of intermolecular interactions as studied here,
but it may also be present in the landscapes of some macromolecules. Finally, other forms of
composition bias and mutation bias may interact to influence adaptive evolution, including GC:AT
bias and deletion bias. The mutation bias signatures of various cancers [64], which influence the
de novo evolution of transcription factor binding sites [65], may also interact with composition
bias to influence landscape navigability. As the scope and scale of genome editing and deep
mutational scanning studies continues to expand, we will gain a better understanding of the
prevalence of composition bias in empirical genotype-phenotype landscapes and its potential to
interact with mutation bias in shaping adaptive mutational trajectories.

2.5 methods

Data

We constructed genotype-phenotype landscapes using data from protein binding microarrays,
which we downloaded from the UniPROBE [46] and CIS-BP [47] databases. These data include
proxies for the relative binding affinity of a transcription factor to all possible (48 � 44)/2 + 44 =

32, 896 eight-nucleotide, double-stranded DNA sequences (transcription factor binding sites).
These proxies include an enrichment score (E-score), which for each sequence is a function of the
fluorescence intensities of a subset of probes that contain the sequence and a subset of probes
that do not contain that sequence [66], and a Z-score, which for each sequence is the difference
between the logarithm of the median fluorescence intensities of a subset of probes that contain
the sequence and the logarithm of the median fluorescence intensities of all probes, reported in
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units of standard deviation. We considered a sequence as specifically bound by a transcription
factor if its E-score exceeded 0.35, following previous work [22], [35], [37], [67]. We included
a landscape in our dataset if its dominant genotype network comprised at least 100 bound
sequences. According to these criteria, our dataset included 746 transcription factors, representing
129 eukaryotic species, and 48 DNA-binding domain structural classes. Details are provided in
Table S1.

Constructing and analyzing genotype-phenotype landscapes

For each transcription factor, we used the Genonets Server [68] to construct a genotype-phenotype
landscape from the set of sequences that specifically bound the factor (i.e., with an E-score > 0.35).
We represented each such sequence as a node in a genotype network, and connected nodes with
edges if their corresponding sequences differed in a single point mutation. Note that we did not
consider indels in our definition of a mutation, like we did in our previous work [22], [35]–[37].
The reason is that we were interested in understanding the influence of a form of composition
bias defined by point mutations (transitions vs. transversions), and we were concerned that the
inclusion of indel-based edges would confound our analyses. For genotype networks that were
fragmented into multiple components, we only considered the largest component, which we call
the dominant genotype network.

Each dominant genotype network served as the substrate of a genotype-phenotype landscape,
the surface of which was defined by relative binding affinity. For our main analyses, this was
captured by the E-score, whereas for some of our sensitivity analyses, this was captured by the
Z-score. We studied accessible mutational paths to the global peaks of these landscapes. An
accessible mutational path comprises edges that each confer an increase in binding affinity greater
than the noise threshold parameter d [22]. For each transcription factor, we calculated d as the
residual standard error of a linear regression between the affinity values of all bound sequences
from the two replicate protein binding microarrays [22]. Thus, each transcription factor had its
own d, which reflects the noise in the replicated measurements for that particular transcription
factor.

Mutation bias and composition bias

We report both mutation bias and composition bias relative to the null expectation that one
transition occurs for every two transversions. Letting Ti and Tv represent mutation rates of
transitions and transversions, respectively, we define mutation bias as

a =
Ti

Ti + Tv/2
. (2.1)

A mutation bias of a = 0.5 corresponds to the null expectation of one transition per two
transversions. Values below 0.5 mean there are more transversions than expected under the null,
whereas values above 0.5 mean there are more transitions than expected under the null.
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Composition bias was measured in the same way, except with Ti and Tv representing the
number of transitions and transversions in a landscape, or in an accessible mutational path to the
global peak of a landscape.

Origin-fixation model of evolutionary dynamics

We used an origin-fixation model to study evolutionary dynamics when the mutation supply is
low (Nµ « 1). This was implemented using Markov chains, a memoryless process that gives the
jumping probability from one genotype i to another genotype j using the matrix

Pi,j =
fi,j fi,j

Â8k fi,k fi,k
(2.2)

where fi,j is the relative difference in binding affinity b

fi,j =

8
><

>:

bj/bi � 1 if bj > bi

0 if otherwise.
(2.3)

and

fi,j =

8
><

>:

a if edge (i, j) is a transition

(1 � a) if edge (i, j) is a transversion.
(2.4)

Then in general, the probability of going from any state to another state in a Markov chain
given by the matrix P (Eq (2.2)) after t steps is

(Pt)i,j. (2.5)

Wright-Fisher model of evolutionary dynamics

We carried out simulations of a Wright-Fisher model to study evolutionary dynamics when the
mutation supply is high (Nµ > 1). Each simulation was initialized with a monomorphic population
comprising N copies of the same sequence, chosen from the bottom 10% of binding affinity values
in the landscape. In each generation t, N sequences were chosen from the population at generation
t � 1 with replacement and with a probability that was linearly proportional to binding affinity.
Mutations were introduced to these sequences at a rate µ per sequence per generation with a
mutation bias a. For each of the 746 landscapes, we performed 15 replicate simulations for each of
initial conditions, 19 linearly spaced mutation bias values between 0.05 and 0.95, and 3 mutation
supply values (Nµ 2 {5, 20, 50}). Each simulation ran for 1000 generations, which was sufficient
to ensure that the population had reached steady state.
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Landscape navigability

As a measure of landscape navigability, we calculated the probability of reaching the global peak,
starting from the 10% of sequences in the dominant genotype network with the lowest binding
affinity. For low mutation supply, this was calculated as the average probability of going from
the initial sequences to the global peak using Eq(2.5) after k = 1000 steps. For high mutation
supply, this was calculated as the fraction of simulations per landscape in which at least 50% of
the population reached the global peak.

Path entropy

PathMAN (Path Matrix Algorithm for Networks), is a publicly available Python script that
efficiently calculates path statistics of a given Markov process [51]. We employed PathMAN to
calculate the Shannon’s entropy of the path distribution, which accounts for the predictability
of the process. Low entropy means that few paths with large probability dominate the process,
while large entropy means that several low-probability paths contribute. We calculated the path
entropy for 19 different values of the mutation bias parameter within the range [0.5,0.95], in order
to find the mutation bias parameters amin and amax that minimize and maximize the path entropy
for each landscape.

Overlap coefficient

The overlap coefficient between two different polymorphic populations A and B was calculated as

OA,B =
|C|

min(|A|, |B|) , (2.6)

where A and B are multisets — sets that permit multiple instances of an element. The cardinality
of such multisets is defined as

|A| = Â
x2A

ma(x) and |B| = Â
x2B

mB(x), (2.7)

where the number of occurrences of the element x in the multiset is indicated by the multiplicity
function m(x).

Then C is the multiset defined as C = A \ B, with multiplicity function

mC(x) = min(mA(x), mB(x)) 8x 2 A [ B. (2.8)

For example, if A = {1, 1, 2, 2, 2, 3} and B = {1, 2, 2, 4}, then C = {1, 2, 2} and the overlap
coefficient is OA,B = 0.75.
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Quasispecies dynamics of infinite populations

Since the matrix in Eq(2.2) is non-negative and connected, Perron-Frobenius theorem for non-
negative matrices applies [69]. Hence, the steady-state distribution of an infinite size population
on a genotype network is determined by the eigenvector associated to the largest eigenvalue of
the matrix in Eq(2.2). Per each landscape, the eigenvectors were computed numerically for 19
different values of mutation bias parameter a within the range [0.5,0.95].

Genetic diversity

We measured the diversity of a population as the average Shannon’s diversity over all genotypes,
normalized by the maximum diversity per landscape log2(n):

H =
�Âi pi log2 pi

log2(n)
(2.9)

where n is the number of sequences in the landscape, pi is the fraction of the steady-state
population that is at sequence i.

Evolvability

We quantified the evolvability of a transcription factor’s binding sites as follows. First, we
determined the set of binding sites that have evolved at steady state in our Wright-Fisher
simulations. Then we enumerated the set of DNA sequences that differ by one mutation from any
of these binding sites, but are not themselves part of the focal transcription factor’s landscape.
Finally, we determined the fraction of transcription factors in our dataset that these one-mutant
neighbors bind. This fraction was our measure of evolvability.
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Figure S2.1: Non-dominant genotype network components usually comprise few sequences. Histogram
of non-dominant component sizes. In total, 46% are singletons and 97% are not large enough
to satisfy our inclusion criterion of containing 100 sequences.
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Figure S2.2: Composition bias is most pronounced in landscapes with low or high GC content. The
composition bias in entire landscapes, and in accessible mutational paths connecting the 10%
of binding sites with the lowest affinity to the global peak, is shown in relation to the average
GC content of the sequences in the landscape. Data pertain to all 746 landscapes. Notches
indicate medians, whiskers indicate the 25th and 75th percentiles, and cross symbols indicate
outliers. The horizontal line indicates no composition bias (0.5).
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Figure S2.3: Composition bias becomes more pronounced as the noise threshold parameter d increases.
For each landscape and for five different values of the noise threshold d, we calculated the
composition bias along the accessible mutational paths connecting the 10% of binding sites
with the lowest affinity to the global peak. Data pertain to all 746 landscapes. Black dots
indicate medians, whiskers indicate the 25th and 75th percentiles, and cross symbols indicate
outliers.
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Figure S2.4: Transversions cause larger changes in binding affinity than transitions, but only near the
global peak. The % increase in binding affinity conferred by transition and transversion
mutations along accessible mutational paths is shown in relation to the mutational distance
of a binding site to the global peak. For each binding site in each accessible path at each
mutational distance d, we calculated the increase in affinity as the percentage change at
mutational distance d � 1 along the path, relative to the affinity of the binding site at
distance d. Notches indicate medians, whiskers indicate the 25th and 75th percentiles, and
cross symbols indicate outliers. Mutational distances 1 and 2 exhibit statistically significant
differences in the increase in binding affinity conferred by transitions and transversions
(Bonferroni corrected two-sample t test, q< 10�3 and q< 0.05, respectively).
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Figure S2.5: Constructing genotype-phenotype landscapes with E-scores or Z-scores results in highly
similar composition biases among accessible mutational paths. Pearson’s correlation
coefficient r = 0.7212, p< 10�10. Data pertain to all 746 landscapes. The shaded gray
regions highlight the 83 landscapes that switch from exhibiting a composition bias toward
transversions to a composition bias toward transitions (or vice versa).



50 mutation bias interacts with composition bias to influence adaptive evolution

0 0.2 0.4 0.6 0.8 1
Alternative composition bias

0

0.2

0.4

0.6

0.8

1

C
om

po
si

tio
n 

bi
as

Figure S2.6: Quantifying composition bias using an alternative accessibility criteria results in very
similar composition biases. Data pertain to all 746 landscapes, Pearson’s correlation
coefficient(r = 0.8541, p< 10�12). The shaded gray regions highlight the 77 landscapes
that switch from exhibiting a composition bias toward transversions to a composition bias
toward transitions (or vice versa).
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Figure S2.7: The mutation bias that maximizes Ppeak correlates strongly with composition bias, mea-
sured using two definitions of accessible mutational paths. In (a), each step in an accessible
mutational path increases binding affinity by at least d. In (b), each step in an accessible
mutational path does not decrease binding affinity more than d. Data pertain to all 746
landscapes, each of which has its own noise threshold d.
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Figure S2.8: Landscapes with strong composition bias comprise fewer binding sites than landscapes
with little or no composition bias. The number of binding sites per landscape is shown in
relation to composition bias. Landscapes are grouped as in Fig. 2.3. Data pertain to all 746
landscapes. Black dots indicate medians, whiskers indicate the 25th and 75th percentiles,
and cross symbols indicate outliers.
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Figure S2.9: Smaller landscapes are more navigable. Landscapes are grouped based on the number of
binding sites they comprise, with the average number of binding sites per landscape per
group ranging from 165.07 to 1037.60 in five linearly spaced increments. The probability of
evolving to the global peak in the absence of mutation bias (a = 0.5) is shown in relation to
landscape size. Data pertain to all 746 landscapes. Black dots indicate medians, whiskers
indicate the 25th and 75th percentiles, and cross symbols indicate outliers.
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Figure S2.10: Mutation bias interacts with composition bias to influence landscape navigability, regard-
less of whether selection favors low or high affinity binding sites. The probability Ppeak of
reaching the global peak is shown for 19 different values of the mutation bias parameter a.
The solid vertical lines indicate no bias in mutation supply (a = 0.5) and the dashed vertical
lines indicate the value of a that maximizes Ppeak. Landscapes are grouped based on their
composition bias and the distribution of composition bias per panel is shown on top of each
panel. The number of landscapes per panel is indicated is the bottom left corner. Fitness is
a function of binding affinity (E-score) using the Gaussian function exp(�((E � Eopt)/s)2),
where E is the E-score of a binding site, Eopt is the optimal E-score, and s is the variance
parameter. Here, Eopt = 0.35 (the lowest E-score in our landscapes) and s = 0.1.
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Figure S2.11: Path entropy as a function of mutation bias. Data pertain to 50 randomly chosen landscapes
for 19 different values of the mutation bias parameter a.
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Figure S2.12: Mutation bias typically increases, but sometimes decreases, the predictability of evolution.
Shown are the percentage of mutation bias values a that increase or decrease path entropy
(which is inversely related to the predictability of evolution), relative to when there is no
mutation bias (a = 0.5). Data pertain to all 19 values of the mutation bias parameter a on
each of the 746 landscapes. Black dots indicate medians, whiskers indicate the 25th and
75th percentiles, and cross symbols indicate outliers.
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Figure S2.13: Composition bias is a weak predictor of the mutation bias a that maximizes path en-
tropy. Nodes represent sequences in a landscape, and directed edges represent accessible
mutations between sequences. Edge colors represent mutation type and node colors rep-
resent binding affinity (darker = higher). This landscape exhibits a strong composition
bias toward transitions. Path entropy is therefore minimized by a strong mutation bias
toward transversions, because an evolving population will utilize only one of the three
accessible mutational paths. Conversely, one might expect path entropy to be maximized by
a strong mutation bias toward transitions. However, this is not the case, because an evolving
population will only utilize two of the three accessible mutational paths. The mutation bias
that maximizes path entropy is actually the one that makes the three first-step mutations
equiprobable. In more complex scenarios, with more and longer paths that include a greater
diversity of binding affinities and more heterogeneous distributions of mutation types, a
single summary statistic like composition bias is unlikely to accurately predict the value of
mutation bias that maximizes path entropy.
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Figure S2.14: Mutation bias has little to no effect on landscape navigability when the mutation supply
is high. The probability Ppeak of reaching the global peak is shown for 19 different values of
the mutation bias parameter a. This probability is calculated as the proportion of simulations
in which at least half of the population evolves to the global peak. The solid vertical lines
indicate no bias in mutation supply (a = 0.5). Landscapes are grouped based on their
composition bias and the distribution of composition bias per panel is shown on top of
each panel as in Fig. 2.3.
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Figure S2.15: Simulations of the Wright-Fisher model typically reach steady state within 1,000 genera-
tions. (a) The average Shannon’s diversity is shown in relation to the number of generations.
After 827 generations, more than 99.9% of the 4, 252, 200 simulations reached steady state
diversity levels within a tolerance of 0.01% of the final diversity level. The black line shows
the average across all simulations. (b) The fraction of simulations that have reached steady
state diversity levels is shown in relation to generation number.
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Figure S2.16: Mutation bias influences the distribution of infinite populations on a genotype-
phenotype landscape. We characterized the steady state distribution of infinite populations
as the eigenvector that corresponds to the largest eigenvalue of the matrix P (Methods).
For any pair of such populations, we measured their overlap as the Euclidean distance
between these eigenvectors - the shorter the distance, the higher the overlap - This panel
shows this distance for pairs of populations in relation to the difference in their mutation
bias parameters.
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Figure S2.17: Mutation bias interacts with composition bias to influence the evolution of nucleotide
diversity p. (a-e) The final average nucleotide diversity of evolved populations at steady
state is shown for 19 different values of the mutation bias parameter a, and for each of three
different values of mutation supply Nµ (see legend). The solid vertical lines indicate no bias
in mutation supply (a= 0.5). Landscapes are grouped based on their composition bias and
the distribution of composition bias per panel is shown on top of each panel, as in Fig. 2.3.
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Figure S2.18: Mutation bias and composition bias interact to influence allele frequency spectra. The
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Figure S2.19: Genotypes in landscapes with strong composition bias are less robust than genotypes in
landscapes without composition bias. The y-axis shows the average mutational robustness
of all genotypes in each landscape. The x-axis shows the composition bias. Landscapes
are grouped as in Fig. 2.3. Data pertain to all 746 landscapes. Black dots indicate medians,
whiskers indicate the 25th and 75th percentiles, and cross symbols indicate outliers.
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Figure S2.20: Mutation bias influences the evolvability of polymorphic populations. The y-axis shows
the difference in evolvability, which is calculated as the difference between the evolvability
of a population at steady state when there is no mutation bias and when there is a
strong bias toward transversions (a = 0.05) or transitions (a = 0.95). Data pertain to 128
transcription factors from (a,b) Arabidopsis thaliana, and (c,d) 128 transcription factors from
Mus musculus. Landscapes are grouped according to their composition bias as in previous
figures. Parameters: N = 104, Nµ = 50. As an example, for a given transcription factor, a
10% change in evolvability under strong transition bias could mean that the one-mutant
neighbors of the sequences evolved at steady state bind 11 transcription factors, whereas
without mutation bias, the one-mutant neighbors of the sequences evolved at steady state
bind 10 transcription factors.
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Published as: Alejandro V. Cano, Hana Rozhoňová, Arlin Stoltzfus, David M. McCandlish, &
Joshua L. Payne (2022). Mutation bias shapes the spectrum of adaptive substitutions. Proceedings of
the National Academy of Sciences, 119(7), e2119720119. https://doi.org/10.1073/pnas.2119720119

Author’s contributions: A.V.C., H.R., A.S., D.M.M., and J.L.P. designed research; A.V.C. and H.R.
performed research; A.V.C., H.R., A.S., D.M.M., and J.L.P. analyzed data; and A.V.C.,H.R., A.S.,
D.M.M., and J.L.P. wrote the paper.

65



66 mutation bias shapes the spectrum of adaptive substitutions

3.1 abstract

Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of
adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a
distribution for types of changes fixed in adaptation. Recent work establishes that the changes
involved in adaptation reflect common types of mutations, raising the question of how strongly
the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question
with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three
large data sets covering thousands of amino acid changes identified in natural and experimental
adaptation in S. cerevisiae, E. coli, and M. tuberculosis. Using species-specific mutation spectra
based on prior knowledge, we find that the mutation spectrum has a proportional influence
on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring
the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately
recover the species-specific mutation spectra. However, we also find that the predictive power of
the model differs substantially between the three species. To better understand these differences,
we use population simulations to explore the factors that influence how closely the spectrum of
adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the
mutation spectrum decreases with increasing mutational supply (Nµ), and that predictive power
is strongly affected by the number and diversity of beneficial mutations.

significance statement

How do mutational biases influence the process of adaptation? A common assumption is that
selection alone determines the course of adaptation from abundant pre-existing variation. Yet,
theoretical work shows broad conditions under which the mutation rate to a given type of variant
strongly influences its probability of contributing to adaptation. Here we introduce a statistical
approach to analyzing how mutation shapes protein sequence adaptation. Using large data sets
from three different species, we show that the mutation spectrum has a proportional influence on
the types of changes fixed in adaptation. We also show via computer simulations that a variety of
factors can influence how closely the spectrum of adaptive substitutions reflects the spectrum of
variants introduced by mutation.

3.2 introduction

The spectrum of adaptive substitutions is a distribution of types of changes fixed in adaptation. A
systematic empirical picture of the spectrum of adaptive substitutions is beginning to emerge
from methods of identifying and verifying individual adaptive changes at the molecular level. The
most familiar method is the retrospective analysis of adaptive species differences, often in cases
where multiple substitutions target the same protein, e.g., changes to photoreceptors involved in
spectral tuning [1], changes to ATPase involved in cardiac glycoside resistance [2], or changes to
hemoglobin involved in altitude adaptation [3]. Other retrospective analyses focus on cases of
recent local adaptation, such as the repeated emergence of antibiotic-resistant bacteria [4], [5] or
herbicide-resistant plants [6]. In addition, experimental studies of adaptation in the laboratory
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provide large and systematic sets of data on the spectrum of adaptive substitutions [7], [8]. While
the first two types of studies tend to focus on specific target genes, the third approach, combined
with genome sequencing, casts a much broader net, covering the entire genome. Such data were
rare just 15 years ago, but they are now sufficiently abundant—cataloging thousands of adaptive
events—that accounting for the species-specific spectrum of adaptive substitutions represents an
important challenge.

One aspect of this challenge is to understand the role of mutation in shaping the spectrum
of adaptive substitutions. Systematic studies of the distribution of mutational types in diverse
organisms [9]–[17] have demonstrated the presence of a variety of biases, including transition bias
and GC:AT bias, as well as CpG bias and other context effects (for review, see [18]). At the same
time, multiple studies have now shown that adaptive substitutions are enriched for mutationally
likely changes [5], [19]–[27]. For instance, the influence of a mutational bias favoring transitions is
evident in the evolution of antibiotic resistance in Mycobacterium tuberculosis [5]. Likewise, the
evolution of increased oxygen-affinity in hemoglobins of high-altitude birds shows a tendency to
occur at CpG hotspots [24].

Such studies have shown effects of specific types of mutation bias using statistical tests for
asymmetry, i.e., tests for a significant excess of a mutationally favored type, relative to a null
expectation of parity. A more general question is how strongly the entire mutation spectrum
shapes the spectrum of adaptive substitutions. That is, the entire mutation spectrum reflects
(simultaneously) all relevant mutation biases, because it describes the relative rates of the different
mutation types. Mutation spectra have been experimentally characterized in a diversity of
species [9]–[17], and these universally reveal some form of mutation bias in that the different
mutation types do not occur with the same relative rates. Such biased mutation spectra shape the
spectra of adaptive substitutions to some degree that is, in principle, quantifiable and measurable.

Here, we provide an approach to answer this more general question, based on modeling the
spectrum of missense mutations underlying adaptation as a function of the nucleotide mutation
spectrum. More specifically, we use negative binomial regression to model observed numbers of
adaptive codon-to-amino acid substitutions as a function of codon frequencies and per-nucleotide
mutation rates, which we estimate from published data on mutation frequencies. This modeling
framework allows us to measure the influence of mutation bias on adaptive evolution in terms of
the regression coefficient associated with the mutation spectrum.

We separately apply this approach to three large data sets of missense changes associated with
adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. We find that,
in each case, the regression on the mutation spectrum is significant, with a regression coefficient
close to 1 (proportional effect) and significantly different from zero (no effect). This indicates
that mutational biases play an important role in determining which mutations, among those
that are beneficial, underlie molecular adaptation. Whereas the ability to predict the spectrum of
adaptive substitutions differs substantially amongst the three species, in each case we find that
experimentally determined mutation spectra provide better model fits than the vast majority of
randomized mutation spectra, confirming the relevance of empirical mutation spectra outside
of the controlled conditions in which they are typically measured. Moreover, we show that by
inferring the optimal mutational spectrum based on the spectrum of adaptive substitutions, we
can accurately recover species-specific patterns of mutational bias previously documented via
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Figure 1. Workflow. (A) We use data from laboratory evolution experiments (E. coli and S. cerevisiae) and clinical isolates (M. tuberculosis) to 
curate a (B) list of genetic changes associated with adaptation. Many factors influence which genetic changes drive adaptation, including 
population genetic and environmental conditions, genomic composition, and mutation bias. Only the latter two are included in our 
modeling framework. (C) From the list of adaptive substitutions, we construct the spectrum of adaptive mutational events. Each element in 
this spectrum corresponds to one of the 391 unique codon-amino acid changes allowed by the standard genetic code, and records the 
number of times that particular genetic change occurred in our list of adaptive substitutions. We calculate several summary statistics of this 
spectrum, including its entropy and the fraction of the 391 elements that are non-zero. (D) We perform negative binomial regression to 
model the influence of mutation bias on the spectrum of adaptive mutational events, using codon frequencies derived from genome 
sequences and mutation spectra derived from mutation accumulation experiments. (E) We use the fitted model to predict the spectrum of 
adaptive mutational events.
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Figure 3.1: Workflow. (a) We use data from laboratory evolution experiments (E. coli and S. cerevisiae)
and clinical isolates (M. tuberculosis) to curate (b) a list of genetic changes associated with
adaptation for each species. (c) From each list of adaptive changes, we construct the spectrum
of adaptive substitutions n. Each element in this spectrum n(c, a) corresponds to one of
the 354 distinct changes from codon c to amino acid a that can be produced by a single
nucleotide mutation under the standard genetic code, and tallies the number of adaptive
events per codon-to-amino acid change. (d) We perform negative binomial regression to model
the influence of mutation bias on the spectrum of adaptive events, using codon frequencies
derived from genome sequences and experimentally characterized mutation spectra. (e) We
use the fitted model to predict the spectrum of adaptive events.

mutation accumulation experiments or patterns of neutral diversity. Finally, we use simulations
of a population model to explore the possible reasons for differences in predictability of the
spectrum of adaptive substitutions. As expected, the impact of the mutation spectrum decreases
as the total mutation supply (Nµ) increases. However, other factors are important, such as the
size and heterogeneity (in adaptive value) of the set of adaptive mutations.

3.3 results

Data and model.

We curated a list of previously-reported missense substitutions associated with adaptation for
each of three species: S. cerevisiae, E. coli, and M. tuberculosis (Fig. 3.1a,b; Methods). Note that
“substitution” here refers to an evolutionary change, whereas we restrict the term “mutation” to
mutational changes or categories, following the definitions provided in the SI Appendix. For S. cere-
visiae, the substitutions were associated with adaptation to high salinity [28], low glucose [28],
and rich media [29], as well as the genetic stress of gene knockout [30]; for E. coli, the substi-
tutions were associated with adaptation to temperature stress during laboratory evolution [8];
for M. tuberculosis, the substitutions were identified in clinical isolates resistant to one or more
of eleven antibiotics or antibiotic classes [5]. Whereas the M. tuberculosis data set is composed
entirely, or almost entirely, of bona fide adaptive changes that have been experimentally verified to
confer antibiotic resistance [5], the data sets for S. cerevisiae and E. coli are likely contaminated
with hitchhikers, i.e., mutations that are not drivers of adaptation, but which reached a high
frequency due to linkage with a driver. Below, we first present our results under the assumption
that substitutions in each data set are exclusively adaptive, and then use simulations to assess the
robustness of our conclusions to various degrees of contamination.

Each data set consists of a list of events of putatively adaptive missense substitution, each of
which can be defined by a specific initial and final genomic state. For example, the substitution
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defined by a G!C transversion in the second position of codon 315 of KatG in M. tuberculosis,
which changes Ser (AGC) to Thr (ACC), confers resistance to the antibiotic isoniazid [31]. In
our data set, we observe 445 independent instances of adaptation via this specific genomic
alteration; for the sake of brevity we describe this as observing 445 “events” corresponding to
this specific adaptive “path”. Here, to define a spectrum of adaptive substitutions, we further
aggregate these adaptive missense substitutions into types of changes. Possible types of changes
include nucleotide-to-nucleotide, codon-to-codon, codon-to-amino acid, and amino acid-to-amino
acid changes, each of which results in a different level of aggregation of the mutational events.
We focus on codon-to-amino acid changes, which we track only by the initial codon and final
amino acid of the substitution, without regard to the specific gene or amino acid position where
the substitution occurred. Given that there are 354 such types of codon-to-amino-acid changes
allowed by the standard genetic code, the spectrum of adaptive substitutions for each species
is a 354-element vector n, where each element n(c, a) is a count of the number of events of
single-nucleotide changes from codon c to amino acid a (Fig. 3.1c; Methods). Table 3.1 reports the
total number of mutational paths and events, as well as the number of non-zero elements in the
spectrum of adaptive substitutions (out of 354) for each data set.

Our goal is to quantify how strongly the mutation spectrum shapes the spectrum of adaptive
substitutions. To do so, we specify a phenomenological model that treats each element in the
spectrum of adaptive substitutions as the product of the starting codon frequency and the relevant
mutation rate, raised to an exponent b representing the degree of mutational influence, e.g.,
b = 0 would indicate no influence. More specifically, we model the expected number E[n(c, a)] of
adaptive substitutions from codon c to amino acid a as being directly proportional to the genomic
frequency f (c) of codon c (i.e., f (c) is the number of times codon c appears in protein-coding
regions of the genome divided by the total number of codons in protein-coding regions of the
genome) and the total mutation rate µ(c, a) of codon c to codons for amino acid a raised to the
power of b, as follows:

E[n(c, a)] µ f (c)µ(c, a)b. (3.1)

Taking the logarithm of this equation gives

log E[n(c, a)] = b0 + log f (c) + b log µ(c, a) (3.2)

where b0 is the logarithm of the constant of proportionality (see Methods and SI Appendix). This
formulation allows us to estimate b0 and b from our observed data sets using negative binomial
regression, which is appropriate for counts data that are over-dispersed [32], as is the case for the
observed spectra of adaptive substitutions.

Given the form of this regression, b represents a coefficient of mutational influence, capturing
the effect of the entire mutation spectrum on the entire spectrum of adaptive substitutions. An
inferred value of b = 0 indicates that E[n(c, a)] does not depend on µ(c, a), implying that the
mutation spectrum has no influence on the spectrum of adaptive substitutions; when b = 1,
E[n(c, a)] is directly proportional to µ(c, a), indicating a strong influence of the mutation spectrum
on the spectrum of adaptive substitutions; values of b between 0 and 1 indicate an intermediate
influence.
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Data Influence of mutation spectrum

Species Paths Events b pb

S. cerevisiae 534 713 1.05 ± 0.08 < 10�16

E. coli 492 602 0.98 ± 0.14 < 10�11

M. tuberculosis 283 4413 0.85 ± 0.23 < 10�3

Table 3.1: Data and negative binomial regression. Shown are the observed numbers of paths and events
for adaptive changes in the three data sets, along with calculated values for the mutation
coefficient b (with standard error) and its p-value.

Population-genetic theory and prior simulation studies suggest a variety of factors likely to
influence b, including population size, absolute mutation rates, fitness landscape architecture,
and whether adaptation is short-term or long-term [33]–[36]. In particular, prior results suggest
that the supply of beneficial mutations will often influence b.

When new mutations are sufficiently rare, beneficial mutations sweep through the population
one at a time, resulting in the so-called origin-fixation [37] or strong-selection-weak-mutation
(SSWM) [38] regime. In this regime, the substitution rate is directly proportional to the mutation
rate, implying b ⇡ 1 [33], [37]. When the beneficial mutation supply is high, multiple adaptive
mutations may compete against each other, resulting in “clonal interference” [39]. Due to clonal
interference, late-arising mutant alleles with larger selection coefficients may prevent the fixation
of early-arising alleles favored by mutation, decreasing the influence of mutation bias [33], [35],
and leading to an expected reduction in b.

Mutation bias strongly influences adaptation in three distinct species.

To what extent does the mutation spectrum influence the outcome of adaptive evolution? To
answer this question, we used empirical mutation spectra generated in prior studies from mutation
accumulation experiments or patterns of neutral diversity. These prior studies were carried out
independently of the studies used to characterize the spectrum of adaptive substitutions. The
three species differ substantially in their mutation spectra (SI Appendix, Fig. S3.1a). M. tuberculosis
shows the greatest heterogeneity, with a 14.7-fold range of rates, whereas S. cerevisiae and E. coli
have smaller ranges of 5.6-fold and 4.7-fold, respectively. The species also differ substantially
in the rates of individual types of nucleotide mutations, e.g., the rate of G!C transversion is
2.1-fold higher in S. cerevisiae than in E. coli (SI Appendix, Fig. S3.1b), whereas the rate of A!T
transversions is 2.5-fold higher in S. cerevisiae (SI Appendix, Fig. S3.1c) and 2.9-fold higher in E. coli
(SI Appendix, Fig. S3.1d) than in M. tuberculosis.

Our first observation is that, when we reduce the adaptive missense substitutions to the six
types of underlying nucleotide mutations, the distribution closely follows the mutation spectrum
for each species (Fig. 3.2a-c). Specifically, the correlation coefficients between the mutation rates
of the six mutation types and their frequencies among adaptive substitutions are 0.83 (p = 0.041),
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0.91 (p = 0.012), and 0.93 (p = 0.008) for S. cerevisiae, E. coli and M. tuberculosis, respectively.
However, this naive comparison ignores potentially confounding effects of the genetic code
and codon usage, where in particular the three species differ substantially in their patterns of
codon usage (SI Appendix, Fig. S3.1e-g). For example GAA (Glu) is the most frequent codon in
S. cerevisiae (frequency 0.045) and the 2nd most frequent codon in E. coli (frequency 0.039), but
it appears less frequently in M. tuberculosis (frequency 0.016). Thus, we might expect adaptive
GAA!AAA (Glu!Lys) changes to occur more frequently in S. cerevisiae and E. coli than in
M. tuberculosis, merely by merit of the greater frequency of GAA in the former two species. To
account for this type of influence, we apply negative binomial regression to the codon-based
model described above (Eqn. 3.2). The results, shown in Table 3.1, reveal a strong and statistically
significant influence of mutation bias in all three species, with each of the 95 % confidence
intervals containing b = 1 (proportional effect), and excluding b = 0 (no effect). Specifically, for
S. cerevisiae, b = 1.05 (95 % CI, 0.89 to 1.21), for E. coli, b = 0.98 (95 % CI, 0.71 to 1.25), and for
M. tuberculosis, b = 0.85 (95 %, 0.31 to 1.37), so that in all three species, differences in mutation
rates produce approximately proportional changes in the spectrum of adaptive substitutions.
Whereas such strong mutational effects are typically associated with neutral evolution, theory [33],
[35], [36], [40], prior evidence [5], [19]–[27], and our simulations (below) indicate that such effects
are possible even when all fixations are selective. What this suggests about the roles of mutation
and selection is addressed further in the Discussion.

Prior work has uncovered an enrichment of transition mutations in the M. tuberculosis data
set, which was attributed to the high transition-transversion ratio in the mutation spectrum of
this species [5]. We therefore wondered whether the entire mutation spectrum provides a better
model fit than just the transition-transversion ratio. To find out, we used a likelihood ratio test
to compare two nested models that differ in the mutation term: a model that only uses the
transition-transversion ratio, and a model that uses both the transition-transversion ratio and
the rest of the mutation spectrum (Methods). For all three species, we find that the model using
both the transition-transversion ratio and the rest of the mutation spectrum provides significantly
better fits, and that b ⇡ 1 on both terms of the regression (SI appendix, Table S3.2).

Having seen the influence of the mutation spectrum on the spectrum of adaptive substitu-
tions, we can also ask to what extent the mutation spectrum, pattern of codon usage, and the
structure of the standard genetic code are jointly sufficient to explain the spectrum of adaptive
substitutions observed in each species. Figure 3.2d-f shows the observed frequency of each type
of codon-to-amino acid change in relation to its predicted frequency under our fitted models. We
observe from this figure that despite the mutation spectrum having its maximum theoretically
predicted influence (b ⇡ 1) in each species, the predictive power of our model nonetheless differs
substantially among the three species, with the correlation between predicted and observed
frequencies dropping dramatically from 0.68 in S. cerevisiae, to 0.41 in E. coli, to only 0.16 in
M. tuberculosis. While all of these correlations are statistically significant (Table 3.2), it is clear that
the predictive power of a model depending only on mutation rates, codon frequencies, and the
structure of the standard genetic code differs between these three species, an observation that we
will return to shortly.
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Figure 3.2: Predicted and observed substitutions at the nucleotide and codon-to-amino acid levels. (a-c)
The frequency of nucleotide changes among adaptive substitutions is plotted as a function of
the empirical mutation rate for (a) S. cerevisiae, (b) E. coli, and (c) M. tuberculosis. The symbols
correspond to the six different types of point mutations (inset in panel a). (d-f) The predicted
spectra of adaptive substitutions are shown in relation to the observed spectra of adaptive
substitutions for (d) S. cerevisiae, (e) E. coli, and (f) M. tuberculosis. See SI Appendix, Table S3.3
for model predictions using codon frequencies alone. For visualisation purposes, a pseudo
count of 1 event and a jitter of range [0,0.3] were added to both the observed and predicted
numbers of events in panels (d-f).

Prediction model Spectrum elements

Species Correlation [CI] pcorr Non-zero Entropy

S. cerevisiae 0.68 [0.62, 0.73] < 10�16 265 0.91

E. coli 0.41 [0.31, 0.49] < 10�14 176 0.80

M. tuberculosis 0.16 [0.05, 0.26] 0.003 111 0.53

Table 3.2: Model predictions. Shown are the Pearson correlations between observed and predicted spectra
of adaptive substitutions, their 95% confidence intervals and p-values, the number of non-zero
elements in the spectrum of adaptive substitutions (out of 354), and the entropy of the spectrum
of adaptive substitutions normalized so that uniformity corresponds to an entropy of 1.
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Randomization tests confirm the relevance of empirical mutation spectra for adaptive evolution.

The species-specific mutation spectra employed above reflect either (1) mutation-accumulation
experiments under laboratory conditions in the absence of selection (S. cerevisiae, E. coli), or (2)
the frequencies of putatively neutral single-nucleotide polymorphisms in natural populations
(M. tuberculosis). The observation that the 95 % confidence interval for the inferred values of the
coefficient of mutational influence b includes one in all three species highlights the relevance of
these species-specific mutation spectra for adaptive evolution.

To explore the relevance of precise estimates of the mutation spectrum more thoroughly,
we repeated our regression above 106 times for each species, each time using a randomized
mutation spectrum instead of the empirical spectrum (each randomized spectrum was generated
by drawing 6 random uniform numbers, then normalizing the sum to 1). We then calculated the
difference between the log-likelihood of the model fit with the randomized mutation spectrum
and the log-likelihood of the model fit with the empirical mutation spectrum. When this difference
is positive, the fit using the randomized mutation spectrum explains the spectrum of adaptive
substitutions better than the fit using the empirical mutation spectrum, and when this difference
is negative the empirical mutation spectrum provides the better explanation. Fig. 3.3a-c shows
that the empirical mutation spectra almost always explain the spectra of adaptive substitutions
better: randomly generated spectra outperform the observed spectrum with frequency 0.002 for
S. cerevisiae, 0.037 for E. coli, and 0.042 for M. tuberculosis. While so far we have attempted to
predict the spectrum of adaptive substitutions based on experimentally characterized mutation
spectra, the strong relationship between the mutational and adaptive spectra in these three species
suggests that it might also be possible to estimate the mutation spectrum from the spectrum
of adaptive substitutions. To do this, we again fitted a negative binomial model but treated
the rates of the six possible types of single nucleotide mutations as free parameters, which
we estimated using maximum likelihood. Fig. 3.3d-f shows that the inferred mutation spectra
strongly resemble the experimentally characterized mutation spectra, with Pearson correlation
coefficients of 0.945 (p = 0.004) for S. cerevisiae, 0.960 (p = 0.002) for E. coli, and 0.837 (p = 0.038)
for M. tuberculosis. Thus, it is possible to accurately recover species-specific mutation spectra
directly from species-specific spectra of adaptive substitutions.

What factors influence the predictive power of the model?

Although the analysis above reveals a statistically significant and approximately directly propor-
tional contribution of mutational biases to the spectrum of adaptive substitutions for all three
data sets, there is considerable variation in the strength of the correlation between the predicted
and observed spectra of adaptive substitutions, with this correlation being strongest and most
significant for S. cerevisiae, and weakest and least significant for M. tuberculosis (Table 3.2; Fig.
3.2d-f).

One immediate hypothesis is that this variation in predictive power is driven by differences in
the completeness of our estimates of the spectrum of adaptive substitutions. Even though our
data sets include hundreds to thousands of adaptive events per species, a substantial fraction of
the 354 possible types of codon-to-amino acid changes are missing from the spectrum for each
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Figure 3.3: Empirical mutation rates explain the spectrum of adaptive substitutions better than ran-
domized rates. In the upper panels, the white bars show the distribution of log-likelihood
differences for randomized vs. empirical mutation rates for (a) S. cerevisiae, (b) E. coli, and (c)
M. tuberculosis. A value of 0 (dashed vertical line) means that a randomized rate performs
as well as the empirical mutation rate. The fraction of randomized rates providing a better
model fit than the empirical rates (i.e., right of 0) is 0.2 %, 3.7 %, 4.2 % for panels a, b and c,
respectively. Data based on 106 randomized rates. Note that the three panels have different
limits on their horizontal axes. In the lower panels, the empirical mutation rate is shown in
relation to the inferred mutation rate on a double logarithmic scale for (d) S. cerevisiae, (e)
E. coli, and (f) M. tuberculosis. Symbol types correspond to inset in (d). The dashed diagonal
line indicates y = x.
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species (Table 3.2), a situation that likely arises both due to finite sample size effects and the
limited diversity of distinct adaptive paths under a specific ecological circumstance (e.g., only a
limited number of mutations confer resistance to any given antibiotic). Indeed, we note that at a
qualitative level, the smaller the number of missing codon-to-amino acid changes, the stronger
the correlation between predicted and observed spectra of adaptive substitutions (Table 3.2).
Moreover, when we aggregate the adaptive substitutions into just six types of distinct nucleotide
changes, all six types are well represented and there is a strong correlation with the mutation
spectrum for all three species (Fig. 3.2a-c).

To evaluate the influence of this kind of sampling effect on the predictive power of our model,
we first simulated random data under the codon model assuming b = 1, sampling adaptive events
according to their expected frequencies, based on the empirical codon frequencies and mutation
spectrum of each species, but restricting the sampled events to the observed set of non-zero
elements for each species-specific spectrum of adaptive substitutions. We then used negative
binomial regression to fit this simulated spectrum of adaptive substitutions and measured the
correlation between the simulated spectrum of adaptive substitutions and the spectrum of adaptive
substitutions predicted by the fitted model. We repeated this process 103 times for each species to
obtain a distribution of correlations. These distributions are shown in SI Appendix, Fig. S3.2. On
average, the correlations decreased from S. cerevisiae (0.76) to E. coli (0.75) to M. tuberculosis (0.61),
suggesting that sampling effects are partly responsible for differences in model fits between the
three species. However, SI Appendix, Fig. S3.2 also shows that the correlations for these simulated
data sets are considerably stronger than those obtained with models fit to the observed spectra of
adaptive substitutions, and the decrease is far less dramatic than the drop from 0.68 to 0.41 to 0.16
noted above (triangles in SI Appendix, Fig. S3.2). This suggests that factors other than sampling
effects also modulate the predictive power of our modeling framework.

To address a combination of additional factors, we turned to population-genetic simulations of
evolution in a haploid genome, with variable parameters for population size N, mutation rate µ,
and fraction of beneficial mutations B. The model genome consists of 500 codons subject to neutral
synonymous mutations and non-neutral missense mutations, where a fraction B of missense
mutational paths are beneficial, with a positive selection coefficient drawn from an exponential
distribution, and other missense paths are deleterious, with effects drawn from a reflected gamma
distribution (Methods). Note that the inclusion of both advantageous and deleterious mutations
allows our simulations to capture both the effects of interference between multiple advantageous
mutations (clonal interference) [39], [41] and the effects of selection against linked deleterious
alleles (i.e., background selection) [42]. We implemented the simulations in SLiM v3.4 [43]. For
each run of the simulation, we recorded the identity of all adaptive mutations on the first sequence
to reach fixation, repeating this process 1000 times to produce a simulated spectrum of adaptive
substitutions similar in size to our empirical data sets. For each combination of N, µ and B, we
simulated 50 data sets and analyzed them using negative binomial regression (Methods).

Previous theoretical work suggests that mutational supply Nµ will modulate the influence
of mutational biases on the spectrum of adaptive substitutions [33]–[36], [44]. In particular, the
simplest effect of increasing Nµ is that multiple beneficial mutations are typically simultaneously
present in the population, competing with each other, so that the adaptive mutation that ultimately
fixes in the population is determined more by selective differences between these segregating
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Figure 3.4: Evolutionary simulations show mutation supply and mutational target size jointly modulate
the predictive power of our model. (a) The inferred mutation coefficient b as a function
of Nµ for five different values of B, the fraction of beneficial mutations (the same color
scheme for B is used in all panels). Dashed horizontal lines are drawn at b = 0 and b = 1 to
indicate no influence and proportional influence of the mutation spectrum on the spectrum of
adaptive substitutions, respectively. (b) Pearson’s correlation coefficient between predicted
and simulated spectra of adaptive substitutions as a function of Nµ for five different values
of B, and (c) entropy of simulated spectra of adaptive substitutions as a function of Nµ for
five different values of B. In (a-c), the black lines show the mean and the gray areas show the
standard deviation. (d) The Pearson’s correlation coefficient between predicted and simulated
spectra of adaptive substitutions is shown in relation to the entropy of the simulated spectra
of adaptive substitutions for different levels of mutation supply. The dashed vertical lines
show the entropy of the spectrum of adaptive substitutions for each of our three study species.

mutations than by which beneficial mutation becomes established in the population first. This
expectation is confirmed by Fig. 3.4a, which shows the inferred values of b relative to Nµ for
different proportions of beneficial mutations B. At the lowest mutation supply, b is approximately
one, reflecting the direct proportionality expected for the origin-fixation regime [33], [37]. As the
mutation supply increases, b tends toward zero, reflecting a diminished influence of the mutation
spectrum on adaptation. At the same time, the distribution of estimates for b becomes more
dispersed (Fig. 3.4a), and the individual estimates become both less significant and less certain, as
indicated by increasing average p-values and increasingly large confidence intervals (SI Appendix,
Fig. S3.3). Similarly, the predictive power of the model decreases with increasing mutation supply,
as measured by a decreasing average correlation between the predicted and observed spectra of
adaptive substitutions (Fig. 3.4b).

The fraction of beneficial mutations B also influences the predictive power of the fitted models,
but in a somewhat more surprising manner. Intuitively, one might think that increasing the
proportion of beneficial mutations would decrease predictive power, as increasing B effectively
increases the beneficial mutational supply, allowing increased competition between simultaneously
segregating beneficial mutations. However, Fig. 3.4a and b show the opposite pattern. At low
and intermediate levels of mutation supply, the largest values of B (white dots) yield the best
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correlations, the lowest values of B (black dots) yield the worst correlations, and intermediate
values of B (grey dots) are intermediate. At high mutation supply, all of the correlations are poor
regardless of B.

A potential explanation for this unexpected effect of B relates to the way that biases in nucleotide
mutations have relatively broad effects, in the sense that changing a single nucleotide mutation
rate will affect the rates of ⇠60 codon-to-amino acid changes. Because nucleotide mutational
biases thus enrich broad classes of codon-to-amino acid changes, they will tend to perform poorly
in predicting distributions of adaptive events when those distributions are highly concentrated
on a small set of codon-to-amino acid changes. Increasing B expands the set of possible beneficial
mutations to cover more diverse types of changes at various genomic sites, and this effect may be
expected to improve the correlation of predicted and observed changes. Indeed, weak correlations
due to this effect might arise, not only from having relatively few available adaptive paths in a
given selective environment (small B), but also from limited sampling density, or even from a
broad and well sampled distribution of adaptive substitutions that is nonetheless heavily skewed
toward a small number of strongly favored changes.

To quantify both the breadth of the adaptive spectrum (i.e., the distribution of events across
the non-zero elements of the spectrum of adaptive substitutions) and its effects on the predictive
power of our model, we calculated the entropy of observed and simulated spectra of adaptive
substitutions, normalized so that the entropy has a minimum value of 0 when all adaptive events
correspond to a single codon-to-amino acid change, and a maximum value of 1 when the adaptive
events are uniformly distributed across all possible codon-to-amino acid changes (Methods).
Fig. 3.4c shows that the entropy decreases as mutation supply increases, and that for any level of
mutation supply, a lower proportion of beneficial mutations likewise decreases the entropy. To
determine whether these patterns of decreasing entropy are sufficient to explain differences in the
predictive power of our model across the range of model parameters, we plotted the correlation
between predicted and simulated spectra of adaptive substitutions against the entropy of the
simulated spectrum of adaptive substitutions (Fig. 3.4d). We see that increasing entropy, either
via a decreased mutation supply or an increased proportion of beneficial mutations, increases the
correlation between simulated and predicted spectra of adaptive substitutions. These observations
from the evolutionary simulations are qualitatively similar to our empirical observation that as
the entropy of the spectrum of adaptive substitutions increases from M. tuberculosis to E. coli to
S. cerevisiae, there is a corresponding increase in the correlation between predicted and observed
spectra of adaptive substitutions (Table 3.1). Indeed, the correlations for our three empirical
data sets are well within the range of what we would expect from our simulations given their
respective entropies (Fig. 3.4d).

To summarize, the results from our evolutionary simulations show that the predictive power of
our model is strongest when the mutation supply is low and the mutational target size is large.
However, we note that predictive power might also be influenced by other factors not included in
our simulations, e.g., heterogeneity in the mutation rate across the genome, such as that caused
by local sequence context [15], [45]–[50].
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Assessing possible effects of contamination.

A key assumption of the analysis above is that the events used to populate the spectrum of
adaptive codon-to-amino acid changes represent adaptive substitutions. While this is likely the
case for the M. tuberculosis data set, because these mutations have been shown experimentally to
confer antibiotic resistance [5], we now consider the possibility that some fraction of observations
in the S. cerevisiae and E. coli data sets represent contamination such as hitchhikers. If contaminants
reflect the mutation spectrum more than genuine adaptive changes, this will exaggerate the
correspondence with mutational predictions. Using the method of Tenaillon, et al. [8], based on
the observed dN/dS ratio (Methods), we estimate these proportions to be ⇠24% and ⇠13% for
S. cerevisiae and E. coli, respectively.

To assess the influence of contamination up to, and even beyond, these estimated levels, we
randomly remove a fraction q of events, sampled according to the species-specific empirical
mutation spectrum. This procedure simulates the removal of a hypothetical contaminant fraction
of size q under the worst-case scenario in which the nucleotide changes in the contaminant fraction
mirror the mutation spectrum. As shown in SI Appendix, Fig. S3.4, even under the assumption that
40 % of the events are contaminants, we observe a strong and statistically significant influence of
mutation bias on adaptive evolution. In fact, we estimate that for S. cerevisiae and E. coli, levels of
contamination of ⇠65 % and ⇠44 %, respectively, would be required to increase the p-value of b

to the point where the influence of mutation bias would no longer be significant.

3.4 discussion

A growing body of evidence suggests that specific mutation biases influence the types of genetic
changes involved in adaptation [5], [19]–[27], consistent with a small body of theoretical work on
how biases in the introduction of variation — both low-level mutational biases and higher-level
systemic biases — are expected to influence adaptive evolution [33], [35], [36], [40]. Yet a general
approach for quantifying this influence was missing. Here, we have developed and applied
such a general approach to assess how the entire mutation spectrum shapes the spectrum of
adaptive substitutions. It uses negative binomial regression to model the spectrum of adaptive
substitutions as a function of codon frequencies and the mutation spectrum, measuring the
influence of mutation in terms of a single statistic — the coefficient of mutational influence b.

This statistic takes on a value of zero when the mutation spectrum has no influence, a value of
one for a proportional influence, and intermediate values for intermediate degrees of influence.
Applying this framework to large data sets from Saccharomyces cerevisiae, Escherichia coli, and
Mycobacterium tuberculosis, we find a clear signal that the mutation spectrum strongly shapes
the spectrum of adaptive substitutions. Specifically, the inferred values of b are not significantly
different from one in any species. This result holds even when we account for the contamination
by hitchikers that is likely present in the data sets for S. cerevisiae and E. coli.

Our approach also illustrates how the spectrum of adaptive substitutions may be interrogated
to reveal clues about the genetic basis of adaptation. We used our fitted models to predict the
spectrum of adaptive substitutions in each species, and uncovered variation in their predictive
capacity, decreasing from S. cerevisiae to E. coli to M. tuberculosis. Using evolutionary simulations,
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we uncovered multiple potential sources of this variation. Specifically, we found that the degree
to which the mutation spectrum is a good predictor of the spectrum of adaptive substitutions
depends on how the adaptive events are distributed among all possible codon-to-amino acid
changes, with reduced predictive capacity associated with distributions concentrated on a small
number of codon-to-amino acid changes. Factors that affect the degree of concentration include
data set size, population genetic conditions, diversity of selective environments, and the genetic
architecture of adaptive traits. Importantly, population genetic conditions that modulate the
influence of mutation bias on adaptation, such as mutation supply, and non-population genetic
conditions, such as the diversity of environmental conditions included in the data set, can affect
the predictive capacity of our model in similar ways.

While additional work is needed to disambiguate these various causes of differing model fits
between species, our results are consistent with known facts concerning the population-genetic
conditions, as well as the environmental conditions and mutational target sizes for adaptive
mutations for the three species studied here. M. tuberculosis has one of the lowest mutation
supplies of all bacteria [51], a small population size upon infection [52], and the 11 antibiotics
considered here target specific gene products [5]. For example, Rifampicin targets the beta
subunit of bacterial RNA polymerase, and only a small handful of mutations to the rpoB gene
that encodes this subunit cause resistance [53]. Thus, while the population genetic conditions
of M. tuberculosis are more likely similar to origin-fixation dynamics than clonal interference
dynamics, and the set of observations is large, the mutational target size for antibiotic resistance
is small. In contrast, E. coli experiences clonal interference due to a relatively higher mutation
supply [54], but adaptation to temperature stress involves a larger mutational target [8], [55].
Similarly, S. cerevisiae experiences clonal interference due to a high mutation supply [29], but
because the data we study include adaptation to several environmental conditions, the mutational
target size is large. Thus, the inferred influence of mutation bias on adaptation in these three
species, increasing from M. tuberculosis to E. coli to S. cerevisiae, is consistent with our findings from
evolutionary simulations that mutation supply and mutational target size modulate the influence
of mutation bias on adaptation. However, it may also be the case that the diminished influence of
mutation bias in M. tuberculosis, relative to E. coli and S. cerevisiae, results from differences in the
way the data were collected (clinical isolates vs. laboratory evolution experiments).

The three species studied here also share several important features that suggest a need for
similar studies across a greater diversity of population-genetic conditions. For example, all of the
data analyzed here were obtained either from clonally reproducing experimental populations
(E. coli and S. cerevisiae) or, in the case of M. tuberculosis, from natural populations with little
or no recombination [52], [56], [57]. This absence of recombination amplifies both the role of
background selection [42] and the degree of interference between selected alleles [41], and it
remains an open question whether mutational biases in practice play as large a role in sexual
populations. Another important population-genetic commonality across the datasets studied here
is the low degree of genetic diversity prior to the onset of selection, so that adaptation likely
proceeds in all three systems from new mutations rather than standing genetic variation. This low
initial diversity is the result of either the experimental setup in the case of E. coli and S. cerevisiae,
or the low world-wide nucleotide diversity empirically observed for M. tuberculosis [56], which is
likely due to repeated bottlenecks at transmission events as well as other factors [58].
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The discovery that mutation biases strongly shape the spectrum of adaptive substitutions has
implications for several other related issues in evolutionary genetics. First, it has implications
for the predictability of evolution [59]–[61], because it shows that mutationally favored types of
changes are more likely to contribute to evolutionary adaptation, an effect that is both large and
readily predictable from prior data on the relevant mutation spectrum. When the spectrum of
adaptive substitutions is compared to the mutation spectrum, we see a significant correlation
(of variable strength) for the spectrum of codon-to-amino-acid changes, and a consistently
strong correlation for the six types of nucleotide changes. This can be understood as an effect
of aggregation. Many previous studies based on laboratory evolution experiments show that
aggregating distinct genomic paths of adaptation by functional criteria (e.g., shared gene, operon,
or functional category) highlight predictable effects that are presumably effects of selection [8],
although effects of mutation are also evident at the gene level [44]. The extreme aggregation of
distinct genomic changes into just six types of nucleotide changes also reveals a highly predictable
effect, but it is an effect of mutation rather than selection, because the criterion of aggregation is
the mutational type. At the opposite extreme of aggregation — particular nucleotide changes at
specific genomic coordinates — mutation bias is unlikely to be predictive of the genetic changes
that cause adaptation.

Second, the discovery of a direct influence of mutation bias on evolutionary adaptation parallels
recent reports that driver mutations in cancer reflect the underlying biases of cancer-associated
mutational processes, including exogenous effects of UV light and tobacco exposure, and endoge-
nous effects of DNA mismatch repair and APOBEC activity [62]–[64]. The increased predictability
of such changes, due to mutational effects, can inform rational drug design, as has been suggested
for drugs for leukemia, prostate cancer, breast cancer, and gastrointestinal stromal tumors [26].
The same may be true for designing antibiotic treatments for mycobacteria, which evolve multi-
drug resistance via a sequence of mutations, several of which interact epistatically, such that only
a subset of possible mutational trajectories to multi-drug resistance are possible [65].

Finally, the broadest context for the present work is a debate about the role of so-called
“internal” causes in shaping the course of evolution. Arguments dating back to the origins of
theoretical population genetics emphasize selection as the sole directional force in evolution,
with mutation treated as a weak and ineffectual pressure due to the smallness of mutation
rates [66]–[68]. Haldane concluded that mutation can influence the course of evolution only under
neutral evolution, or when mutation rates are unusually high [66]. Accordingly, strong effects of
mutation bias have been historically associated with neutral evolution (see [69]). However, more
recent theoretical work has shown that this classic way of thinking depends on the assumption
that evolution begins with abundant standing genetic variation, so that mutation acts only as a
frequency-shifting force and not as a source of genetic novelty [33]. When the dynamics of an
evolutionary process depend on events that introduce novel variants, biases in the introduction
process, such as toward particular nucleotide changes, systematically influence which type of
genetic changes are involved in adaptation [33], [70].

A variety of statistical frameworks assume a proportional influence of the mutation spectrum
on the spectrum of adaptive substitutions, including those for quantifying selection pressures
on proteins. For example, the ratio of non-synonymous to synonymous mutations (dN/dS) - a
commonly used statistical test to detect proteins undergoing adaptation - is often corrected to
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account for the mutation spectrum [54], [71]. Implicit in this accounting is the assumption that
the mutation spectrum influences neutral and adaptive mutations in the same way. Our finding
that the mutation spectrum can be directly inferred from the spectrum of adaptive substitutions
provides empirical support for this assumption, at least for the species and evolutionary conditions
considered here.

Some have responded to the theory of mutation-biased adaptation by arguing that such an
influence is unlikely, on the grounds of requiring sign epistasis or unusually small population
sizes [72]. However, modeling here and in other work shows that mutation bias can influence
adaptation across a range of conditions, including in the absence of sign epistasis and when condi-
tions induce clonal interference among concurrent mutations [35]. More broadly, while theoretical
arguments are surely helpful for sharpening our understanding, ultimately the prevalence and
magnitude of the mutational influence on adaptation is an empirical question, and the impact of
mutational biases on adaptation has now been shown for several different types of mutations, in a
range of systems from bacteriophage to birds to somatic evolution in human cancers [5], [19]–[27].

This growing body of work on mutation-biased adaptation provides a basis to reconsider certain
long-standing claims about how variational properties influence the evolutionary process. For
instance, evo-devo arguments about bias or constraint relate evolutionary patterns to tendencies
of developmental variation, but the causal nature of this link, in terms of population-genetic
principles, is typically unspecified (e.g., [73], [74]). Likewise, a significant body of neo-structuralist
work on “findability” or “self-organization”, going back at least to Kauffman [75], emphasizes the
tendency of evolution to prefer structures common in abstract state-spaces, e.g., in regard to RNA
folds [76] or regulatory circuit motifs [77], without linking this effect to a population-genetic cause.
Recent work on mutation-biased adaptation provides a rigorous body of theory and evidence
establishing how tendencies of variation may act as dispositional causes in evolution, suggesting a
previously missing population-genetic basis for these long-standing claims. Our results contribute
to the empirical case that mutational biases, which are more accessible to study at the level of
population genetics, have a strong and measurable impact on adaptive evolution.

3.5 methods

Data.

Our modeling framework is built around three key quantities, which are specific to each species:
A spectrum of adaptive substitutions n, a table of codon frequencies f , and a mutation spectrum
µ. These are all constructed using empirical data, as described below.

Spectrum of adaptive substitutions.

We curated a list of missense mutations associated with adaptation from the published literature
for each of three species: S. cerevisiae, E. coli, and M. tuberculosis. For each mutation, these lists
specify a genomic coordinate, nucleotide change, amino acid substitution, and literature reference
(Datasets S1-S7). We refer to each unique combination of genomic coordinate and nucleotide
change as a mutational path and each instance of adaptive change along a mutational path as an
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adaptive event. The number of adaptive events per mutational path are also reported in Datasets
S1-S7.

For S. cerevisiae, the adaptive events were reported in four studies, each of which considered one
or more environmental or genetic challenges, including high salinity [28], low glucose [28], rich
media [29], and gene knockout [30]. The list contains 713 adaptive events across 534 mutational
paths (Dataset S1).

For E. coli, the adaptive events were reported in a single study of 115 replicate populations
adapting to temperature stress [8]. The list contains 602 adaptive events across 492 mutational
paths (Dataset S2).

For M. tuberculosis, the adaptive events were reported in a single study of the influence of
mutation bias on adaptation to antibiotic stress [5]. The underlying mutational paths were
derived from two separate meta-analysis of the literature on antibiotic resistance (one performed
for the study and another previously published [4]), with each mutational path required to
pass stringent tests for conferring antibiotic resistance. A total of 11 antibiotics or antibiotic
classes were considered: Rifampicin, ethambutol, isoniazid, ethionamide, ofloxacin, pyrazinamide,
streptomycin, kanamycin, pyrazinamide, fluoroquinolones, and aminoglycosides. The adaptive
events were inferred from a phylogenetic reconstruction of public M. tuberculosis genomes. We
merged the adaptive events from the two meta-analyses. The resulting list contains 4413 adaptive
events across 283 mutational paths (Dataset S3). Analyzing the adaptive events from the two
meta-analyses separately (SI Appendix, Table S3.1) produced qualitatively similar results to those
reported in Table 3.1.

For each species, we constructed the spectrum of adaptive substitutions n from the list of
adaptive events described above, assigning each adaptive event to its respective codon-to-amino-
acid change. Each element n(c, a) of the spectrum of adaptive substitutions therefore tallies the
number of adaptive events that changed codon c to amino acid a. Note the adaptive events tallied
for any codon-to-amino-acid change often reflect more than one genomic coordinate and/or
nucleotide change (i.e., different mutation paths). These spectra are reported in Dataset S4.

Codon frequencies.

We used the tables of codon frequencies reported in the Codon Usage Database [78], found via
query to an exact match to Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis.
These frequencies are reported in Dataset S5 and shown in SI Appendix, Fig. S3.1e-g.

Empirical mutation spectra.

For S. cerevisiae and E. coli, we used mutation rates derived from mutation accumulation ex-
periments, as reported in Figure 3 of reference [15] and Table 3 of reference [14], respectively.
For E. coli, we corrected the mutation rates for GC content, following [12]. For S. cerevisiae, the
rates were already corrected [15]. For M. tuberculosis, we used mutation rates derived from
single-nucleotide polymorphism data [5] (Dataset S6). We restricted our analysis to synonymous
mutations in the 3rd codon position, and corrected the rates for GC content in that position. We
also corrected for the probability that each type of mutation causes a synonymous change. For
instance, of all the possible synonymous mutations in the 3rd position allowed by the standard
genetic code, 23% are G/C!A/T transitions, whereas only 12% are G/C!C/G transversions.
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These spectra are reported in Dataset S7 and shown in SI Appendix, Fig. S3.1a. We used these
estimated mutation rates to define a total codon-to-amino acid mutation rate µ(c, a) for each of
the 354 codon-to-amino acid changes allowed by the standard genetic code, summing the rates
of all point mutations in codon c that lead to amino acid a. For example, the probability of the
mutation from codon CAC to Glutamine (Q) is the sum of the probabilities of point mutations
C!A and C!G, since both mutations in the third position of CAC lead to codons for Glutamine
(Q).

Transition-transversion ratio vs. the full mutation spectrum

The influence of the mutation spectrum can be partitioned into an overall transition-transversion
bias, and biases among different types of transitions and transversions. The model that only
considers the contribution of the species-specific transition-transversion bias is given by:

log E[n(c, a)] = b0 + log f (c) + bti/tv log µti/tv(c, a). (3.3)

As in Eq.3.2, b0 is the logarithm of the constant of proportionality and f (c) is the genomic
frequency of codon c. The mutation term µti/tv(c, a) is defined only by the species-specific
transition-transversion ratio, and thus assigns one rate to all transitions and one (different) rate to
all transversions. The corresponding regression coefficient is bti/tv.

The complete model contains all of the terms of the model above (Eq. 3.3), with an addi-
tional mutation term µrest(c, a) that accounts for the rest of the mutation spectrum (such that
µti/tv(c, a)µrest(c, a) = µ(c, a)), along with its respective regression coefficient brest. This complete
model is given by:

log E[n(c, a)] = b0 + log f (c) + bti/tv log µti/tv(c, a) (3.4)

+brest log µrest(c, a).

As in our main analyses, we used negative binomial regression to estimate the regression
coefficients. Because the two models are nested, we compared their performance using a likelihood
ratio test (SI Appendix, Table S3.2).

Entropy of the spectrum of adaptive substitutions.

The spectrum of adaptive substitutions n describes the number of adaptive events per codon-to-
amino acid change. We calculate the entropy H of this spectrum as

H =
�Âm

i=1 p(ni) log p(ni)

log(m)
(3.5)

where p(ni) is the proportion of adaptive events that correspond to the ith codon-amino acid
change, and m = 354 is the number of codon-to-amino acid changes allowed by the standard
genetic code.
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Evolutionary simulations.

We used SLiM v3.4 for the evolutionary simulations [43]. We ran each simulation until the first
fixation event, repeating this process 1000 times and recording each beneficial mutation that went
to fixation. We performed 50 replicates per combination of the parameters N, µ, and B. Each of
the 1000 simulations per replicate used the same initial population, which comprised N copies of
a nucleotide sequence of length L = 1500 (i.e., 500 codons), randomly generated using the codon
frequencies for S. cerevisiae.

All sequences in the initial population were assigned a fitness of one. The fitness effects assigned
to each of the possible codon-to-amino acid changes from each of the 500 codons were drawn at
random from a distribution of fitness effects, and were held constant across the 1000 simulations
per replicate.

A unique distribution of fitness effects was constructed for each replicate, such that synonymous
mutations were neutral, a fraction B of missense codon-to-amino acid changes were beneficial,
and a fraction 1� B of missense codon-to-amino acid changes were deleterious. The fitness effects
of beneficial codon-to-amino acid changes were drawn from an exponential distribution with
density

fb(x) = le�lx (3.6)

where l = 33.33, so that the expected advantageous selection coefficient was 0.03. The fitness
effects of deleterious codon-to-amino acid changes were drawn from a gamma distribution with
density

fd(x) =
x(a�1)e�(x/s)

sa G(a)
(3.7)

where a = 0.4 and s = 0.15, so that the magnitude of the expected deleterious selection coefficient
was twice the advantageous one [79]. For sequences with more than one mutation, we summed
the effects of the individual mutations. SI Appendix, Fig. S3.5 shows representative distributions
of fitness effects for different proportions of beneficial mutations B.

Each simulation proceeded until a single sequence went to fixation and any beneficial mutations
were recorded. Our simulations thus correspond to single-step adaptive walks, extending prior
theoretical work considering just a few possible adaptive mutations [19], [33] into a codon-based
model of a whole gene with thousands of possible mutations. Single-step adaptive walks are
particularly germane to the M. tuberculosis data, in which antibiotic resistance is often strongly
associated with single mutations. Multi-step walks are also relevant for long-term evolution, but
they would require further assumptions about the structure of the fitness landscape. In each
generation t, N sequences were chosen from the population at generation t � 1 with replacement
and with a probability proportional to their fitness. Mutations were introduced according to the
product of the genome-wide mutation rate µ and the per-nucleotide mutation rate defined by the
mutation spectrum for S. cerevisiae, with each mutation affecting fitness as defined at the onset of
the simulation.
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Contamination estimates.

For each type of mutation, we calculated the number of synonymous and non-synonymous
sites for each possible codon, and we estimated the total number of synonymous and non-
synonymous sites in the genome by taking into account the codon usage patterns of S. cerevisiae
and E. coli (SI Appendix, Fig. S3.1e-f). We then calculated dN/dS ratios among all substitutions
in the adapted lines correcting for the mutation rates of each type of mutation (SI Appendix, Fig.
S3.1a). Following [8], we estimated the proportion of adaptive non-synonymous mutations from
such ratios as y = (x � 1.0)/x, where x is the estimated dN/dS ratio (4.24 and 7.76 for S. cerevisiae
and E. coli, respectively). Finally, we estimated the fraction of hitch-hikers in our data sets as 1� y.

Data Availability.

All study data are included in the article and/or supporting information. The scripts used to
analyze these data and to run the evolutionary simulations can be found at
https://github.com/alejvcano/Mutbias2022.
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3.7 supplementary material

Model description

Our motivation is to develop and apply a phenomenological model that allows us to define
a statistic that quantifies the influence of the mutation spectrum on the spectrum of adaptive
substitutions. We focus on the most general and widely available data on adaptive genetic change:
Single-nucleotide changes that alter amino acids, i.e., single-nucleotide missense changes. The
standard genetic code specifies a set of 354 different types of single-nucleotide missense changes
defined by a starting codon and an ending amino acid. For genomes that use the standard genetic
code, any given episode of adaptation involving missense changes induces a distribution of
adaptive substitution events over these 354 types, which we refer to as the spectrum of adaptive
substitutions.

Because our goal is to model the observed number of counts for each type of adaptive
substitution, we use negative binomial regression [32], which is a type of generalized linear model
that is often employed for modeling count data. It is appropriate because the 354 mutational
types are discrete and the substitution events that correspond to each type occur independently
of one another. The general form of the model is

log E[Y|x] = b0 + log(exposure) + bx,

where Y is a vector of response variables, x are the explanatory variables, b0 is the logarithm of
the constant of proportionality, and exposure quantifies differences in the potential to observe
each type of response. In our case, Y is the number of substitution events of each type, x is the
logarithm of the mutation rate, and the exposure is given by codon frequency, which controls for
the number of times each codon appears in protein-coding regions of the genome. Our model
then takes the form

log E[n(c, a)| log(µ(c, a))] = b0 + log( f (c)) + b log µ(c, a),

where n is the spectrum of adaptive substitutions (i.e., n(c, a) is the number of substitution events
from codon c to amino acid a), µ(c, a) is the mutation rate from codon c to amino acid a, and f (c)
is the frequency of codon c in the genome. The coefficient b is a single statistic that captures the
influence of the mutation spectrum on the spectrum of adaptive substitutions. The expected range
of b is from 0 to 1: If b = 0, the mutation spectrum has no influence on the spectrum of adaptive
substitutions. If b = 1, the mutation spectrum has a proportional influence on the spectrum of
adaptive substitutions. Values of b between 0 and 1 represent an intermediate influence.

The above model only describes the expected number of counts for each type of substitution,
however to fit the parameters of the model by maximum likelihood we must specify a full
distribution for n(c, a). One common choice would be to assume that these counts are Poisson
distributed (i.e. Poisson regression). However, Poisson regression assumes that the variance in
the counts data is equal to the mean. In our data, we instead observe overdispersion, i.e. that the
variance is larger than the mean. Such overdispersion is a common problem in Poisson regression.
The standard solution is to instead use negative binomial regression, a more general model that
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allows the variance to be different from the mean [32]. In the main text, we therefore use negative
binomial regression to model the influence of the mutation spectrum on the spectrum of adaptive
substitutions.

Meaning of key terms

Several important terms used in our study, such as “mutation”, have meanings that are interpreted
differently in different parts of the scientific community [80]. Moreover, our study design requires
additional precision in being able to describe genetic and evolutionary changes, for example
distinguishing a possible beneficial change to the genome of an organism from a realized instance
where a heritable change of that type arises in a particular individual. In order to avoid any
terminological ambiguity, we therefore provide formal definitions for these key terms below.

adaptive substitution An adaptive substitution is an evolutionary change in a population
or sub-population, where each adaptive substitution is understood (in the present context)
to result from an event of mutational introduction and an episode of selective enrichment
that raises the mutant allele to a frequency close to 1.

event An instance of change, having a particular time and place of occurrence, is an event.
Compare to path or type. Here we assume that events occur independently from each other,
and distinguish e.g. the number of times a particular mutational variant is observed from
the number of distinct mutational events that introduced that variant into the population.

missense (nonsynonymous) In the literature of molecular evolution, codon changes that
alter the amino acid are missense changes, and this class of change is often called “non-
synonymous” (e.g., in the dN / dS literature) although technically non-synonymous changes
include both missense and nonsense changes.

mutation A mutation is a heritable change to the genetic material in an individual lineage. The
process of such change is also called mutation. The product of a mutational change is also
called “a mutation” or a “mutant allele,” and in population genetics this kind of usage is
often extended to refer generally to derived alleles, e.g., the “concurrent mutations” regime
refers to mutant alleles segregating concurrently in a population.

mutational type An event of evolutionary or mutational change can be assigned to a variety
of mutational types or categories defined by a class of starting states (e.g., ATG codons) and
a class of ending states (e.g., TTG codons). Here we are mainly focused on the 6 (reversible)
nucleotide-to-nucleotide types and the 354 codon-to-amino-acid types. We use “path” for a
specific kind of mutational type (see path).

path For the purposes of describing observed data sets for specific organisms, a path is a
mutational type defined by a specific genomic site and a codon-to-amino-acid change.
Parallel or recurrent events within a dataset are events that take place along the same path.

spectrum A set of intensities or frequencies over some space of possibilities (e.g. a collection of
different types of mutations) is a spectrum.
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Only codon frequencies Complete model

Species Correlation [CI] pcorr Correlation [CI] pcorr

S. cerevisiae 0.36 [0.25, 0.44] < 10�11 0.68 [0.62, 0.73] < 10�16

E. coli 0.31 [0.22, 0.40] < 10�9 0.41 [0.31, 0.49] < 10�14

M. tuberculosis 0.10 [�0.0004, 0.2059] 0.05 0.16 [0.05, 0.26] 0.003

Table S3.3: A model using codon frequencies and the mutation spectrum provides better predictions
than a model using only codon frequencies (b = 0). Shown are the correlation coefficients
for the two models, with 95 % confidence intervals and p-values.
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Figure S3.1: Empirical mutation spectra and codon frequencies. (a) Bar plots of the empirical mutation
spectra for S. cerevisiae, E. coli, and M. tuberculosis. Bar color indicates the species; see legend.
(b-d) Relative difference in mutation rates per mutation type, Relat diff(b, a) = b/a. Bar color
indicates the species with the higher mutation rate for each mutation type. The vertical axis
is logarithmically scaled for visual clarity. (e-g) Bar plots of the empirical codon frequencies
for (e) S. cerevisiae, (f) E. coli, and (g) M. tuberculosis.
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Figure S3.2: The correlation between predicted and simulated spectra of adaptive substitutions de-
pends on mutational target size, even under origin-fixation dynamics. The distribution of
correlations between predicted and simulated spectra of adaptive substitutions using the
codon frequencies, mutation spectra, and number of non-zero elements in the spectrum of
adaptive substitutions are shown for S. cerevisiae, E. coli, and M. tuberculosis. Data pertain to
103 simulations. Triangles show the correlations reported in Table 1, for reference.
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Figure S3.4: Contamination analysis supports the influence of mutation bias on adaptation. (a) Fraction
of simulated data sets in which the confidence interval includes b = 1. (b) Inferred mutation
coefficients b, (c) p-values of the regression coefficients b, (d) Pearson’s correlation coefficients
between observed and predicted spectra of adaptive substitutions, and (e) the p-values of the
correlation coefficients, are all shown in relation to the percentage of substitutions randomly
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4.1 abstract

Evolutionary change can be understood statistically as the transformation of one distribution into
another. This notion is familiar in classical quantitative genetics, where evolutionary change is
represented as the selective transformation of a distribution of continuous trait values in standing
variation. In molecular evolution, the space is discrete and, rather than taking a measurable
quantity (standing variation) as a starting point, one often begins with the concept of a universe of
prior possibilities (e.g., all possible 1-residue changes) that is sampled by a process of mutagenesis,
followed by selective filtering. This duality leads to a more complex set of questions, including
those relating to the joint distribution of mutation rates and selection coefficients, which (in
the simplest model) is first transformed by mutagenesis from a prior nominal distribution to
a de novo mutation distribution, and then transformed by selection into a distribution of fixed
changes. Here we consider what happens to this nominal distribution under mutagenesis and
selection, using a combination of mathematical theory, computer simulations, and analysis of
available data from deep mutational scanning, cancer informatics, and evolution experiments. We
show that, in principle, this kind of joint conditioning can induce a great variety of association
patterns. However, we argue that natural systems tend to have the kinds of joint distributions
that induce negative associations, leading in some cases to Berkson’s paradox. Finally, we show
that the magnitude of the induced associations between mutation rates and selection coefficients
is modulated by the shape of the nominal distribution and population genetics conditions.

4.2 introduction

Recent work in evolutionary genetics has revealed that, in some evolutionary and population ge-
netic conditions, adaptation reflects variation in both mutation rates and selection coefficients [1]–
[3]. An unexplored implication is that the dual causation of adaptation by mutation and selection
may induce paradoxes of joint conditioning, because in general, joint conditioning can induce
associations between the causal variables (e.g., mutation rates and selection coefficients) [4]. For
instance, if we sample values for X and Y in a manner that depends on the sum Z = X + Y,
this joint conditioning makes the covariance of X and Y in the sample more negative than in the
population, so that it can lead to an anti-correlation even if the prior distributions of X and Y
are uncorrelated [4]. Such induced associations (often negative) can be seen as generalizations
of Berkson’s Paradox [5]. A common example to portray such effects considers applicants that
are admitted to a university based on satisfying a minimum score that combines academic and
athletic prowess. We may see a negative correlation between these two properties among admitted
students, even if there was no correlation in the applicant pool. In fields where causal relation-
ships of variables are represented with graphs, this type of problem is called “conditioning on a
collider,” where the collider is a node with multiple input nodes, i.e., a variable dependent on
multiple other variables [4].

To the extent that substitutions implicated in an episode of evolutionary change reflect both
the likelihood that an option is mutationally introduced, and its subsequent likelihood of being
established by selection or drift, the process of adaptation is a collider that may induce non-causal
associations between mutation rate and selection coefficient. That is, one may define a vector
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of mutation rates µ, and a corresponding vector s of selection coefficients. In the simplest case
of adaptation via origin-fixation dynamics, changes occur at the rate Nµ ⇤ p, i.e., rate of origin
times probability of fixation, where p = 2s in the simplest case of beneficial changes. Because
this dual process is ordered, i.e., mutation comes first, three different joint distributions of µ and
s are of interest: the prior nominal distribution representing the universe of possible changes,
the distribution of de novo mutations (i.e., the mutation spectrum), and the distribution of fixed
changes.

What do we know about the nominal distributions of possible changes, before mutation or
selection has taken place? Empirical work is difficult to find. Of course, many deep mutational
scanning (DMS) studies report fitness values for all (or nearly all) possible amino acid changes
to a target protein, but such approaches typically do not involve the measurement of mutation
rates. However, [6] recently used deep-sequencing methods to estimate both selection coefficients
for tens of thousands of single-nucleotide changes in laboratory cultures of Dengue virus, and
average mutation rates for 12 nucleotide substitution classes (see also [7]).

In the absence of a solid empirical foundation, evolutionary thinking on this issue has been
dominated by assumptions and theories. The textbook doctrine that mutation is random, a central
tenet of the neo-Darwinian theory of evolution [8], suggests that the frequency of occurrence of
mutations will be uncorrelated with fitness effects, and this is sometimes an explicit assumption
in formal modeling [9]. However, this doctrine seems to function more as a heuristic or guiding
assumption than a rigorously grounded conclusion [2]. Meanwhile, diverse ideas about the
evolution of mutational strategies (implying mutation-fitness correlations) have been proposed,
from relatively narrow and modest claims of adaptive amelioration lowering the mutation rate in
functionally important regions [10], [11], to the emergence of specialized mutation systems (e.g.,
cassette-shuffling systems) in the context of immune evasion or host-phage arms races ( [12]; Ch.
5 of [2]), to ideas about “directed” or “smart” mutation systems [13].

What about the distribution of mutation rates and selection coefficients fixed in adaptation?
The largest joint distribution for adaptive evolutionary changes, to our knowledge, is from results
of [14], who reported mutation rates and selection coefficients for 11 Rifampicin-resistant isolates
identified in laboratory adaptation of Pseudomonas aeruginosa. However, several studies of tumor
prevalence have reported paired estimates of growth rates and selection coefficients. [15] report
that the most prevalent tumors are often not the ones with the highest growth rates, but the ones
with high rates of mutational origination. Likewise, several studies have reported on selection
coefficients and mutation rates for clonal expansion in somatic haematopoesis [16].

Though the theory for the joint distribution of mutation rates and selection coefficients before
and after adaptation has not received much explicit attention, classical and recent work provides
guidance on expected effects. New alleles are introduced at rates that follow from the mutation
spectrum, and the kinetic bias imposed on evolution by such mutation rate biases ranges from
nothing (no influence) to a proportional influence, as shown recently by [3]. Likewise, the effect
of selection is to establish new alleles according to their fitness effects, from the limiting case of
an independent probability of fixation of an allele i dependent solely on si (and N), to the case
of clonal interference in which differential effects of fitness are amplified further by competition
among concurrent mutations, to the limiting case in which i is fixed deterministically if it is the
fittest allele.
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Our purpose, in this context, is to consider generally the associations of mutation rate and
fitness on a discrete space such as a genome space, and how those associations change when
conditioned on the effects of mutagenesis and selection. Our initial exploration of this topic draws
on mathematical theory, computer simulations, and analysis of data currently available. We begin
by defining the distributions of interest, and explaining some general properties of size-biased
distributions. We then describe a simple stochastic model of mutagenesis and adaptation in which
mutation rates and fitnesses each take on just 2 or 3 discrete values. Using this model, which
is easily visualized, we show that a variety of negative and positive non-causal associations are
possible, including the strong (sign-changing) and weak forms of Berkson’s paradox. We then
derive a more general theory of joint evolutionary conditioning where the distributions of µ

and s are known. We use results from the simple model to explain and illustrate how effects of
conditioning emerge from higher moments of underlying joint distributions.

Next we consider the expected effects of joint conditioning in Dengue whole genome evolution
using its naturalistic underlying nominal distribution for µ and s, and representing the process of
adaptation using either population simulations or explicit origin-fixation dynamics. We show that
this particular empirical nominal distribution tends to be transformed in the direction of Berkson’s
paradox after adaptation, namely, a negative association between mutation rates and selection
coefficients is induced by the joint conditioning. Moreover, we show that the magnitude of such
induced association depends on the population genetic conditions, as they modulate the influence
of the mutation rates in the joint conditioning [3]. Finally, we consider empirical data on the joint
distribution of µ and s from a DMS study of tumor protein TP53, which allows for the construction
of the nominal distribution for all possible amino acid changes. The further integration of a
dataset on the observed frequency of different somatic mutations to this framework allows for
the empirical characterisation of the fixed distribution of changes, which reflects the influence of
both mutation and selection. We show that associations with different signs can be induced in the
fixed distribution depending on the intensity of mutation bias, which is smaller for amino acid
changes resulting from single point mutations than for the ones associated with multinucleotide
mutations.

We conclude with a prescription for future work. For mutation-limited evolution on a discrete
space, the theory of mutation-fitness associations describes how a potential distribution of
possibilities is transformed into an actual one. This theory was not of much use until recent
technological advances made it possible to measure mutation rates and selection coefficients with
precision. Therefore, the integration of empirically characterised mutation rates and selection
coefficients to evolutionary models is key to improve our understanding about the correspondence
between what is selectively beneficial and what is mutationally likely.

4.3 results

Analytical Results

Here we consider the joint distribution of mutation rates and selection coefficients for beneficial
changes from three different perspectives. First, we can ask about the joint distribution of selection
coefficients and mutation rates when we pick randomly from an abstract set of possibilities. For
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example, if we have a DNA sequence of length `, then there are 3` alternative sequences that differ
by a single nucleotide, out of which some number n are beneficial. Any one of these n beneficial
changes occurs by mutation at some definite rate and has some definite selective advantage.
Accordingly, we could ask about the expected selection coefficient, for instance, or the correlation
between mutation rate and selection coefficient, when we draw one of these n possibilities
uniformly at random. We call this the nominal distribution and denote the expected selection
coefficient or mutation rate of a draw from this distribution as Enom(s) or Enom(µ), respectively.
The nominal distribution is therefore equivalent to what we observe in a deep mutational scanning
study that comprehensively determines selection coefficients for all single-nucleotide variants
(or in other designs, all amino acid variants), or when we scan a model of context-dependent
mutation rates across the genome and calculate the mutation rate for each possible mutation in
turn. This is also the distribution relevant for determining the overall mutation rate, since the
total beneficial mutation rate is the sum of the mutation rates to each possible beneficial mutation.

Second, in addition to the joint distribution of selection coefficients and mutation rates among
mutational possibilities, we can consider the distribution that arises as new mutations are
introduced. Here, instead of picking a random position and a random nucleotide, as in the
nominal distribution, we ask about the distribution of the next beneficial mutation likely to occur
in a given genome. This distribution differs from the nominal distribution in that mutations
with higher rates are more likely to be the next mutation to occur. Accordingly, this is also the
distribution that we observe in a mutation accumulation experiment and which determines the
average selection coefficient for new mutations. We call this the distribution of de novo mutations
and write the expected selection coefficient of a new mutation as Ede novo(s).

Third, we can consider mutations that become fixed in evolution; that is, those that actually
contribute to adaptation. This is equivalent to asking about the selection coefficient and mutation
rate of the next mutation that is going to fix in the population. We call this distribution the fixed
distribution and write the expected selection coefficient of the next mutation to fix as Efixed(s)

To understand the necessary relationships between these distributions, it is helpful to introduce
the concept of a size-biased distribution [17]. In particular, given a non-negative random variable
X, we can define the size-biased distribution as the random variable X⇤ where P(X⇤ = x) is
proportional to xP(X = x) for any non-negative value x. Thus, the size-biased distribution is a
re-weighted version of the original probability distribution. More specifically, it is the probability
distribution obtained when the new weights on each outcome are given by the value of that
outcome. This re-weighting favors larger outcomes and results in a systematic change to the
moments of the distribution. More precisely, the kth raw moment of the size-biased distribution is
determined by the (k + 1)th moment of the original distribution by E((X⇤)k) = E(Xk+1)/E(X).
Size-biasing is well known to result in certain paradoxes. For example, if the number of children
per family is given by the random variable X then the number of siblings in a random individual’s
family is given by X⇤, which results in the “sibling paradox” that the expected number of siblings
in a given person’s family is larger than the average number of children per family. Another
classical example is the "waiting time paradox", where (for instance) if the time interval between
buses is distributed as X, the expected time spent waiting for a bus, for a person who arrives at
the bus stop at a random time, is E(X⇤)/2 instead of the shorter time E(X)/2, because a person
is more likely to arrive in a longer interval between buses than a smaller one.
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The concept of size-biasing is helpful in thinking about the relationships between the nominal,
de novo, and fixed mutational distributions because the distributions are related to each other by
size-biasing according to either the mutation rate or the selection coefficient. In particular, the de
novo distribution is obtained by size-biasing the nominal distribution with the mutation rate. In
symbols, we write this as:

Pde novo(s = si and µ = µi) =
µiPnom(s = si and µ = µi)

Enom(µ)
(4.1)

where si and µi are the selection coefficient and mutation rate for the i-th class of mutations,
respectively.

This size-biasing means that the average mutation rate of mutations observed in the de novo
distribution will be at least as large as the average mutation rate with respect to the nominal
distribution. In fact, the increase in the expected mutation rate is given by

Ede novo(µ)� Enom(µ) =
Varnom(µ)
Enom(µ)

� 0. (4.2)

Importantly, size-biasing the nominal distribution with respect to mutation rate will also typically
affect the mean selection coefficient, provided that a non-zero correlation exists between mutation
and selection in the nominal distribution. In particular,

Ede novo(s)� Enom(s) =
Covnom(µ, s)

Enom(µ)
. (4.3)

In fact, the form of these equations will likely be familiar to many readers as they are directly
analogous to Fisher’s fundamental theorem and Robertson’s secondary theorem, respectively
(see [18]). This is because the fitness distribution after selection is the size-biased transformation of
the fitness distribution before selection, and the response to selection corresponds to size-biasing
the distribution of another random variable according to its fitness. Thus, these classical results
for fitness provide an easy mnemonic for the results of size-biasing more generally.

Whereas the de novo distribution is obtained from the nominal distribution by size-biasing
with respect to mutation rate, the fixed distribution is obtained from the de novo distribution by
size-biasing with respect to selection coefficient. This size-biasing is based on a strong-selection,
weak-mutation (SSWM) approximation [19], [20]. Under this approximation, the probability of
fixation of a new mutation is given by 2s [21], which is proportional to the selection coefficient
and thus size-biases the joint distribution with respect to the selection coefficient. Importantly,
when selection is relatively strong (s » 1/N), the influence of neutral drift is more negligible
and probabilities of fixation more accurately reflect selection coefficients [22]. Moreover, biased
mutation rates are most likely to shape the outcome of adaptive evolution when overall mutation
rates are low (that is, µN << 1), since this forces selection to act on new variation as it arises
instead of standing variation [23], [24]. Accordingly, the joint distributions of mutation and
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selection described here approximate the origin-fixation regime, where evolution is proportional
to both µ and s [23]. In particular, we have

Pfixed(s = si and µ = µi) =
siPde novo(s = si and µ = µi)

Ede novo(s)
(4.4)

=
µisiPnom(s = si and µ = µi)

Enom(µs)
(4.5)

where the second line shows that we can also derive the fixed distribution from the de novo
distribution by reweighting each class of mutations i according to the product of its mutation
rates and selection coefficients µisi. Similarly to the difference between the nominal and de novo
distributions, moving from the de novo distribution to the fixed distribution will typically change
the expected selection coefficient and expected mutation rate, with

Efixed(s)� Ede novo(s) =
Varde novo(s)
Ede novo(s)

� 0. (4.6)

and
Efixed(µ)� Ede novo(µ) =

Covde novo(µ, s)
Ede novo(µ)

. (4.7)

So far we have discussed the fact that the mean mutation rate and selection coefficient of
mutations may differ depending on whether we consider random genetic perturbations (nominal
distribution), random mutations introduced into a population (the de novo distribution) or
random fixed mutations. However, our main interest here is in asking about whether there is a
systematic relationship between mutation and selection, and how this relationship appears from
each of these perspectives. We begin by asking how such a systematic relationship is transformed
across these three distributions by considering the simplest possible cases, with the caveat that
the results in these simple cases are, as we will show below, deeply misleading concerning our
expectations in more realistic situations.

Clearly the simplest possible case is when mutation and selection are completely independent.
In particular, if Pnom(s = si and µ = µi) = Pnom(s = si)Pnom(µ = µi) for all i, then Pde novo(s =

si and µ = µi) = (µiPnom(µ = µi)/Enom(µ)) Pnom(s = si) so that mutation and selection are
independent with respect to the de novo distribution where the de novo distribution of selection
coefficients remains unchanged and the de novo distribition of mutation rates is simply the size-
biased version of the nominal distribution of mutation rates. Similarly, Pfixed(s = si and µ = µi) =

(µiPnom(µ = µi)/Enom(µ)) (siPnom(s = si)/Enom(s)), so that the fixed distribution corresponds
to independent draws from the sized-biased distribution of mutation rates and the size-biased
distribution of selection coefficients. Thus, in the case of exact independence between mutation
and selection, this independence is maintained in all three distributions. Importantly, as we shall
see, exact independence is rarely realized when considering a specific finite set of mutations,
which typically leads to substantial departures from these simple expectations.

Another simple case that suggests that the qualitative relationship between mutation and
selection should be similar across all three of these distributions is the case when we have
only two mutation rates and two selection coefficients. For convenience we will work with
relative mutation rates and selective coefficients, so that we will write the lower mutation
rate as 1 and the larger mutation rate as k > 1, and write the lower selection coefficient as
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1 and the larger selection coefficient as b > 1. For this case it is also helpful to be able to
work with the individual probabilities for the four possible combinations of mutation rate
and selection coefficient. These probabilities are written as pnom

1,b , for example, referring to the
probability of observing the lower mutation rate and the larger selection coefficient when drawing
from the nominal distribution; likewise pfix

k,b refers to the probability of observing the greater
selection coefficient and greater mutation rate when drawing a random fixed mutation. We will
also write e.g. pde novo

k = pde novo
k,1 + pde novo

k,b for the marginal frequency of the higher mutation
rate in the de novo distribution and Varnom(p(s)) = pnom

b (1 � pnom
b ) as the variance in the

frequency of the high versus low selection coefficient under the nominal distribution. Finally, let
Dnom = pnom

k,b pnom
1,1 � pnom

k,1 pnom
1,b , which is a measure of the association between the high and low

levels for the mutation rate and selection coefficient.
With this basic setup in hand, we can now consider the correlation between mutation rate and

selection coefficient for our three distributions. In particular, we have

rnom =
Dnomp

Varnom(p(µ)2)Varnom(p(s))
(4.8)

rde novo =
k

Enom(µ)2
Dnomp

Varde novo(p(µ))Varde novo(p(s))
(4.9)

rfix =
kb

Enom(µs)2
Dnomp

Varfix(p(µ))Varfix(p(s))
. (4.10)

Note that k, b, µ and s are all positive, and variances are non-negative (and must be positive
for the correlation to be defined), so that the sign of each expression depends only on Dnom.
Thus, we see that in the case where there are only 2 selective and 2 mutational classes, the
sign of the correlation between mutation rates and selection coefficients is the same between all
three distributions. This is illustrated in the first two rows of Fig. 4.1. In the first row, while the
mean selection coefficient and mean mutation rate change across the three distributions, all three
distributions remain uncorrelated. In the second row, the three distributions are all negatively
correlated with the strength of the negative correlation increasing from nominal to de novo to
fixed. Note that the negative correlation also results in a slightly non-monotonic pattern of change
in the mean selection coefficient and mean mutation rate.

While a consistent sign arises in the correlation of mutation and selection in this simplest case
of 2 possible values (high or low) for each, if we extend the possibilities to 3 classes each of
mutation rate and selection coefficient, the possibilities are far less constrained. The third row
of Fig. 4.1 shows that mutation and selection can be uncorrelated in the nominal and de novo
distributions but correlated among fixed mutations. The reason for this is best understood in
relation to Simpson’s paradox, where the sign of a correlation within groups may be different
than the sign of the correlation when groups are aggregated. Here we can see the original "plus"
pattern as two separate groups with perfect negative correlations, one with µs = 3 and another
with µs = 15. The latter group is enriched among fixed mutations, resulting in the observed
negative correlation.

Another useful example is considering high, medium and low possibilities for each of mutation
rate and selection coefficient, with 3 possible mutations that each take on a unique pairwise value
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Figure 4.1: Correlations of mutation and selection under some simple models. In the simplified models
shown here, mutation rates and selection coefficients each take on just 2 or 3 values. The
columns from left to right show the nominal distribution (representing the landscape of
possible mutations across varying mutation rates and selection coefficients), the distribution of
de novo mutations (the possible changes weighted by mutation rates), and the distribution of
changes resulting from a mutation-fixation process. Transecting lines show the regression of
selection on mutation (solid) and mutation on selection (dotted), respectively; central crossed
lines show the first and second principal components, with the lengths proportional to the
variance explained, where by definition V1 � V2.
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of mutation rate and selection coefficient. In this case, 17% of such configurations result in at
least one sign-flip between the 3 distributions. More generally, we provide examples in Fig. S4.1
showing that any pattern of signs of correlation among the 3 distributions is possible once we
admit 3 distinct values for mutation rate and selection coefficient. In addition, allowing mutation
rates and selection coefficients to have different ranges of relative rates means that the signs of the
correlations for the de novo and fixed distribution may depend on these specific ranges (Fig. S4.2).
Taken together, these results suggest that when assessing the relationship between mutation and
selection, it is essential to specify which of these distributions is being described.

What explains this counterintuitive behavior? The key observation here is that the lower mo-
ments of a size-biased distribution depend on higher moments of the original distribution. Thus,
for example, the sign of the correlation between between mutation rate and selection coefficient
for the de novo distribution depends on one of the third mixed moments of µ and s in the
nominal distribution, and specifically has the same sign Enom(u2s)Enom(µ)� Enom(µ2)Enom(µs)
(see Supplemental Information for general formulas for the variances and covariances of muta-
tion rates and selection coefficients for all three distributions). Similarly, the fixed distribution
depends on the fourth mixed moments of u and s and its correlation coefficient has the same
sign as Enom(µ2s2)Enom(µ)� Enom(µ2s)Enom(µs2). Thus, many of the paradoxical results above
reflect our poor intuition for higher mixed moments. As we shall see below, another important
consequence of this dependence on higher mixed moments is that even if the selection coefficients
and mutation rates of beneficial mutations are in principle independent, the finite number of
pairs (of mutation rate and selection coefficient) that are drawn from such a distribution as real-
ized beneficial mutations may poorly approximate an independent distribution in these higher
moments and thus lead to non-negligible correlations for the de novo and fixed distributions.

Simulations with a biologically realistic nominal distribution

As noted above, distributions of µ and s following mutation and selection may show a variety
of associations, of variable strength. Therefore, it is of interest to consider whether natural joint
distributions will show any particular kind of correlation. For instance, Dolan et. al carried out
serial passages of Dengue virus on mosquito or human host cells, and then used a high-accuracy
deep-sequencing method to estimate the fitnesses of all possible 32166 single-nucleotide variants
across the entire Dengue genome [6]. The same study provides estimates for the mutation rates
of the 12 possible single nucleotide changes, uncovering the presence of a strong mutation bias
towards C>T transitions [6]. This nominal distribution includes 325 single point mutations for
which the lower bound of the selection coefficient exceeds 1. Among these beneficial changes,
mutation rates show a slight and insignificant negative association with selection coefficients
(Fig.4.2A, Pearson’s correlation coefficient r = �0.06, P = 0.28).

To test the joint effect of mutation and selection on this relationship, we perform population-
genetic simulations of evolution in a haploid genome, for five different values of mutation supply
Nµ (population size times mutation rate) using the nominal distribution of beneficial mutations
from [6]. We implemented the simulations in SLiM v3.4 [25]. For each run of the simulation, we
recorded the identity of all adaptive mutations on the first sequence to reach fixation, repeating
this process until we obtain 500 beneficial substitutions. For each value of mutation supply Nµ,
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we simulated three data sets and calculated the correlation between selection coefficients and
mutation rates for the distribution of fixed mutations (Methods). Note that this is not an attempt
to replicate the actual population biology of Dengue virus, which is complex: we are merely
taking advantage of an empirical nominal distribution that is known for Dengue virus, and using
it in a simple population model.

The results of these simulations are shown in Fig. 4.2. The effect of mutation and selection on
the joint distribution depends on mutation supply (Nµ), as shown by the examples in Fig. 4.2C to
4.2E. At the lowest mutation supply of 10�4 (Fig. 4.2C), the correlation is substantially negative
and takes its lowest value. As mutation supply increases to 10�2 or 100 (Fig. 4.2D or 4.2E), the
correlation becomes less negative, reflecting a diminished influence of differential mutation rates.
This effect of mutation supply is summarized in 4.2F, showing that at high mutation supply, the
correlation converges on roughly -0.1.
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Figure 4.2: Evolutionary simulations show that adaptation shapes the association between mutation
rate and selection coefficient. A. The nominal distribution shows the mutation rates and
selection coefficients for all 325 beneficial point mutations. Pearson’s correlation coefficient
r = �0.06 (P = 0.28). The dashed line corresponds to the regression line. B. The de novo
distribution shows the mutation rates and selection coefficients weighted by the mutation rates.
Pearson’s correlation coefficient r = �0.22 (P < 10�6). C-E. The fixed distribution shows the
mutation rates and selection coefficients weighted by the simulated frequency of mutations for
three simulation runs with different mutation supply values. Pearson’s correlation coefficient
are r = �0.27 (P < 10�6), r = �0.16 (P < 10�4) and r = �0.10 (P = 0.005), for mutation
supply values 10�4, 10�2 and 100, respectively. In panels B-E the dot size is proportional to its
frequency. Log-scale is used for visualisation purposes. Pearson’s correlation coefficients are
calculated on the unlogged values. F. The correlation between mutation rates and selection
coefficients for the distribution of fixed mutations, as a function of mutation supply (Nµ). Each
box shows the distribution of correlations for three replicate simulations, and the horizontal
line shows the median.



4.3 results 113

Evidence from joint distributions after selection

In the previous section we used empirical data to infer the nominal distribution of possible
mutations. However, one important limitation of that dataset is the lack of information about to the
actual set of mutation that reached fixation, which is why we turned to evolutionary simulations
to model the distributions of fixed mutations in different population genetic conditions.

In the case of somatic mutations in cancer, useful data are available relating both to the
nominal distribution, and to the distribution of variants after mutation and somatic expansion,
i.e., cancerous growth. Tumor protein p53 (TP53) is the most frequently mutated gene in many
forms of human cancer, sometimes called “the guardian of the genome” for its role in conferring
genetic stability and preventing both genome mutation and cancer formation [26]. The DMS (deep
mutational scanning) study by [27] may be used to depict the nominal distribution of fitness
effects of p53 variants. [27] generated all 8258 possible non-synonymous amino acid changes and
assayed them in human lung carcinoma cells in the presence and absence of endogenous p53.
As with the previous dataset, we focus only on those amino acid changes that confer a selective
advantage (combined Escore > 0, see Methods). In the context of studying cancer, an advantage
refers to somatic overgrowth, thus a large fraction of p53 changes are advantageous due to loss of
the protective function of p53.

To empirically characterise the mutation rates of each possible amino acid change, we used
data from the Pancancer Analysis of Whole Genomes database [28]. The mutation rate for
each amino acid change is the sum of the rates for each of its associated single nucleotide
changes, and the rates of each nucleotide change are specified given the identity of the bases that
immediately flank the mutated base (i.e., trinucleotide mutation context) (Methods). We combine
these empirical estimations to construct a nominal distribution that contains mutation rates and
selection coefficients for all 2443 possible beneficial amino acid changes Fig. 4.3A. The shape of
the nominal distribution for TP53 is different than the one for Dengue (Fig. 4.2A), however, the
correlation between mutation rates and selection coefficients is similar, being close to zero and
slightly negative (Pearson’s correlation coefficient r = �0.04 and P = 0.03).

The analog of the fixed distribution for TP53 variants after mutation and selection is the clinical
distribution. Here we use frequency data from the GENIE database of the American Association
for Cancer Research [29], allowing for the assignment of observed frequencies to each possible
beneficial amino acid change identified in the nominal distribution (Methods). The distribution
of fixed mutations shown in Fig. 4.3C reveals an induced positive correlation between mutation
rates and selection coefficients (Pearson’s correlation coefficient r = 0.23 and P < 10�6). This
positive correlation reverses the weak (but marginally significant) negative correlation between
mutation rates and selection coefficients in the nominal distribution.

This result prompts the question of whether clonal interference might induce a positive
correlation between mutation rates and selection coefficients. To address this issue, we turned
again to evolutionary simulations with SLiM v3.4 [25], using the nominal distribution for TP53
described above, and with a variable mutation supply Nµ (Methods). For each value of mutation
supply Nµ, we simulated 20 data sets and calculated the correlation between the observed and
simulated frequencies of fixed mutations, as well as the correlation between mutation rates and
selection coefficients for the distribution of fixed mutations (Methods). The results in Fig. 4.4
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Figure 4.3: Adaptation shapes the association between mutation rate and selection coefficient in TP53.
A. The nominal distribution shows the mutation rates and selection coefficients for all possible
2443 beneficial amino acid changes. Pearson’s correlation coefficient r = �0.04 (P = 0.03). B.
The de novo distribution shows the mutation rates and selection coefficients weighted by the
mutation rates. Pearson’s correlation coefficient r = 0.01 (P = 0.8). C. The fixed distribution
shows the mutation rates and selection coefficients weighted by the observed frequency of
mutations in the GENIE database. Pearson’s correlation coefficient r = 0.23 (P < 10�6). In
panels B and C the dot size is proportional to its frequency. The dashed lines correspond to
the regression lines.

indicate that the simulated results match observed results most closely when mutation supply
is 10�2 (Fig. 4.4A), and this is also the value that maximizes the positive correlation between
mutation rates and selection coefficients in the simulated adaptive changes, reaching a value of
0.1 (Fig. 4.4B). This maximum correlation, however, is considerably lower than the value of 0.25
seen in the observed TP53 data.
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Figure 4.4: Population genetic conditions shape the distribution of fixed adaptive mutations. A. The
correlation between observed and simulated adaptive events and B. The correlation between
mutation rates and selection coefficients for the distribution of fixed mutations in TP53, both
as a function of mutation supply (Nµ). Each box shows the distribution of correlations for 20
replicate simulations, and the horizontal line shows the median.

Finally, we wished to probe the effect of mutation rate further by considering multi-nucleotide
mutations. Typically these are ignored, as in our simulations above, but multi-nucleotide mutations
are known to occur widely in nature, at a combined rate roughly 2 orders of magnitude lower
than that of single-nucleotide mutations [30], [31]. This large difference allows us to probe a
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Figure 4.5: Adaptation magnifies the negative association between mutation rates and selection co-
efficients in TP53 when including multinucleotide mutations. A. Nominal distribution of
beneficial amino acid changes. B. Observed distribution of fixed beneficial amino acid changes.
In both panels we aggregate amino acid changes into two categories, depending on whether
they are associated to single point mutations or to multinucleotide mutations.

different part of the range of mutation supply, and seem to suggest a strong expectation of
Berkson’s paradox: the multi-nucleotide variants that rise to prominence must have had strong
selective effects to compensate for their low mutation rates, particularly in a clonal interference
regime with more frequent single-nucleotide mutations.

The study of TP53 by [27] mentioned above, like most DMS studies, covers all amino acid
changes, not just the 150 types of replacements (out of 380) possible via single-nucleotide
mutations. Thus, we have the nominal distribution of selection coefficients for the single- and multi-
nucleotide variants. In addition, the data on cancer prevalence provides the fixed distribution
for multi-nucleotide variants. However, we do not have a nominal distribution of rates for multi-
nucleotide mutations. In the absence of a detailed mutation rate model for multi-nucleotide
mutations, we simply compare two mutational categories and apply a rank test, the Mann-
Whitney U test, to the selection coefficients, reporting the chance that a random multi-nucleotide
variant is fitter than a random single-nucleotide variant, which has a null expectation of 50%.
The results in Fig 4.5 show a slight difference in the nominal distribution between single- vs.
multi-nucleotide variants, in that a multi-nucleotide variant has a ⇠ 61% chance of being fitter
than a single-nucleotide variant (Mann-Whitney U test, U/(n1 ⇤ n2) = 0.61, P < 10�6, 95% CI,
0.59 to 0.62). This difference is magnified considerably in the fixed distribution (i.e., clinical
prevalence). In the fixed distribution, a random multi-nucleotide variant is fitter than a random
single-nucleotide variant ⇠ 88% of the time (Mann-Whitney U test, U/(n1 ⇤ n2) = 0.88, P < 10�6,
95% CI, 0.82 to 0.94), which is a significantly different proportion of the time than was observed for
the nominal distributions (95% bootstrap confidence intervals for the normalized Mann-Whitney
test statistic U/(n1 ⇤ n2) based on 103 bootstrap samples do not overlap).
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4.4 discussion

The statistical consequence of evolutionary adaptation is that an underlying joint distribution of
mutation rates and selection coefficients is sampled by a dual process of mutational introduction
and selective filtering. Here we have developed some theory for the effects of this sampling,
focusing on the case where the differential effects of mutation and selection are both strong
(as in the SSWM regime or the related origin-fixation regime). We are particularly interested in
whether conditioning on adaptation induces positive associations, or negative associations as
with Berkson’s paradox.

In theory, a variety of effects are possible, depending on higher moments of the underlying
joint distributions. This dependence makes the issue much more empirical, in that expectations
depend on what kinds of underlying joint distributions are actually found in nature. Using
available data on mutation rates and selection coefficients from Dengue virus, we find that a
simple population-genetic model of adaptation leads to a negative correlation between mutation
rate and selection coefficient, one that becomes stronger when mutation supply is low. The data
available on TP53 allows us to simulate the fixed distribution from a nominal distribution, and
also examine the actual fixed distribution (clinical prevalence). For single-nucleotide changes,
we find a positive association of mutation rate and selection intensity in clinical prevalence data.
Simulations from the nominal distribution also yield a mostly positive association. However,
when we compare single- to multi-nucleotide variants, we observe a weak negative association in
the nominal distribution and a much stronger negative association in the fixed distribution. That
is, the multi-nucleotide drivers in clinical data, which occur by mutation at a lower rate, tend to
be more strongly selected than single-nucleotide drivers.

These two empirical nominal distributions (Dengue and TP53) exhibit qualitative and quantita-
tive differences that explain the opposition in sign of the induced correlation between mutation
rates and selection coefficients in the distribution of fixed mutations. While in both distributions
C>T transitions occur at the highest rate, mutation bias in the Dengue dataset is several orders of
magnitude higher than the one for TP53. In addition, in the Dengue nominal distribution, such
mutationally favored C>T transitions generally provide a lower selective advantage, generating an
"L" shape due to the lack of adaptive paths in the region corresponding to high mutation rate and
high selection coefficient. Based on our analytical results, we expect this particular shape of the
nominal distribution to readily induce a negative correlation in the distribution of fixed mutations.
In contrast, in the case of TP53, due to both the lower mutation bias in the nominal distribution
and the clonal interference in the adaptive process, selection coefficients have a considerably
stronger influence in the probability of fixation than the mutation rates. Thus, the theoretical
framework developed here, along with simulations, provides some guidance for understanding
how associations between mutation rate and selection coefficient are influenced by the nomi-
nal distribution of beneficial mutations, its associated mutation biases, and population-genetic
conditions.

The arguments that we offer based on empirical distributions must be interpreted cautiously.
Clearly, researchers conducting deep mutational scanning studies have worked hard to improve
measurements of fitness (and other functional effects) so that they are not confounded by effects
of mutability (e.g., [7]). Likewise, mutation-accumulation studies are designed to remove effects
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of selection, so as to accurately measure mutational spectra [32]. However, our analysis here,
focusing specifically on correlations, subjects these data to a much higher level of scrutiny of the
joint distribution than was imagined for the original uses of the data. With clinical data on cancer,
for instance, there is no clear quantitative standard of ascertainment that specifies what qualifies
as rapidly growing cancerous tissue. Ultimately, our understanding of what types of associations
are induced in nature may depend on new methods designed to characterize a joint distribution
without bias.

With these caveats in mind, the significance of the results reported here are that (1) in theory, the
dual causation of adaptation can induce strong associations between mutation rates and selection
coefficients, and (2) in theory, the shape of the underlying nominal joint distribution matters
for the size and direction of effects, and (3) in practice, according to limited evidence currently
available, both of these theoretical points are relevant to natural cases. Though these results are
modest, they have some immediate implications. For instance, Stoltzfus and Norris [33], evaluating
the hypothesis that transitions are more conservative (transversions more damaging) in their
effects on proteins, pointed to the lack of an advantage of transitions among adaptive changes
as evidence against the hypothesis. However, the observed small advantage of transversions
among adaptive changes instead may represent a case of Berkson’s paradox, i.e., the slight fitness
advantage of transversions in the fixed distribution may represent the kind of compensation for a
lower mutational rate of arrival induced by conditioning on a dual arrival-fixation process.

Some other types of data may also reveal evidence of negative associations in the fixed
distribution, though detailed quantitative data to resolve this issue often are unavailable. For
instance, Cannataro et. al note with interest that the most clinically common cancer driver
mutations in two types of cancer are not the fastest growing, and their Fig. 2 appears to show a
negative correlation between selection intensity and mutation rates [15] (as does the comparable
Fig. 3 of [34]). Likewise, Fig. 2 of [16] shows a slight negative association between mutation rate
and selection intensity for changes associated with clonal haematopoesis. Whether such results
are surprising or not depends strongly on the underlying joint distributions, which typically are
unknown.

As noted above, the data used in this study were not designed to be used in this way and are
not ideal. In this context, it may be helpful to imagine the characteristics of an ideal experimental
system. Foremost, the ideal system would allow us to interrogate the nominal distribution
systematically and with precision. The ideal system would have a target for adaptation that
includes many (dozens or hundreds) of possible beneficial changes with a range of selection
coefficients and mutation rates. Perhaps the target of adaptation would be tunably narrow or
broad. An ideal system also would be amenable to evolution experiments that cover a broad
range of population-genetic conditions, including modulation of the mutation supply and of the
strength of selection. For instance, imagine a bacterial system in which one may study resistance
to a broad or narrow range of anti-microbials. The strength of selection could be modulated by the
concentration of antimicrobials. The mutation supply could be modulated by the population size.
Droplet technology as in [35] makes it possible to design high-throughput evolution experiments
with many replicates of a very small population size.

Finally, let us consider two general directions for further theoretical work. The first concerns
the differentiating power of selection. Although our focus here has been on cases of strong
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positive selection in adaptation and cancer, various modes of evolutionary change in reproducing
organisms, including neutral evolution, also depend dually on the kinetics of the introduction of
variants and on their differential reproductive sorting. The size biases imposed by mutation and
selection will differ depending on conditions. When mutation supply is low, i.e., origin-fixation
conditions, the effect of mutation is proportional to u and the effect of selection is given by the
probability of fixation, which generally is a function of s and N, per [36], regardless of whether
mutations are deleterious, neutral, or beneficial (whereas our mathematical theory only covers
the special case where p f ix ⇡ 2s). As mutation supply increases, clonal interference comes into
play and, where studied, this amplifies the effect of selection and diminishes the influence of
mutation bias (e.g., [1], [3]). Presumably, strong effects of conditioning will emerge under a variety
of conditions, wherever effects of mutation and selection are strong.

A more challenging theoretical issue is what will happen to the joint distribution of mutation
rates and selection coefficients in long-term evolution. Oddly, this more complex issue has received
considerably more attention in the literature than the simpler foundational issue addressed here,
with a variety of provocative results. [37] explore the issue of what happens to the overall mutation
pattern under context-dependence, e.g., mutation hotspots will tend to disappear and this may
be expected to lower the total mutation rate over time. Some results refer to patterns of reduction
in deleterious mutation. Although classic theory focuses on the total rate of mutation U [38], [10]
suggested how a pattern of mutation-reduction in genes vs. non-genes could emerge when
repair mechanisms leverage structural features associated with functionality. Other results refer to
adaptation or innovation. In adaptive walks, simply reversing mutation biases partway through
the walk appears to improve adaptation by shifting the de novo distribution to probabilize
previously unlikely benefits [39]. For polygenic quantitative traits, continued evolution under
correlated selection can lead to a shift in how the traits are encoded so that mutational variability
aligns more closely with trait correlations favored by selection [40]. Constructional selection
per [41] enhances the mutational contribution of evolvable modules, making further innovation
more likely. Thus, a challenge for future theoretical work is to consider such results together in a
common framework for mutation-selection associations.

4.5 methods

Nominal distribution of adaptive mutations in Dengue

We use data containing estimates of selection coefficients and mutation rates for all possible single
point mutations in the Dengue genome, provided in Extended Table Data 1 ( [6]). The mutation
rates are described for each of the 12 possible single nucleotide changes, regardless of their
sequence context. We curated the dataset to only include beneficial mutations (fitnessLowerCI > 1
in Extended Table Data 1) for passage 9, replicate A with human host cells. The final list contains
325 beneficial mutations.
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Nominal and fixed distributions of adaptive mutations in TP53

The study from Giacomelli et. al [27] provide enrichment scores for the wild-type as well as for
all 8258 possible non-synonymous variants of TP53 in selection assays under the presence and
absence of endogenous p53: WT TP53 (p53WT) and null TP53 (p53NULL), respectively, in isogenic
human lung carcinoma cell populations. They treated those populations with two p53-activating
agents, nutlin3 or etoposide for 12 days in three selection assays designed to enrich for dominant-
negative (WT+nutlin3), lost of function (NULL+nutlin3), or WT-like (NULL+etoposide) alleles.
We combined the estimated enrichments for the three assays (E(WT+nutlin3)

score + E(NULL+nutlin3)
score �

E(NULL+etoposide)
score ), and calculated selection coefficients for all possible non-synonymous variants

relative to the enrichment of the wild-type TP53.
To construct the nominal distribution, we assigned mutation rates to all possible non-synonymous

variants using data from the Pancancer Analysis of Whole Genomes database [28]. We queried a
total of 28717344 whole genome single point somatic mutations to construct a trinucleotide muta-
tional signature, that is, the mutation rates specified by the identity of the bases that immediately
flank the mutated base (Fig. S4.3). We assigned mutation rates to all possible beneficial amino
acid changes summing up the rates for each of its associated nucleotide changes.

We turned to a third independent dataset to extract the observed frequency of 639 different
somatic mutations in TP53 in human tumors from the GENIE database of the American Associa-
tion for Cancer Research Consortium [29]. We integrated the selection coefficients, mutation rates
and observed frequencies of beneficial variants to construct the distribution of observed fixed
mutations.

Evolutionary simulations

We used SLiM v3.4 for the evolutionary simulations [25]. We ran each simulation until the first
fixation event, repeating this process 500 times for the Dengue dataset and 1000 times for the
TP53 dataset, recording only the beneficial mutations that went to fixation. We performed several
replicates per value of mutation supply Nµ, 3 for the Dengue dataset and 20 for the TP53 dataset.
Each of the simulations per replicate used the same initial population, which comprised N copies
of the wild-type sequence of Dengue’s genome and TP53 coding region. All sequences in the
initial population were assigned a fitness of one. In each generation t, N sequences were chosen
from the population at generation t � 1 with replacement and with a probability proportional to
their fitness. The fitness effects assigned to each of the possible adaptive changes were taken from
their respective datasets (single point mutation for Dengue and amino acid change for TP53).
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Figure S4.1: Correlations of mutation and selection under some alternative models to Fig. 1. Mutation
rates and selection coefficients each take on 3 possible values, similar to the bottom 3
rows in Fig. 1. As in the case of Fig. 1, the columns from left to right show the nominal
distribution (representing the landscape of possible mutations across varying mutation
rates and selection coefficients), the distribution of de novo mutations (the possible changes
weighted by mutation rates), and the distribution of changes resulting from a mutation-
fixation process. Transecting lines show the regression of selection on mutation (solid) and
mutation on selection (dotted); central crossed lines show the first and second principal
components, with the lengths proportional to the variance explained, where by definition
V1 � V2.
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Figure S4.2: Correlations of mutation and selection as a function of the magnitude of size-biasing. A.
Correlations between mutation and selection among nominal, de novo, and fixed mutational
distributions in a case where conditioning on mutation fixation induces a sign-change in the
correlation from positive in the nominal distribution to negative in the fixed distribution. Top:
the nominal, de novo, and fixed distributions when mutation rate and selection coefficient
each vary by 5-fold between their highest and lowest respective values (same as Fig. 1, fourth
row). Bottom: the correlations between mutation and selection for the same 3-mutation-
class distribution shown above, plotted as a function of the range, or fold-change, between
highest and lowest value of mutation rate. B. Correlations between mutation and selection
among nominal, de novo, and fixed mutational distributions in a case where conditioning
on mutation fixation induces a sign-change in the correlation from negative in the nominal
distribution to positive in the fixed distribution. Top: similar to panel A, the nominal, de
novo, and fixed distributions when mutation rate and selection coefficient each vary by 5-fold
between their highest and lowest respective values (same as Fig. S4.1, second row). Bottom:
the correlations between mutation and selection for the same 3-mutation-class distribution
shown above, similar to panel A, plotted as a function of the range, or fold-change, between
highest and lowest value of mutation rate. To derive each correlation in the bottom plots, the
range or, fold-change, of selection coefficients is updated to match that of mutation rates.
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Figure S4.3: Mutational signature. We used 28717344 whole genome single point somatic mutations
from the Pancancer Analysis of Whole Genomes database [28] to estimate a trinucleotide
mutational signature, namely, the mutation rates specified by the identity of the bases that
immediately flank the mutated base.
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The covariance and correlation coefficient between mutation rate u and selection coefficient s is 
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The relationship between mutation and selection: possible mutations (nominal distribution) 
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In this formula, the proportion of possible mutations pij for each mutation rate and selection 
coefficient is multiplied by the respective mutation rate and selection coefficient and divided by the 
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Substituting the values 1 and k for mutation rate and the values 1 and b for selection coefficient yields 
the following covariance expression: 
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Argument 1: a correlation between mutation and selection among fixed mutations requires that 
possible mutations be non-uniformly distributed across values of mutation rate and selection 
coefficient 
 
Under the simplest assumption, whereby the nominal mutations are equally represented across 
mutation rates and selection coefficients (that is, the list of possible mutations that could have a higher 
mutation rate or selection coefficient is not longer than the list of possible mutations that could have 
a lower mutation rate or selection coefficient: p11 = pk1 = p1b = pkb), then the covariance between u and 
s among fixed mutations is zero: 
 

cov*!+(u, s) =
kb(p##p$% − p#%p$#)(k − 1)(b − 1)
(p## + p$#k + p#%b + p$%kb))

=
kb(0)(k − 1)(b − 1)

(p## + p$#k + p#%b + p$%kb))
= 0 

 
 
Since the correlation coefficient depends on the covariance, 
 

ρ*!+(u, s) =
cov*!+(u, s)

?var*!+(u)var*!+(s)
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a covariance of zero implies a correlation coefficient of zero. In other words, unless the number of 
possible (nominal) mutations already differs across different values of mutation rate, selection 
coefficient, or both, then mutation rate and selection coefficient will not be correlated even among 
fixed mutations. 
 
Argument 2: mutation and selection will be uncorrelated among fixed mutations if they are 
uncorrelated among possible mutations 
 
How does the sign (positive, negative, or zero) of the correlation between u and s among possible 
mutations compare to the correlation among fixed mutations? Because the sign of the correlation 
coefficient depends on the covariance (the numerator of the correlation coefficient), the relationship 
between the correlation coefficients among possible versus fixed mutations with depend on the 
relationship between their covariances. 
 
If mutation and selection are uncorrelated among possible mutations, their covariance will equal 
zero: 
 

cov&'(((u, s) = (p$%p## − p$#p#%)(b − 1)(k − 1) = 0 
 
Since k and b represent the higher relative values of mutation rate and selection coefficient, 
respectively, the terms (k – 1) and (b – 1) are both positive. Accordingly, for the covariance between 
mutation and selection to be zero among possible mutations, the difference of the diagonal products 
of pii (pkbp11 – pk1p1b) must be zero: 
 

cov&'(((ms) = (p$%p## − p$#p#%)(b − 1)(k − 1) = (0)(b − 1)(k − 1) = 0 
 

p$%p## − p$#p#% = 0 
 

p$%p## = p$#p#% 
 
Because the difference of the diagonal products of pii (pkbp11 – pk1p1b) also occurs in the covariance 
among fixed mutations, the covariance among fixed mutations will also be zero: 
 

cov*!+(u, s) =
kb(p##p$% − p#%p$#)(k − 1)(b − 1)
(p## + p$#k + p#%b + p$%kb))

=
kb(0)(k − 1)(b − 1)

(p## + p$#k + p#%b + p$%kb))
= 0 

 
 
Argument 3: mutation and selection are positively correlated among fixed mutations if they are 
positively correlated among possible mutations 
 
If mutation and selection are positively correlated among possible mutations, their covariance will 
be positive: 
 

cov&'(((ms) = (p$%p## − p$#p#%)(b − 1)(k − 1) > 0 
 
If the covariance among possible mutations is positive, the terms (b – 1) and (k – 1) must be multiplied 
by a positive value: 
 

cov&'(((ms) = (p$%p## − p$#p#%)(b − 1)(k − 1) > 0 
 

p$%p## − p$#p#% > 0 
 

p$%p## > p$#p#% 
 
 

4.7 supplementary material 131



The covariance among fixed mutations will also be positive: 
 

cov*!+(u, s) =
kb(p##p$% − p#%p$#)(k − 1)(b − 1)
(p## + p$#k + p#%b + p$%kb))

> 0 

 
 
Argument 4: mutation and selection are negatively correlated among fixed mutations if they are 
negatively correlated among possible mutations 
 
If mutation and selection are negatively correlated among possible mutations, their covariance will 
be negative: 
 

cov&'(((ms) = (p$%p## − p$#p#%)(b − 1)(k − 1) < 0 
 
If the covariance among possible mutations is negative, the terms (b – 1) and (k – 1) must be 
multiplied by a negative value: 
 

cov&'(((ms) = (p$%p## − p$#p#%)(b − 1)(k − 1) < 0 
 

p$%p## − p$#p#% < 0 
 

p$%p## < p$#p#% 
 
The covariance among fixed mutations will also be negative: 
 

cov*!+(u, s) =
kb(p##p$% − p#%p$#)(k − 1)(b − 1)
(p## + p$#k + p#%b + p$%kb))

< 0 

 
 
 
Comparison of correlations between nominal and fixed distributions of mutation and selection: 
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D
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= D
kb
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E

⎝

⎛ ?p$(1 − p$) ∗ p%(1 − p%)

>p%
*!+M1 − p%

*!+Np$
*!+M1 − p$

*!+N
⎠
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=
kb

E&'(([ms])
G
var&'(((u)var&'(((s)

var*!+(u)var*!+(s)
 

 

=
kb

E&'(([ms])
∗
σ&'(((u)σ&'(((s)

σ*!+(u)σ*!+(s)
 

 
A “strong form” of Berkson’s paradox, whereby mutation and selection are either positively 
correlated or uncorrelated among possible mutations (the nominal distribution) but negatively 
correlated among fixed mutations, does not occur in the simplest case, when mutation rate and 
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selection coefficient are each distributed across two possible values of “high” and “low” (see 
Arguments 1-4). In a “weak form” of Berkson’s paradox, the correlation among mutation and 
selection is more negative in the fixed distribution than among the nominal distribution. For a 
negative correlation, the absolute value of the correlation coefficient of fixed mutations is therefore 
greater than that of the nominal distribution: 
 

ρ*!+(u, s)
ρ&'(((u, s)

=
kb

E&'(([ms])
∗
σ&'(((u)σ&'(((s)

σ*!+(u)σ*!+(s)
> 1 

 
kb ∗ σ&'(((u)σ&'(((s) > E&'(([ms]) ∗ σ*!+(u)σ*!+(s) 

 
For a positive correlation, the correlation coefficient of fixed mutations is less than that of the nominal 
distribution: 
 

ρ*!+(u, s)
ρ&'(((u, s)

=
kb

E&'(([ms])
∗
σ&'(((u)σ&'(((s)

σ*!+(u)σ*!+(s)
< 1 

 
kb ∗ σ&'(((u)σ&'(((s) < E&'(([ms]) ∗ σ*!+(u)σ*!+(s) 
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5
C O N C L U D I N G R E M A R K S

This thesis used empirical data, statistical modeling, theoretical analyses, and evolutionary
simulations to uncover novel population genetic and evolutionary conditions that facilitate
mutation-biased adaptation, and investigated the evolutionary consequences of different forms of
mutation bias on adaptation in both molecules and entire organisms, in the lab and in nature.

More specifically, we showed that empirical genotype-phenotype landscapes can exhibit com-
position bias, namely, the enrichment of a particular type of mutation in adaptive trajectories,
and how composition bias interacts with mutation bias to influence different aspects of adaptive
evolution, such as its predictability, as well as the evolution of mutational robustness and genetic
diversity. Moreover, we developed a statistical framework to quantify the influence of mutation
bias on the spectrum of adaptive substitutions, a distribution for types of genetic changes fixed
during adaptation. We applied this framework to three large datasets of adaptive mutations for
different microbial species, and found a strong and statistically significant influence of mutation
bias for all three species. We showed how the influence of mutation bias on adaptation can be
modulated by population genetic conditions and the breadth and heterogeneity of the mutational
target. Finally, we showed that the relationship between mutation rates and selection coefficients
among the set of mutations that reach fixation can be distorted with respect to the relationship
inferred from the nominal distribution of possible mutations, and that this distortion can be
influenced both by the shape of the nominal distribution of mutations and population genetic
conditions.

Additional studies of empirical genotype-phenotype landscapes could reveal composition bias
in further protein or macromolecular contexts beyond transcription factor-DNA interactions [1],
and such composition bias could interact with more complex forms of mutation bias than
transition bias to influence adaptation [2]. Furthermore, a recent study has suggested that changes
in mutation bias can facilitate access to beneficial mutations, thus influencing the outcomes of
adaptation [3]. How composition bias could influence shifts in mutation bias is an open question
for future research.

The discovery that mutation bias strongly shapes the spectrum of adaptive substitutions, along
with the framework we have developed, could encourage further experimental characterisations
of both mutation spectra and spectra of adaptive substitutions, and improve our understanding of
mutation-biased adaptation in additional species and evolutionary conditions. Such a framework,
however, could be improved in different ways. One is by integrating more accurate forms of
mutation bias, such as context dependent mutation spectra [4]. Another way is by incorporating
empirical measurements of fitness for each possible adaptive path to be able to provide a clearer
picture of the influence of both selection and mutation bias on different adaptive processes.

To date, research on mutation-biased adaptation have ignored ecological interactions, only
focusing on the study of long-term evolutionary dynamics [5]–[10]. While insightful, it remains
unclear how different ecological interactions could influence the conditions for mutation-biased
adaptation. This is because these previous studies consider mutations to have effects only on
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the reproduction rates and not traits that affect direct interactions (e.g., competition, facilitation)
between individuals. Such assumptions preclude the stable coexistence of several variants, where
frequency-dependent effects, coexistence and nonlinear dynamics are usually observed [11]–[14].
For example, a population whose individuals engage in facilitation interactions exhibits higher
clonal interference than a population whose individuals compete for one resource, under the
same mutation supply conditions. Because clonal interference favors the fixation of selectively-
favored variants over mutationally-favored variants, one would expect a reduced influence of
mutation bias on adaptation. In general, whether ecological conditions can facilitate or hinder
mutation-biased adaptation remains an open question for future research.

A further aspect of evolutionary processes that has been so far overlooked by mutation-
biased adaptation research is spatial heterogeneity. Natural populations often evolve in complex
and heterogeneous spatial structures, with homogeneous interactions holding only at a local
scale. Such spatial structure can strongly impact evolutionary outcomes by affecting the fixation
probability of mutants [15], [16]. Moreover, clonal interference could be drastically affected
by spatial heterogeneities [17]–[19]. For instance, low density compartments (with low clonal
interference) enhance the fixation of beneficial mutationally-favoured variants. This would imply
that the spectrum of adaptive substitutions can be more predictable in such regions of the
population, when prior knowledge of the biased mutation spectrum is available. To what extent
the spatial distribution of the population in such compartments can influence mutation-biased
adaptation is a further open question.

Such questions could be addressed by using a general eco-evolutionary framework following
Lotka-Volterra type models, where interaction matrices can model the type of ecological interaction
present in the population (e.g. facilitation and/or competition), as well as the spatial distribution
of the population in time, affecting both the sign and the magnitude of selection and the clonal
interference. As the population evolves towards quasi-stable states, one could quantify the
enrichment for the different types of mutations to estimate their contributions to the trajectories
of the eco-evolutionary process. If the molecular changes that are more likely to occur are
also more likely to contribute to adaptation, one would expect a high similarity between the
mutation spectrum and the spectrum of adaptive substitutions. Reshaping the interaction matrix
would allow one to assess to what extent the type of ecological interaction and the initial spatial
distribution of the population influence the types of mutations that contribute to adaptation.

In sum, the future research on mutation-biased adaptation has a variety of potential directions
to follow, and could provide further insights about the generality of the effects of mutation bias
on adaptive evolution, as well as increase the predictive power of evolutionary models.
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