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Abstract

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece
in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we
are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the
structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply
affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features
such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning
current assumptions on the nature of evolutionary dynamics—cancer progression models or synthetic biology approaches being
notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map
onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve
this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly
relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

How genetic variation contributes to phenotypic variation is an essential question that must be answered to un-
derstand the evolutionary process. The experimental characterisation of the genotype-phenotype (GP) relationship is
a formidable theoretical and experimental challenge, but also an expensive task which suffers from severe practical
limitations. Computational approaches have been recurrently used to make predictions of phenotypes from genotypes
and to uncover the statistical features of that relationship. Advances notwithstanding, an apparently insurmountable
problem remains: the astronomically large size of the space of genotypes. The space of possible phenotypic change
and the probabilities of such change are directly determined by the architecture of the GP map; to quantify this map
will improve our understanding of how the space of phenotypes is explored and answer important questions about the
probability of evolutionary rescue or innovation under endogenous or exogenous changes.

Progress in our understanding of GP maps at various levels is of relevance for different scientific communities
with interests that range from evolutionary theory to molecular design through genomic bases of disease aetiology.
Understanding of how RNA, DNA or amino acid sequences map onto molecular function could be of great importance
for more fundamental approaches in synthetic biology, biotechnology, and systems chemistry. In a broader ecological
context, the way in which generic properties of the GP map shape adaptation have rarely been explored. As of today,
the overarching question of whether organismal phenotypes can be predicted from microscopic properties of genotype
spaces remains open.

In this review, we discuss the state-of-the-art of genotype-to-organism research and future research avenues in the
field. The review is structured into four major parts. The first part is constituted by this introduction and Section 2,
which puts in perspective how relevant the generation of variation is in the evolutionary process, and introduces
important biases arising from the inherent structure of genotype spaces.

The second part comprises sections 3 to 6, where we discuss conceptual approaches to the static properties of
GP maps and their dynamical consequences, as well as the evolution of GP maps themselves. The field is broad
and several aspects have been addressed in previous reviews, so we only briefly summarise topics dealt with else-
where. Therefore, we will succinctly present computational GP maps and only recapitulate, taking an integrative and
explanatory viewpoint, the topological properties of the space of genotypes [1-6]. Section 3 constitutes a synthetic
overview of GP map models, including paradigmatic examples such as RNA folding, more recent multi-level models
such as toyLIFE, and a summary of artificial life examples. Readers familiar with those models can safely skip that
section. Those models endow genotype spaces with topological properties that are briefly reviewed in the introduc-
tion of Section 4, which is mostly devoted to discussing possible roots for generic properties of a broad class of GP
maps. Attention is subsequently devoted to population dynamics on genotype spaces, which has been a less explored
topic. Section 5 describes transient and equilibrium dynamical features of evolutionary processes. First, it delves into
the effects of recombination and mutation bias, and on phenotypic transitions caused by the hierarchical, networked
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structure of genotype spaces. Then, a mean-field description that incorporates the essentials of GP map topology to
clarify major dynamical features is discussed. The section finishes with a derivation of equilibrium properties in the
context of statistical mechanics and some applied examples. Section 6 discusses the evolution of GP maps themselves
by means of two illustrative examples: a scenario where a multifunctional quasispecies emerges and a model of virtual
cells incorporating the evolution of genome size.

The third part, sections 7 and 8 is devoted to empirical GP maps and to biological applications, and mostly presents
topics under development. Section 7 examines most recent achievements regarding the experimental characterisation
of GP and genotype-to-function maps in molecules and simple organisms, and the different possibilities that current
and future techniques might allow. It includes a formal discussion on how phenotypes can be inferred from genotypic
data and fitness assays, and a discussion of the intimate relationship between fitness landscapes and GP maps. Sec-
tion 8 exemplifies how concepts and techniques originating in quantitative studies of the GP map can enlighten useful
approaches to diseases with a genetic component.

The fourth and last part presents a mostly self-contained overview of open questions and difficulties that the
field faces, as well as some possible avenues for further progress, in Section 9. The paper closes with an outlook
in Section 10 where we reflect on the feasibility of characterising the genotype-to-organism map, and on plausible
epistemological difficulties to comprehend the organisation and complexity of full organisms.

2. GP maps and the importance of variation

Darwinian evolution requires heritable phenotypic variation, upon which natural selection acts. Much of traditional
evolutionary theory has focused on the role of natural selection, while the study of variation has been much less
developed. There are a number of reasons for this difference.

Firstly, there is an influential tradition, stemming from the early days of the modern synthesis, that any meaningful
change over evolutionary time is ultimately caused by natural selection. One argument in favour of this thesis comes
from the simple observation that a heritable phenotype with higher fitness will, over the generations, exponentially
out-compete other phenotypes with lower fitness in the same population. Thus, differences in the rate at which muta-
tions arrive will be swamped by the effect of fitness differences (there are much more sophisticated versions of this
argument). Another argument, which is often more implicitly than explicitly made, is that a large part of variation
is isotropic—in other words, it is not biased in one direction or another. Stephen J. Gould, who was critical of this
viewpoint, expresses it as follows: “variation becomes raw material only, an isotropic sphere of potential about the
modal form of a species ... [only] natural selection ... can manufacture substantial, directional change” [7]. Whether
evolutionary trends must primarily be explained by natural selection, or whether anisotropic (biased) variation also
plays a key role, is a complex question. While the arguments have moved on considerably since the critique of Gould,
especially with the rise of evo-devo [8], they are far from being settled [9,10]. Ever since the modern synthesis,
directed variation has been deemed anathema because it evokes the Lamarckian view of variation to facilitate adapta-
tion. However, as the analysis of GP maps reveals, these maps are a major source of anisotropic variation, even if this
variation is not necessarily biased in the most beneficial way for the organism.

The second reason why our understanding of variation is relatively underdeveloped is that working out the exact
role played by the arrival of variation in evolutionary history is difficult because in nature we typically only observe
the final outcomes of an evolutionary process. It is hard to know what variation may have arisen in the past, but not
fixed, or what variation could have potentially arisen, but did not. For example, even when all potential variation is
isotropic, the non-lethal variation may well be anisotropic, depending on the environment.

In this context, the study of GP maps is critical, because they provide access to the way that changes in genotypes,
brought on by various kinds of mutations, are translated into phenotypic variation for the biological system that the
map describes. They allow us to ask important counterfactual questions, such as what is the full spectrum of variation
that could potentially arise? Working out how variation affects evolutionary outcomes depends on an understanding
of such counterfactuals.

A final issue for understanding variation comes from the unfathomable vastness of genotype spaces, whose size
grows exponentially with genome length, rapidly leading to hyperastronomical numbers of possibilities [11]. If these
spaces are so unimaginably vast, then it might seem natural to conclude, as many have done, that the variation that ap-
pears in evolutionary history is largely contingent upon accidents of history, and unlikely to be repeated (see Ref. [11]
for a discussion).
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This problem of hyperastronomically large spaces means that only relatively simple GP maps allow global ques-
tions about the full spectrum of possible variation to be addressed. Nevertheless, important progress in this direction
has been made through the use of GP maps that can be computationally explored and, more recently, through the devel-
opment of quantitative approaches to shared generic properties. Among the latter, one of the most striking properties is
a strong bias in the number of genotypes mapping to a phenotype [4,12]. This begs the question: Can this bias, which
often extends over many orders of magnitude, affect evolutionary outcomes? Indeed, phenotypic bias, among other
non-trivial properties of GP maps, does severely affect not only our understanding of how variation arises through
random mutations, but also any accurate representation—be it metaphorical or formal—of evolutionary dynamics at
large.

3. Models of the GP map

Maynard Smith introduced the notion of a mapping from a genetic space to a molecular structure—and with it the
idea of a network linking viable genotypes—as a resolution of an evolutionary paradox pointed out by Salisbury [13].
In brief, Salisbury noted [14] that the number of possible amino acid sequences exceeds by many orders of magnitude
the number of proteins that ever existed on Earth since the origin of life, and concluded from this fact that functionally
effective proteins have a vanishingly small chance of arising by mutation. As a way out of this dilemma, Maynard
Smith suggested that the existence of networks of functional proteins is essential to navigate the space of genotypes
to produce a sequence of adaptive improvements and to explore new regions that, eventually, secure evolutionary
innovation [15]. Formally, the space of genotypes can be defined as a network where nodes represent genotypes,
with any two nodes linked if they are mutually accessible through a single point mutation [16]. A neutral network is
therefore an ensemble of connected genotypes with the same fitness, including those with identical phenotypes. The
empirical existence of such networks and their role in providing access to new phenotypes [17] was unequivocally
demonstrated [18,19] four decades after Maynard Smith’s conjecture.

Many studies have aimed at probing the statistical structure of the GP relationship, thus relying on the compu-
tational exploration of GP maps. Models of RNA secondary structure [16,20], protein secondary structures [21,22],
gene regulatory networks [3,23], metabolic networks [24,25], protein complexes [26,27], artificial life [28], or mul-
tilevel maps such as a toyLIFE, which includes protein structure, regulatory, and metabolic networks [29,30], have
been explored through the years. Computational frameworks often rely on building complete GP maps from exhaus-
tive enumeration of genotypes (or sparse GP maps from large samples) in models with simple genotype-to-phenotype
rules as the ones above. To study global properties of a GP map, such as phenotype frequencies, a large number of
genotype-phenotype pairs have to be evaluated. With notable exceptions [31-33], some of which will be discussed in
section 7 of this paper, the exhaustive study of GP maps represents an enormous challenge that has been restricted to
systems where the phenotype can be found computationally from the genotypic information.

For the sake of simplicity, most GP computational maps assign a unique phenotype to each genotype, in a many-to-
one representation. Some maps also take into account environmental factors such as temperature, which modify GP
mapping rules and, therefore, include phenotypic plasticity in a streamlined fashion [34]. Other implementations also
consider phenotypic promiscuity [35,36], that is, the possibility that each sequence maps to more than one phenotype
under fixed environmental variables. However, many-to-many GP maps entail an exponentially increasing cost in
computation time, so they have been rarely explored in depth (for exceptions see [24,34,37-43]).

Creating complete computational frameworks for GP models is a challenge—building complete GP maps for
sequences as long as functional molecules in realistic environments is beyond our current computational power. Nev-
ertheless, progress has been steady and significant. For example, and despite the freedom inherent to any definition of
phenotype, many generalities have emerged from studying these models, and theoretical arguments to explain some
of them have been developed [44—46]. These studies have led to a relatively sound understanding of the conditions
that are behind different phenotype abundances, its relationship with robustness, and the topology of neutral networks
[12,47,48].

In this section, we begin by briefly summarising a variety of GP maps that have been computationally studied to
date. Some attention is devoted to RNA, a model for which we examine in perspective some of the important lessons
learnt and discuss possible future contributions to GP map research. There is a substantial body of literature available,
including comprehensive reviews [49] that we do not even attempt to summarise here. We finish this part discussing
the GP maps of artificial life systems.
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Fig. 1. Some examples of simple GP maps. For each model, and from left to right, we depict an example phenotype and some of the genotypes
in its neutral network (mutations that do not change the phenotype are highlighted in red). (a) RNA sequence-to-structure is the paradigmatic GP
map. Mutations that conserve the secondary structure appear in loops with a higher likelihood than in stems. (b) The HP model, both in compact
or non-compact realisations, has been studied as a model for protein folding. (c) toyLIFE is a minimal model with several levels [29]. Sequences
of the HP type are read and translated to proteins that interact through analogous HP rules to break down metabolites. (d) Fibonacci’s model [44]
relies on the separation between constrained and unconstrained positions in sequences to derive some formal properties of simple GP maps. (e)
A generalisation of the idea of position-dependent constraints [45] provides a formal understanding of the ubiquitous lognormal distribution for
neutral set sizes. (f) A polyomino model used to capture the essentials of quaternary protein structure [27]. (g) Dawkins’ biomorphs are defined by
genotypes with few parameters that define the generative rules of the structure [53]. Figure modified from Ref. [5].

While we focus here on sequence-to-structure and sequence-to-function maps, it is important to highlight that
genotype-phenotype and genotype-fitness maps have also been studied in the context of development [50-52].

3.1. One-level GP models

Over the past three decades, the GP maps of several simple biological model systems have been studied in great
detail. Fig. | summarises the essentials of some of the GP maps we will be discussing. Two classical examples are
RNA secondary structure [16,20] and the HP model of protein folding [21,54]. The HP model represents proteins
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on a regular lattice as self-avoiding chains of hydrophobic (H) or polar (P) beads. In its compact version the chains
are forced to fold into rectangular configurations that leave no empty sites, while in the non-compact version all
possible self-avoiding walks in the lattice are considered. The phenotype is defined as the minimum energy of a given
configuration calculated from a contact potential between neighbouring (but not in the backbone) beads. Because RNA
and HP models are relatively tractable, properties such as the distribution of the number of genotypes per phenotype
[11,55,56], the phenotypic robustness and evolvability [57,58] (see Box 3.1) or the topological structure of neutral
networks [48] could be systematically studied and compared [59].

Given the pivotal role proteins play in cellular processes, the protein sequence-to-structure map, of which the HP
model constitutes the simplest realisation, is of great general interest [60—62]. The protein sequence-to-structure map
has been also studied using more realistic, multi-parametric contact potentials [63—06] and coarse-grained models
at different levels, such as the Polyomino model [26,27] for protein complexes. Some inferences about local and
global properties of the protein sequence-to-structure-to-function GP map have also been made from experimental
data [67-69], and estimates of neutral set sizes (NSSs) have been obtained from structural data [70].

Breakthroughs in the computational prediction of protein structure from amino acid sequence have recently been
achieved by deep learning with artificial neural networks. The AlphaFold 2 system by DeepMind [71] outperformed
100 other teams in the 2020 Critical Assessment of Structure Prediction challenge (CASP13), with prediction ac-
curacy rivalling that of experimental structure determination. Enormous resources are required for each evaluation,
however, taking days of computational time for a single protein sequence. If subsequent development can maintain
the accuracy while allowing exponential speedups, these computational systems should be able to open up entirely
new investigations of the GP map for proteins.

A number of models work at levels above sequences. Simple gene regulatory networks act as effective geno-
types in models that map them onto phenotypes defined as the steady-state gene expression pattern [75,76]. A
metabolic genotype is defined as all chemical reactions an organism can catalyse via enzymes encoded in its genome;
the phenotype is defined as viability in minimal chemical environments that differ in their sole carbon sources
[77,78]. Those two models share the property that most genotypes do not map to any functional phenotype—
it has been put forward that such a restrictive relationship may stem from a minimisation of the cost incurred
by maintaining a complex functional network [79]. However, genotype spaces where function is sparse still con-
tain large neutral networks that percolate that space and guarantee phenotypic innovation without loss of function
[24,76,77].

There are compact [30] and non-compact [58] versions of the HP model with an overwhelming majority of non-
functional genotypes where neutral networks are very small and mostly disconnected; therefore, innovation is severely
hindered, if not plainly impossible, in those one-level maps. However, that lack of navigability turns out to be irrelevant
if additional, higher levels, are taken into account.

3.2. Multi-level GP models

Most computational GP maps studied to date, including those discussed in the previous section, only include one
level (or scale) of description, mapping genotypes of different kinds to their corresponding phenotypes (see, however,
[80]). But even the simplest organisms include more than one level: RNAs and proteins will perform enzymatic and
regulatory reactions that will in turn affect the availability of other molecules inside and outside the cell. If the study
of one-level GP maps has led to great changes in our understanding of evolutionary theory, it stands to reason that
studying multi-level GP maps will yield at least equally important insights.

It has been shown that multilevel models endowed with biophysically realistic interaction rules lead to the emer-
gence of complex fitness landscapes that permit multiple, equally successful, evolutionary pathways [81,82] or the
growth of organismal population size when protein-based, functional genotypes are discovered through evolution
[83]. Recent proposals for multilevel models are the model of RNA-based virtual cells discussed in Section 6.2, a
model of developmental spatial patterning [84,85] (see Section 5.5), and toyLIFE [29,30]. toyLIFE is a multi-level
model that includes genes, proteins and metabolites, as well as their regulatory and metabolic interactions. toyGenes
consist of binary sequences (the genotype) that are first mapped to HP-like proteins. None of these proteins can be
obtained from any other through single-point mutations. Proteins interact between themselves, with the genome, and
with metabolites. The phenotype is defined by the set of metabolites that a given sequence is able to catabolise. In its
three-gene version, phenotype is mostly defined through the first two genes, which admit very few mutations, while
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Box 3.1a
Definitions

Function Function is a contentious term [72,73] that is used to mean many things. In this review we are
mostly referring to properties of proteins, such as stability, catalytic activity, and binding affinity.

Genetic correlations A GP map has this property if two sequences differing at a single site are more likely
to generate the same phenotype than two arbitrary sequences [12].

Genotype network A set of mutually connected genotypes that have the same phenotype. This term is
usually employed as a synonym of neutral network, although in some context a genotype network
needs not be neutral—for instance, in the case of GP maps with both a categorical phenotype (e.g.
molecular structure) as well as a quantitative fitness (e.g. thermodynamic stability of the structure).

Genotypic evolvability Total number of distinct alternative phenotypes that can be reached through point
mutations from a single genotype [57].

Genotypic robustness Number of point mutations that do not change the phenotype of a specific genotype.
It is analogous to the neutrality of a genotype.

Navigability Ability to navigate throughout genotype space via neutral mutations.

Neutral network A set of mutationally connected genotypes that have the same fitness, including those
that have the same phenotype. Often, it refers to the largest connected component of a neutral set.

Neutral set A set of genotypes which have the same fitness, including those that have the same phenotype.
The neutral set size is therefore the number of genotypes that map to a given phenotype.

Organism Any individual entity that embodies the properties of life, like a cell, an animal, or a plant. It is
a synonym for “life form”. By extension, it also applies to artificial life forms.

Phenotype A property which is encoded in the genotype and is biologically relevant, for example a molec-
ular structure. Though abstract, this broad definition allows a variety of models to be treated with the
same terminology.

Phenotypic robustness Average genotypic robustness of all genotypes in a neutral network [57].

Phenotypic evolvability Total number of distinct alternative phenotypes that can be reached through point
mutations from a phenotype’s neutral network [57].

Plasticity Quality of a genotype leading to the production of more than one phenotype depending on the
environment [42].

Promiscuity Quality of a genotype leading to the production of more than one phenotype in the same
environment.

Quasispecies Population structure with a large number of variant genomes related by mutations. Quasis-
pecies typically arise under high mutation rates as possible mutants change in relative frequency as
replication and selection proceed [74].

Shape-space-covering A GP map has the shape space covering property if, given a phenotype, only a
small radius around a sequence encoding that phenotype needs to be explored in order to find the most
common phenotypes [16].

Versatility A quantitative measure of the rescaled robustness of a specific sequence position [46].
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Box 3.1b
Acronyms

CPMs Cancer progression models

DAG Directed acyclic graph

FACS Fluorescence-activated cell sorting
FPGA Field-programmable gate array

GP Genotype-to-phenotype

MAVEs Multiplexed assays for variant effects
MFE Minimum free energy

MPRAs Massively parallel reporter assays
NSS Neutral set size

OLS Oligo(nucleotide) library synthesis
SCRaMbLE Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution

the third gene is essentially free to mutate, thus restoring evolvability to the system. Additionally, the existence of
promiscuous sequences further enhances navigability when environmental factors such as temperature are considered
[86]. Promiscuity was recognised long ago as a key property in adaptive processes [35] that, as of yet, has not been
explored in most GP maps.

One of the most interesting results to come out of an early exploration of toyLIFE’s metabolic GP map is that adding
levels of complexity to a phenotypic definition actually increases robustness [30]: proteins can change and become
non-functional, and regulatory functions can be altered, while the overall metabolic function remains constant. This
suggests that the potential for cells to evolve toward new evolutionary challenges has been significantly underestimated
in the past.

3.3. RNA

RNA is the most paradigmatic model for studying GP relationships and constructing GP maps [16,46,48,87-95].
Two major breakthroughs behind its popularity were the development of empirically based energy models—of which
the most widespread is the Turner nearest neighbour energy model [96]—, and two fast dynamic programming algo-
rithms to determine the minimum free energy (MFE) secondary structure [97] and to compute the partition function
[98] of a sequence. In general, a sequence can fold into a number of secondary structures and the energy models
and dynamic programming algorithms have made it possible to select low-energy structures [99], quantify their free
energies [100] and use this to define a GP map in several ways: one GP map definition considers a single structure
per sequence, usually the minimum-free-energy structure [16]. This will lead to a many-to-one GP map, where each
sequence maps to a single structure, but each structure can be generated by a number of different sequences. An
alternative definition allows several low-free-energy structures per sequence, which leads to a more complex many-
to-many relationship. Together, these different studies defined a range of formal measures to quantify some of the key
features of GP relationships, such as plasticity, evolvability, robustness and modularity [37]. The results obtained with
RNA through the years have served as inspiration and guide to our intuition when faced with other GP maps.

3.3.1. Phenotypic bias in RNA

We will start by reviewing results from the commonly studied many-to-one GP map, where the focus is solely
on the predicted minimum-free-energy structure of each sequence. The largest exhaustive enumeration performed for
RNA sequences, of length L = 20, yielded 10 orders of magnitude difference in the number of genotypes mapping
from the most rare to the most frequent secondary structure phenotypes [94]. Approximate calculations of NSSs for
longer sequences [46,95] show that this variance grows rapidly with increasing length. For example, for L = 100 this
difference is expected to be over 50 orders of magnitude: these maps are extremely biased. In an important study
[92] the NSSs for longer length RNA were calculated using a sampling technique. When comparing to structures
in the fRNAdb database for functional non-coding RNA (ncRNA) [101], they found, for systems of lengths L = 30
to L = 50, that the natural RNA secondary structures were typically among those with larger NSS. These results
suggested that the strong bias in the GP map was reflected in the secondary structures found in nature.
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Another interesting set of studies compared structural features (e.g. distributions of stack and loop sizes) of natural
secondary structures and those obtained when randomly sampling over sequences. They found that many are quite
similar [87], and that natural and random RNA share strong similarities in the sequence nucleotide composition
of secondary structure motifs such as stems, loops, and bulges [90]. Why should random sampling over sequences
generate distributions that are so similar to natural RNA, where natural selection would normally be thought to play
an important role?

The study of much larger datasets of natural RNA from the fRNAdb database—and for lengths ranging from
L =20 to L = 126—demonstrated that the distributions of various structural features, and also properties such as
the genotypic robustness, are very close to those obtained by random sampling over genotypes [95]. Furthermore,
the distribution of NSS for natural RNA was found to closely follow the NSS distribution that arises upon random
sampling of phenotypes. If one were to simply randomly sample over phenotypes, very significant differences with
random genotype sampling (and natural RNA) would be found. By working out these counterfactuals it was therefore
possible to demonstrate that the way in which variation arises through a GP map is dramatically different from the
naive expectation that all potential variation is equally likely.

The close agreement of the distributions found in nature and those found by random sampling of genotypes via the
GP map is very surprising given that natural selection is expected to be an important factor in the process that allows
a particular functional RNA to fix in a population. The fact that its effect is not really visible for the properties above,
at least when compared to a null model of random sampling genotypes, would appear to be strong evidence for the
importance of anisotropic variation in determining evolutionary outcomes. However, before this conclusion can be
drawn, it is important to remember that evolution does not proceed by random sampling of genotypes. Instead, it typi-
cally starts with a particular genotype and phenotype, and alters it via mutations that in turn generate new phenotypes
that are either fixed or disappear over the generations in evolving populations. Given the hyper-astronomically large
size of these spaces, it is not clear that such a local search should be at all similar to the results of random sampling of
genotypes, which is a global property that does not depend on the starting point in genotype space.

Still, a counterexample of natural RNA where selection seems to have played a visible effect is that of viroids.
Viroids are small, non-coding, circular RNA molecules that infect plants [102]. Viroids have compact secondary struc-
tures that constrain their evolution [103] and whose preservation seems essential to avoid degradation and inactivation
[104], and to minimise the effect of deleterious mutations [105,106]. Viroids bear a number of paired nucleotides
well above random expectations [107], such that the estimated NSSs of typical viroids are significantly below those
of random sequences. For example, a typical structure for a circular RNA of length 399 has an average of 230 paired
nucleotides and about 10°! compatible sequences. However, the largest known viroid is Chrysanthemum chlorotic
mottle viroid, which matches that length, but has 280 paired nucleotides and an NSS of about 1072 genotypes [108].

3.3.2. Promiscuity in RNA

Beyond the many-to-one GP map, many-to-many GP maps that take into account the MFE structure and suboptimal
structures in the Boltzmann ensemble have been studied [34,37,42]. Suboptimal structures can be included according
to several criteria: either all structures which fall within a fixed free energy range from the MFE structure [34,37] are
considered or only structures which have the same free energy as the MFE structure up to the energy resolution of
the computational model [42]. First, a link was found between the suboptimal phenotypes of a sequence in the many-
to-many GP map and the phenotypes in the mutational neighbourhood of the same sequence in the corresponding
many-to-one GP map [37]. Secondly, genotypes with low promiscuity were shown to have MFE structures with
higher modularity [37]. Finally, it was found that evolving populations encounter a higher number of phenotypes
if suboptimal phenotypes are included [34]. Altogether, these observations point to the important adaptive role of
molecular promiscuity by supplying alternative phenotypes in the absence of mutations, and so redefining the fitness
landscape [5].

3.3.3. Hints from RNA inverse folding algorithms

The characterisation of functional phenotypes by designing sequences that fold into a given RNA secondary struc-
ture has been much less explored than the direct fold of given sequences. Finding sequences that yield a particular
secondary structure is known as the RNA inverse folding problem. This is an NP-complete problem even for the
MEFE structure [109], hence a very demanding computational task. As a consequence, most approaches are based on
local search algorithms [110]. Actually, RNA inverse folding algorithms are mostly intended for synthetic design,
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though they have occasionally been used to investigate GP relationships [57,111]. However, their use is controversial
due to the intrinsic bias of the underlying local search algorithms [112], which are not complete by definition and
therefore produce biased samples under multiple runs. This caveat notwithstanding, there are some inverse folding
methodologies that appear more suitable for this purpose.

The first method is a soft inverse folding approach which implements a dynamic programming algorithm to com-
pute the RNA dual partition function [113]. This partition function is defined as the sum of Boltzmann factors
> s exp(—E(o, X)/T), where E(o, X) is the energy of the RNA nucleotide sequence o compatible with a target
structure X, and 7 the absolute temperature (in units of energy). An energy weighted sampling from the low energy
ensemble of sequences that are compatible with the given secondary structure is performed to calculate this partition
function. While this approach is not particularly practical for synthetic design, it provides insights into molecular
evolution.

This theoretical abstraction and the measures derived from it, such as the expected dual energy, can provide useful
information about general properties of the phenotypes without exploring the whole genotype space. Computational
analyses based on the nearest neighbour energy model over all the RNA sequences in the Rfam database [114] indicate
that natural RNAs fold into secondary structures with energy higher than expected for sequences with the same
length and GC content. Possible explanations for this observation are either that functional RNAs are not under
evolutionary pressure to be highly thermodynamically stable or that sequence requirements prevent reaching minimum
folding energies. On the other hand, experimental studies confirm that even random sequences frequently acquire
compact folds similar to those of natural RNAs. Empirical observations further indicate that natural selection could be
a determinant factor to achieve unique, stable tertiary folds—i.e. without major competing phenotypes—under natural
conditions [88]. Besides, the controlled bias in this sampling methodology provides a delimited context to evaluate the
properties that characterise a functional RNA with respect to sequences with similar structure. Simulations using this
approach indicate that bacterial ncRNAs are more plastic and less robust than other sequences with similar structure
[113].

Although the samples returned by this algorithm are representative of the low energy ensemble of sequences of
the given structure, the MFE structure of individual sequences is not necessarily the target structure. However, the
proportion of alternative MFE structures of the sampled sequences is the distribution of competing phenotypes in the
low energy ensemble of the target structure, which can in turn be interpreted as an estimate of the structures that are
likely to coexist with that phenotype in a many-to-many GP map.

Similar algorithms for computing and sampling from the RNA dual partition function with additional constraints
have been developed and used to determine the neutral path between sequences in the same phenotype [115].

The second methodology is complete inverse folding based on constraint programming [116]. The constraint
programming paradigm avoids exploring the whole sequence space when structural, sequence or environmental re-
strictions are included. These restrictions comprise, among many others, GC content, sequence motifs, multiple local
and global structures and folding temperatures. Rather than slowing down the search, each constraint increases the
speed of this algorithm. This algorithm can potentially retrieve all sequences that meet the requirements or conclude
that no solution exists. In practice, the running time depends on the sequence space defined by the given constraints.
These features make it appropriate for the study of genotype-phenotype-function relationships of moderately small
functional RNAs with known moieties, or of regulatory RNA elements like riboswitches and thermoswitches.

Some examples of the performance of complete inverse folding based on constraint programming are the
computationally-based suggestion that the conserved GUH (no G) motif in the hammerhead ribozyme type III cleav-
age site of Peach latent mosaic viroid is due to structural, rather than functional, requirements [117], or that natural
thermoswitches do not seem to be optimised to maximise the probability difference between the active and inactive
structures at the corresponding folding temperatures [118].

3.4. Artificial life

Evolutionary processes have not only been studied in biology, but also in man-made systems. Some models were
designed to simulate biological evolution computationally and mimic biological properties. A widely used example
is the digital model of a biological organism called Avida [28]. Avida organisms are pieces of code which can self-
replicate and evolve towards optimal usage of computational resources. Richard Dawkins introduced a different form
of artificial life to study evolution: biomorphs [53] are two-dimensional stick figures produced recursively from a
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genotype, which consists of nine integer numbers. These biomorphs resemble abstract animal or plant shapes. Lin-
denmayer systems are another famous recursive model which can produce plant-like figures [119,120]. These model
systems are abstractions of biological organisms, but they all imitate properties of biological systems: the recursive
branching rules in Lindenmayer’s systems and later in Dawkins’ biomorphs were inspired by plant development,
whereas Avida digital organisms have a metabolism and compete, just like bacteria [28,53,120]. However, evolu-
tionary principles have been applied even more generally: the study of programmable electronic hardware has been
addressed using the GP framework [121]. Circuit configurations were treated as genotypes and the function which a
circuit computes as the corresponding phenotype.

Here we will focus on results for four artificial life models: Avida organisms [122], biomorphs [53,123], the 2PDOL
model [124,125], which is based on Lindenmayer’s systems, and FPGAs [121], a type of programmable electronic
circuits. These studies have focused on different properties, which makes a direct and quantitative comparison diffi-
cult. However, similarities between these artificial life GP maps and molecular sequence-to-structure GP maps exist
[121,122,124,125]: first, in three of these four systems the number of genotypes mapping to a given phenotype was
estimated and found to vary significantly between phenotypes [121-123]. For the fourth model a related quantity, the
neutral set diameter, was also found to differ between phenotypes [125]. Such a heterogeneity, or phenotypic bias, in
the distribution of genotypes over phenotypes has long been observed in molecular structure GP maps [16,54]. Second,
a high degree of genotypic robustness was observed, which enables the formation of neutral networks [121-123,125].
This property was also first found in molecular structure GP maps [21] and is referred to as genetic correlations [12].
A third shared property follows from the vastly different NSS: the probability of transitioning from a larger to a chosen
smaller neutral set by point mutations is much smaller than that in the reverse direction. This asymmetry is known
from molecular structure GP maps [126] and has been confirmed for two of the artificial life GP maps: Avida [122]
and the 2PDOL model [124].

In addition to these shared properties, there are points in which the various artificial life systems differ. In Avida,
a high fraction of genotypes is considered inviable because the organisms are unable to reproduce [122], whereas in
the biomorphs system all genotypes produce well-defined drawings and all stick figures are viable until an external
decision is made about the fitness of specific shapes. In molecular GP maps the fraction of viable genotypes also
depends on the system: in studies of model proteins, a large fraction of genotypes does not fold into a unique struc-
ture and is considered unstable, whereas for RNA secondary structure a minimum free energy structure is found for
most sequences [59]. Further comparisons could be made once quantities defined for GP maps, such as phenotypic
robustness and evolvability, NSS, and mean-field mutation probabilities, are evaluated consistently for all of these
and further artificial life models. Commonalities between artificial life and molecular structure GP maps dominate the
picture at present, but future research may also identify differences between these two groups of models.

4. The universal topology of genotype spaces

Some of the results highlighted in the former section hint at the possibility that any sensible GP map (and, by
extension, artificial life system) is characterised by a generic set of structural properties that appear repeatedly, with
small quantitative variations, regardless the specifics of each map. Extensive research performed in recent years has
confirmed this possibility to an unexpected degree.

Some of the commonalities documented are navigability, as reflected in the ubiquitous existence of large neutral
networks for common phenotypes that span the whole space of genotypes, a negative correlation between genotypic
evolvability and genotypic robustness, a positive correlation between phenotypic evolvability and phenotypic robust-
ness, a linear growth of phenotypic robustness with the logarithm of the NSS, or a near lognormal distribution of the
latter. There are recent and comprehensive reviews of the properties measured and shared by different GP maps [1-6].
In the following sections, we discuss new views on the plausible roots of this seemingly universal class of GP maps.

4.1. Possible roots of universality in GP maps

The question obviously arises: Why are structural properties of GP maps unaltered by the details of the mapping?
Part of the answer must lie in the topology of the very high dimensional spaces governing the relationship between
genotypes and phenotypes. Our intuitions often fail us here because these spaces are highly interconnected. Although

their volumes grow exponentially with sequence length, distances are linear. For example, if one could make every
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RNA of length L =79, the molecules would weigh more than the Earth [11]. Yet none of those strands is more than
79 point mutations away from any other.

One way this interconnection manifests itself is through the property of shape-space covering, a term first intro-
duced for GP maps in the RNA context [16], and borrowed from its original use in immunology [127]. It captures
the fact that many phenotypes are only a handful of mutations away from one another. While this property has been
best studied in the secondary structure RNA GP map, it has also been shown to be present in the HP model [59,128],
toyLIFE [30], the polyominoes [27], and a model of gene expression [84] (where it is described as ergodicity of
phenotypic exploration). Shape-space covering suggests that no matter where you start, many other phenotypes are
in principle close by in terms of Hamming distance. In the cases above, this holds even if the search begins in an
arbitrary genotype. In GP maps where function is sparse in genotype space [24,76,77], phenotypes are still close to
each other, but links are established through a limited number of genotypes that might take a long time to find through
random walks on the neutral network.

4.2. Constrained and unconstrained sequence positions. Formalising neutrality and evolvability

The intuitions above have received quantitative support from analytically tractable, streamlined GP maps which
aim to capture the essentials of generic GP map features. These models, the results attained and the clues they provide
are summarised in this section, which might appear slightly technical to the non-familiar reader but clarifies possible
constructive principles of evolutionarily apt GP maps.

Highly simplified, abstract GP maps can reproduce many of the generic properties discussed [44,129]. These
simplified maps hint at two major possible causes underlying structural universality: (i) the partition of sequence
regions into constrained and unconstrained parts and (ii) non-local interdependence of sequence positions with regard
to their constraints (as sketched in Fig. 1 (d, e)). Let us illustrate how to derive general results with a simple example.
Consider a sequence of length L whose first £ positions are fully constrained (changing any of those positions amounts
to changing the phenotype) and the remaining L — £ positions are neutral (changes do not affect phenotype). If every
position in the sequence admits k possible values (k = 2 for a binary alphabet, formed for example by symbols {0, 1}
and k = 4 in quaternary alphabets, as {A, C, G, U}), then there are k* different phenotypes for every value of ¢, each
of size k“~¢. Using a rank-ordering of the sizes of phenotypes and some simple algebra, it is easy to conclude that
the probability p(S) that a phenotype has size S is p(S) o« S™¢, with o = 2 [45]. If the restriction of a position being
fully constrained or neutral is relaxed, different values of the exponent « can be obtained. The exponent also changes
if a stop codon (equivalent to considering an £-dependent amount of lethal mutations) is introduced [44].

Interestingly, the shape of the distribution p(S) changes to a lognormal function if, in the examples above, con-
strained sites can be arbitrarily distributed along the sequence. In general, the positions of a sequence are neither
constrained nor neutral, but versatile in varying degrees. Let us define the versatility v; of position i in a sequence
as the average number of alphabet letters at that site that do not modify the phenotype. This extends the ideas above
and provides a simple estimation of neutral set size S, as S = vjvov3...vr. This estimated value has been shown to
be a very good approximation to the NSS in several GP models such as RNA, HP and toyLIFE [46] (Fig. 2a). In all
those cases and several others, the distribution p(S) is compatible with a lognormal, which can be analytically derived
under very generic assumptions in the case of RNA [45] (Fig. 2b). Moreover, the results suggest that this approxi-
mation can be extrapolated to larger sizes. Additional properties, such as genotypic and phenotypic robustness, can
be analytically obtained in such effective models [44], which constitute a sound first step towards deriving a formal
theory of genotype spaces and their universal properties.

Generic biological sequences display the characteristics above in almost every biological context: exons and introns
correspond to constrained and unconstrained regions, as do genes and noncoding intergenic sequences. Start and stop
codons as well as interactions between transcription factors and their targets are examples of the interdependence of
one sequence region on the constraint of another. As a result it is likely that the same GP map properties we observe in
abstract model systems also hold for much more complex and biologically realistic phenotypes. The challenge in these
more complex GP maps, however, is the vast size of the genotype space. A protein of 300 residues has a sequence
space of size 2039, Approaches that can estimate the structural properties of a GP map from relatively small samples
are therefore essential. Knowledge of these properties is not just interesting for the study of GP maps, but also has
potentially useful applications [95]. Being able to measure properties such as the phenotypic robustness, evolvability,
and neutral network size of phenotypes in more complex GP maps would therefore provide a powerful methodological
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Fig. 2. Predicted and measured properties of RNA phenotypes. (a) Log-log-log histogram of the estimated abundance vs. actual abundance of four-
letter RNA of length L = 16 phenotypes using versatility as defined in the main text [46]; (b) NSSs estimated using [92] natural RNAs of length
L =100 obtained from the ncRNA database [95]. Random evolutionary search is highly skewed towards the largest phenotypes, as evidenced by
the predicted shape of the full, lognormal distribution (solid curve): phenotypes of small and typical sizes are not found in nature.

tool for the prediction of evolutionary pathways. The division of sequences into constrained and unconstrained regions
is also likely to make prediction of structural GP map properties from local samples easier. This is because a division of
sequences into constrained and unconstrained regions implies that many sequence positions are largely independent
of each other with regard to their phenotypic effect. While important interdependencies remain, which particularly
affect evolvability, the fact that interdependent sequence positions are likely to constitute a relatively small fraction of
the total sequence means that a sampling approach is feasible for the purpose of estimating neutral network sizes and
phenotypic robustness.

5. Evolutionary dynamics on genotype spaces

In the previous sections we have discussed the static properties of genotype spaces, their plausible universality and
some basic principles that may underlie their topology. Such findings are relevant by themselves, but a further aim is
to uncover the consequences of genotype space architecture in evolutionary dynamics. Evolution can be pictured as
the navigation on the space of all possible genotypes [13], and GP maps describe the way different phenotypes are
organised in such a space [130]. This organisation and the intrinsic structure of GP maps affects, among others, the
ability to find genotypes and phenotypes in evolutionary searches [91,94], as well as the rate of adaptation [131,132].

Early studies of dynamics on neutral networks quantified the trend of populations to maximise genotypic robustness
by demonstrating that mutation-selection equilibrium is solely determined by the network topology [133]. Still, the
time to reach equilibrium is an inverse function of the mutation rate [47]. Neutral networks in GP maps, as well as in
a few instances where this property could be quantified, are assortative [48]: the neutrality of genotypes one mutation
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away from each other is positively correlated. As a result, the dynamics is naturally canalised towards maximally
connected regions [37], resulting in an acceleration in the rate of accumulation of neutral mutations with time [132].

In more recent analyses, attention has turned towards the effect of phenotypic bias in adaptation, as we have already
discussed by means of enlightening studies with RNA. The question has been also investigated using a modified
version of toyLIFE to model pattern-formation in regulatory networks [86,134] aimed at finding out how evolution
chooses between two a priori equally fit phenotypes. It turns out that evolutionary dynamics at the phenotypic level
cannot be well described by a Markovian process between phenotypes [132], because of the nontrivial topology of
each phenotype’s neutral network [5]. As a matter of fact, the escape time from one phenotype does not follow
an exponential distribution, as most evolutionary models assume. This is one instance of the so-called phenotypic
entrapment [132], in which the trend of populations to become trapped in increasingly robust regions of a phenotype
neutral network results in a long-tailed distribution of escape times: either the population escapes very fast, or takes a
very long time to do it.

Accounts of evolution on neutral networks driven by point mutations and the corresponding mathematical formal-
ism can be found elsewhere [5,135,136], though some essentials will be also described here. In this section we will
mainly discuss the effects of a largely disregarded but essential evolutionary mechanism (recombination) and how
mutational bias affects isotropic searches.

We continue with evolutionary dynamics on genotype and phenotype networks defined by point mutations, where
if we make an ergodic assumption that all typical phenotypes are locally accessible we are led in a natural manner to
the formulation of the statistical mechanics of phenotypic evolution. We close by discussing a number of applications
where these ergodic assumptions are most appropriate.

The approaches in this section differ in the formalism used (complex networks at large, mean-field effective models
and statistical mechanics) but all converge in the main emerging lesson: the size of a phenotype plays a role in evolu-
tion comparable to that of fitness. Quantification of their relative weight through formal approaches might eventually
settle the false dichotomy between neutralism and adaptationism.

5.1. Robustness and recombination

Genotypic robustness is a property of the GP map that quantifies to what extent functional genotypes can be main-
tained in the presence of random mutations [89,137-139]. Specifically, consider a genotype encoded by a sequence o
of length L that admits a total of (k — 1)L single point mutations (recall that & is the size of the alphabet). Genotypes
are classified to be either viable (functional) or lethal (non-functional). Then the genotypic robustness 7, of a viable
genotype is defined as the fraction of mutations that maintain viability [140], ro = ny/(k — 1)L, where n, is the
number of viable mutational neighbours. The population-averaged robustness is correspondingly defined as

r:Zr(,v:, €))

oeV

where V denotes the set of viable genotypes and v} is the stationary frequency of genotype o. Two limiting cases are
of particular interest. If the product of population size N and mutation rate U per individual and generation is small,
NU <« 1, the population is monomorphic and performs a random walk on the network of viable states. The stationary
frequency distribution is then uniform and (1) reduces to

ro=1VIT" Y s, )
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where | V| is the number of viable genotypes. On the other hand, when NU > 1, the stationary frequency distribution
is determined by mutation-selection balance and can be shown to be given by the leading eigenvector of the adjacency
matrix of the network of viable genotypes [128,133], see also Section 5.3. The population robustness r is related to
the corresponding eigenvalue and exceeds the uniform robustness o whenever the network is inhomogeneous. This
implies that selection in large populations increases robustness by focusing the population in highly connected regions
of the network.

Numerical studies of recombining populations on various types of genotype networks have indicated that recom-
bination enhances the focusing effect of selection and thus substantially increases genotypic robustness [141-146].
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Fig. 3. Genotype network generated by assigning viable genotypes at random with probability p = 0.2 to binary sequences of length L = 8. The
largest connected component of viable genotypes is shown in the centre of each panel, and smaller components and isolated nodes are arranged in a
ring surrounding the central component. (a) Network structure visualised by the recombination weight w . Node areas are proportional to wg and
the recombination centre is marked in purple. (b) Stationary frequency distribution of a non-recombining population. Node areas are proportional
to the stationary frequency v} of the respective genotype, and the edge width between neighbouring genotypes o, 7 is proportional to max[v}, vX].
(c) Same as (b) for a recombining population. Note that the population is much more strongly concentrated on the recombination centre than in
panel (b). In panels (b) and (c) the mutation rate per site is © = U/L = 0.001. Courtesy of Alexander Klug.

Recently, a systematic and largely analytic investigation of the relationship between recombination and genotypic
robustness within the framework of deterministic mutation-selection-recombination models has been presented [147].

As a simple but informative example, consider the space of binary sequences {0, 1}* endowed with a ‘mesa’
landscape where genotypes carrying up to n 1’s are viable and all others are lethal [148]. The genotypes on the brink
of the mesa carry exactly n mutations and have robustness r, = 1/L, whereas all others have robustness r, = 1.
Combinatorial considerations show that the uniform robustness ro ~ 2n/L for large L and n < L/2, reflecting the fact
that a large fraction of genotypes is located at the brink for purely entropic reasons. The maximal robustness that can
be achieved through selection alone is [148]

n
L
which exceeds rp but is small compared to unity when n <« L. Thus selection only partly counteracts the en-
tropic outward pressure and as a consequence a large part of the population is still located near the brink under
mutation-selection balance. By contrast, in the presence of recombination » — 1 for small mutation rates, because
the contracting property of recombination efficiently transfers the population to the interior of the mesa where all
genotypes are surrounded by viable mutants.

Simulations on different types of random genotype networks show that the massive enhancement of robustness
found for the mesa landscape is generic, and typically a recombination rate on the order of the mutation rate suffices
to achieve this effect. It is not obvious that the focusing of the population towards the centre of its genotypic range
by recombination should generally increase robustness in this case, because viable and lethal genotypes are randomly
interspersed in the network. To rationalise the observed increase in robustness it is useful to quantify the likelihood of
a genotype o to be created by recombination through its recombination weight w, defined by

1
Wg = @ Z R()"lK‘r- (4)

keV,teV

r2

(1 - %) for n < L/2, 3)

Here Ry |c; denotes the probability that o is generated by crossover from « and  and |G| is the total number of
genotypes. The normalisation ensures that w, € [0, 1], and the recombination weights sum to ) w, = VI2/IG].
The genotype that maximises w, is called the recombination centre of the network and provides a good predictor for
the point of concentration of the recombining population in the limit U — 0 (see Fig. 3 for an example). Moreover, for
two classes of random, percolation-type genotype networks and one empirical fitness landscape, the recombination
weight w, was found to be positively correlated with the genotypic robustness 7.

If this correlation were a generic feature of GP maps, it would constitute a mechanistic explanation for how recom-
bination acts to enhance genotypic robustness. Future work should therefore elucidate the conditions on the topology
of the genotype network required for such a correlation to be present. It is not difficult to construct counterexamples
where the recombination centre has low robustness, e.g., by placing a hole of lethal genotypes at the centre of a mesa
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landscape. Only the investigation of specific, biophysically motivated GP maps such as RNA secondary structures
or lattice proteins will clarify whether or not such instances are statistically relevant. More broadly, it appears that a
common perspective on recombination, robustness and evolvability [89,138,139] may help to develop and test novel
hypotheses about the evolutionary origins of these important biological phenomena.

5.2. Mutation bias

Some regions of genotype space exhibit biases in the mutations they contain. For instance, GC-rich regions have
more G < C transversion (purine-to-pyrimidine or pyrimidine-to-purine) mutations than transitions (pyrimidine-to-
pyrimidine or purine-to-purine mutations). This may interact with biases in the generation of genetic variation, because
some mutations occur more frequently than others. For instance, the rate of A <> G transitions exceeds the rate of
T < C transitions in transcribed human genes, whereas there is no significant difference in non-transcribed regions
[149]. Furthermore, CpG dinucleotides—regions of DNA where C follows G—are considered “hot spots” for G —
A and C — T transition mutations [150]. Other forms of mutation bias such as deletion bias and strand-specific bias
have been reported in bacterial genomes [151,152].

Under certain population genetics conditions, mutation bias can be a orienting factor in adaptive evolution [153,
154], and several experimental evolution studies indicate that mutation bias can influence trajectories of adaptive
protein evolution [155,156]. It is possible to get a better understanding of how such mutation biases affect the outcomes
and mutational trajectories of adaptive evolution by studying their impact on the navigability of GP maps.

Instead of the classic depiction of a GP map in which all the possible mutations are equally likely to occur, one
could consider regions of the genotype space being differentially prone to distinct kinds of mutations. Ultimately
this would affect the probability of traversing different edges in the genotype network and, therefore, its navigability.
In this context, a mutation bias weight could be formally defined and introduced into a more general formulation
of genotype networks, by biasing the accessibility of different genotypes. Understanding the potential evolutionary
implications of mutation biased GP maps could provide us with valuable information about the nature of the systems
they represent. For example, if a bias towards certain kinds of mutations enhances the ability to find the adaptive peaks
of a certain GP map, a testable prediction could be that adaptive genotypes are more likely to evolve in regions of the
genome that are prone to that particular kind of mutation.

Moreover, integrating mutation bias into the study of GP maps can change properties such as robustness and
evolvability [157,158]. Both robustness and evolvability are based on the structure of genotypic neighbourhoods, and
this structure can change if mutation bias is considered. For instance, a genotype might seem highly robust when most
of its neighbours in the genotype space map onto the same phenotype. However, if there is a sufficiently high mutation
bias towards mutations that do not preserve that phenotype, robustness would be diminished. The same principle can
apply to evolvability.

5.3. Phenotypic transitions as competitions between networks

Formal studies of the way the structure and navigability of GP maps affects evolutionary dynamics can provide
insights into the mechanisms underlying adaptive evolution, robustness and the emergence of phenotypic innovations.
In the previous two sections, it has been shown that links between genotypes in a genotype network are weighted:
microscopic mechanisms such as recombination and mutation bias modify the likelihood of transitions between pairs
of genotypes. Constant link weights of a generic transition matrix M correctly describe mutation bias, but cannot
account for the effects of recombination, since in the latter case they depend on the abundances of each genotype v,
in a nonlinear way, and in general are a time-dependent quantity. The simultaneous consideration of point mutations
and recombination in a network framework remains as a topic for future studies.

In the following, we summarise a mutation-selection evolutionary process on a network of genotypes subject
only to point mutations using tools from complex network theory. Consider a vector 7(t) whose components are
the population of individuals at each node at time 7 (upon normalisation, each component n, (¢) is the frequency of
the genotype v, (¢)). Then,

it + 1) = Mii(r) (5)
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Box 5.3
Genotype spaces as networks of networks

Populations evolve in steadily changing environments where the impact of internal and external pertur-
bations can rarely be considered in full. Often, nonlinear responses to small external changes hinder
predictability, as weak perturbations might trigger critical transitions that strongly influence the fate of
whole ecosystems [159,160]. Complex network theory and the tools associated to it offer a powerful
framework to tackle this type of dynamical systems, since a multitude of natural systems can be modelled
as nodes (agents) connected by links (interactions).

While network science has largely focused on single networks, in the last decade the study of dynamical
properties on networks of networks or, in a more general way, on multilayer networks [161], has attracted
wide attention [162,163]. One important motivation has been the finding that robustness, synchronisa-
tion or cooperation lead to different behaviour when studied in isolated or in interconnected networks
[164—167]. However, the main reason for this change of perspective has been to realise that many natu-
ral systems, beyond displaying a network-like organisation, are also made of interacting and competing
networks at very different scales, from the molecular level to supranational organisations [168].

The extent to which network science can foster our knowledge and comprehension of the evolution and
adaptation of heterogeneous populations in an ever changing biosphere is a relevant open question. In
particular, the theory of competing networks can be used to analyse the evolutionary dynamics of popula-
tions in a space of genotypes that can be regarded as a network of networks [169]. From this viewpoint,
population evolution is described as a competition for resources of a certain kind, where the competitors
are whole networks instead of independent nodes [170].

represents the dynamics of the population, where M is a transition matrix with information on the fitness of each
genotype, on the mutation and replication process, and on the weighted topology of the network. 7(#) describes the
distribution, at each time ¢, of the population of sequences on the space of genotypes. As already stated, mutation-
selection equilibrium is independent of the initial state and given by the eigenvector i associated to the largest
eigenvalue A; of M. Furthermore, A; yields the growth rate of the population at equilibrium, and i is also a measure
(known as eigenvector centrality) of the topological importance of a node in a network [171].

In the context of the theory of competing networks, any dynamics that takes place on networks interconnected
through a limited number of links (networks of networks), can be often characterised as a competition where the
contenders are whole networks, and where eigenvector centrality represents the resource that the agents compete for
(see Box 5.3). The final outcome of such a struggle for centrality strongly depends on the internal structure of the
competing networks and on the links connecting them [170].

On the other hand, it has been shown [172] that even when environmental perturbations are weak, populations
may suffer critical transitions in their genomic composition when the fraction of lethal mutations (i.e. of zero-fitness
genotypes) is sufficiently high—of the order of that observed in natural populations [173]. A recent analysis of these
results suggested that the space of genotypes can be regarded as a network of networks in “competition” to attract
population [169], and that knowledge of the topology of the space of genotypes entails a certain predictive capability
of the future evolutionary dynamics of the population under study. In fitness landscapes with a large fraction of lethal
genotypes (as it could be the case of the non-compact HP model, GP maps for gene regulatory networks, or models for
metabolism), the space of genotypes is formed by many subnetworks connected through narrow adaptive pathways.
This topology induces drastic transitions of population from one subnetwork to another, occasionally causing the
extinction of the population. The key topological element underlying sudden genomic shifts is the high heterogeneity
in the network describing and linking viable genotypes. This topology can arise under a significant fraction of lethal
mutations (or non-viable genotypes), but the same phenomenon is observed in rugged fitness landscapes.

5.3.1. An empirical test of the theory: transition forecast

Itis highly likely that large molecular populations able to evolve fast, such as RNA viruses, can provide an empirical
test of this predicted critical behaviour. The enormous advances of high-throughput sequencing allow for a very
precise description of the populations at the molecular level, and in particular of the abundances of the coexisting
genotypes. This information might be used to build the space of sequences associated to a population that evolves in
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a changing environment, and thus a proxy of the network of genotypes where the population evolves. Applying the
theory of competing networks it is conceivable that the eigenvalues of the different subnetworks and the centrality
of the connector nodes would provide valuable information on how environmental variability affects the sharpness
of the transitions and on the chances that the population could survive. The combination of tools from complex
networks theory and the last decades’ research on state shifts in the biosphere [174,175] might eventually lead to a
prediction of the time left until the transition occurs. This prediction is important because, once a tipping point takes
place, it becomes very difficult, if not impossible, to return to the previous state. At present, a wide variety of early
warning signals for state shifts has already been characterised, but none of them yields precise information about the
time left before the tipping point is reached [176,177]. However, calculations of the minimal distance between the
first and second eigenvalues associated to the transition matrix M could be used to obtain a first estimation of the
time to the transition [172]. In an evolving population, the relative abundances of the different genotypes could be
used as an approximation of the eigenvector i1; a measure of the growth rate of the population at equilibrium could
yield the largest eigenvalue A1, and A, might be estimated by quantifying how resilient the population is to external
perturbations [178]. A sufficiently precise measurement of these quantities would represent a very fruitful connection
between actual evolving populations and a dynamical description of possible sudden evolutionary transitions. On
a related note, regarding the space of genotypes as a network of networks entails a more coarse-grained, effective
model where each genotype network can be considered as a single node, and where the dynamics can be simplified
to account only for changes in the phenotype. Links in this higher-level description would have a weight proportional
to the within- and between-phenotypes links. At odds with the description at the genotype level though, transitions
between phenotypes are no longer symmetrical [91,179], nor is the dynamics describing these transitions Markovian
any more [132,180].

5.4. A mean-field description of phenotype networks

The qualitative properties of a high-dimensional evolutionary search are inherent to navigable GP maps and very
likely responsible for some of the generic features described in Section 4. Despite all caveats that the complex dynam-
ics at the genotype level may raise due to its non-Markovian nature [132,180], the high dimensionality of genotype
spaces helps us understand why a simple mean field model [94], which averages over much of the local structure of a
neutral set, succeeds in capturing some of those generic, dynamical properties. The model works with ¢z, the prob-
ability that a point mutation for genotypes that map to phenotype & generates a genotype for phenotype x, averaged
over all genotypes that generate §. By measuring the ¢¢,, a weighted network between all the phenotypes can be
defined, with ¢, as the weights. This allows for a much simpler dynamics that ignores the individual genotypes, and
so analytic results can be derived for many properties in dynamical regimes ranging from the monomorphic to the
fully polymorphic limits. Interestingly, for RNA, as well as for a number of other GP maps [12], it was found to a
good first approximation that if & # x then

¢Sx%fxv (6)

where f, is the global frequency of phenotype yx, i.e., the fraction of genotypes that map to x. Since the f, range
over many orders of magnitude, so do the ¢, . In contrast to the case where & # x, the robustness of phenotype & is
¢se o< log( fz), and so varies much less with NSS. This property of the robustness is critical for neutral exploration.
The mean field model predicts that for many different starting phenotypes &, the probability that a different phenotype
x will appear as potential variation will scale as fy.

For several GP maps, this simplified model does an excellent job at predicting the rates at which variation arises
in full GP map simulations. Since NSS, or equivalently f,, varies over many orders of magnitude, this argument
predicts that, to first order, the rate at which variation arises will also vary over many orders of magnitude. Therefore,
even though the set of physically possible variations may be very large, only a tiny fraction of the most frequent
phenotypes will ever be presented to natural selection. This arrival of the frequent effect [94] is therefore very strong.
Fundamentally it is a non-steady-state effect, since the longer an evolutionary run proceeds, the more the potential
variation with lower f, becomes likely to appear. The arrival of the frequent differs from the survival of the flattest,
[181] which describes the situation where a fitness peak with lower fitness can nevertheless dominate over a higher
fitness peak with a lower NSS. The latter effect can be analysed in a steady-state framework, whereas the former effect
cannot.
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Let us return in this context to the question of why so many structural features, as well as the genotypic robustness
of RNA secondary structures, are so accurately predicted by a null model that ignores selection entirely. The arguments
above suggest that even in the more complex situation of RNA evolution in nature, variation will nevertheless to a
good first approximation arise with a probability proportional to its NSS. Since this rate varies by so many orders
of magnitude, this arrival of the frequent effect determines what natural selection can work with, and so tends to
dominate over local fitness effects. Rare phenotypes will almost have no bearing on evolutionary dynamics: they will
hardly be found by a population searching for an adaptive solution and, if they are found, they will be quickly lost due
to mutations. This is akin to an entropic effect in statistical physics: dynamics tend to favour macrostates with a larger
set of microstates.

In other words, natural selection can only act on variation that has been pre-sculpted by the GP map. For the case of
RNA described in Section 3.3.1, it appears that it mainly works by further refining parts of the sequence. This picture
of the primacy of variation stands in sharp contrast to more traditional arguments about the importance of natural
selection as an ultimate explanation of any evolutionary trend. It also raises many open questions. Are there other
GP maps for which we can see such dramatic effects in nature? There are certainly conditions where this primacy of
variation is incorrect. But how, and when does this GP map based picture of pre-sculpted variation break down? The
exceptional case of viroids, discussed in Section 3.3 might be one such example, and provide clues to seek answers to
the latter question.

5.5. Equilibrium properties and statistical mechanical analogies in the weak mutation regime

The broad question of optimisation in evolution, such as the existence of a Lyapunov function, describing a general
dynamics and approach to equilibrium was first addressed by Iwasa [182] in his definition of “free fitness”, in analogy
to the free energy of statistical mechanics, and then later rediscovered for the particular case of the weak mutation
regime [158] and in the context of the evolution of quantitative traits [183,184]. The key insight, is that, at finite
population size, not fitness itself but a combination of fitness and Shannon entropy (weighted by 1/N,, where N,
is the effective population size) is optimised over the evolutionary degrees of freedom of interest. This perception is
consistent with the mean-field description reviewed in the previous section, where it has been shown that phenotypic
bias is at least as relevant as phenotype fitness in evolutionary dynamics.

From a statistical mechanics viewpoint, and in the weak mutation regime (N,U < 1, N, U In(N,s) < 1, where s
is the gain in fitness brought about by a mutation), populations are approximately monomorphic and the degrees of
freedom of interest are the different alleles, codons or genotypes, which are fixed, or not, in the population; evolution
can be described by a Markov process, where populations effectively jump sequentially between adjacent genotypes
by a substitutional process [153], where in equilibrium (assuming uniform mutation and the fixation probability given
by the diffusion approximation) the probability of occupation is given by the Boltzmann distribution

po =e*Nefo 7, (7)

where F, is the fitness of genotype, allele, or codon ¢, and Z is the partition function. It is clear that N, plays the
role of inverse temperature, such that fitness dominates at large population sizes (low temperature) and genetic drift
for small population sizes (high temperature). Many of the calculational tools of statistical mechanics and generating
functions then carry over to evolutionary problems [184] under usual ergodic assumptions.

The statistical mechanical analogy finds particular use in understanding the evolution of phenotypes arising from
GP maps. Here, selection acts on phenotypes, but mutation and variation arise at the level of genotypes. Keeping in
mind the many-to-one nature of most GP maps and phenotypic bias, the Boltzmann distribution of genotypes can be
recast in terms of a Boltzmann distribution of phenotypes [84,185]; as each genotype mapping to a given phenotype
must by definition have the same fitness, the probability of each phenotype is the Boltzmann factor (¢>Vef ¢)) weighted
by the degeneracy of each phenotype Q(£) =k’ fe, giving

pE) =e*Ne®®) 7, (8)
where
S
DE)=FE)+ 255) 9)
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is the free fitness of phenotypes, S(§) = In(€2(£)) being the Boltzmann or sequence entropy of phenotypes. We see
that for small populations phenotypes with larger sequence entropy are favoured by genetic drift in evolution.

5.5.1. Statistical mechanics of the evolution of transcription factor-DNA binding

The ideas above first formally found application in simple biophysical models of transcription factor DNA binding
[186-188], where the degeneracy of binding affinities can be exactly quantified under simplifying assumptions. It is
typically found that for a given transcription factor, the amino acids at the binding interface tend to have a strong
preference to bind a single nucleotide; it is then mismatched nucleotides that control the binding affinity, as these
are strongly destabilising, since hydrogen bonding is disrupted at the interface, as well as the lost hydrogen bonds
with water molecules. A simple model of transcription factor binding, assumes binding between protein and DNA
can be reduced to either a quaternary or binary alphabet, where the binding energy E is proportional to the number of
mismatches, or Hamming distance, &, E = eh. The degeneracy function is then related to the binomial coefficient

()=
Q(h) x A (k—1)". (10)

This simple combinatorial argument shows that there is a huge degeneracy, or phenotypic, bias towards poor
binding in this genotype-phenotype map. This methodology has been used to infer the effective genome-wide fitness
landscape for transcription factor DNA binding in Escherichia coli and yeast [187-189], suggesting that on average
binding is under stabilising selection, with monotonically decreasing fitness with decreasing binding affinity.

This simple model of transcription factor DNA binding suggests that smaller populations bear a significantly greater
drift load under stabilising selection, than would be predicted if we assumed evolution based on phenotypes only
[185,190]; while selection pushes populations to larger binding affinities, there is an opposing sequence entropic
pressure for poorer binding. In equilibrium, these opposing tendencies are balanced, and it is the free fitness that is
maximised, not fitness. This effect of sequence entropy on drift load is significantly greater than would be expected
for a trait under stabilising selection, which ignores any degeneracy (see Box 5.5.1).

5.5.2. Evolution of genotypic divergence and reproductive isolation

One consequence of this significantly larger drift load is that in (allopatrically) diverging populations this gives
rise to the prediction that reproductive isolation arises more quickly due to common ancestors already having more
maladapted transcription factor-binding site pairs on average [185,190,191] (Fig. 4); if the common ancestor has a
binding affinity closer to being deleterious (but kept in check by stabilising selection), then in hybrids Dobzhansky-
Muller incompatibilities [192—194], which are incompatible combinations of transcription factors and DNA binding
sites, arise more quickly after divergence. In particular, this mechanism is broadly consistent with trends seen in
field-data [195—-197] and diversification rates in phylogenetic trees [198-200], and so gives a robust explanation of
how stabilising selection can give rise to this population size effect in speciation, without requiring passing through
fitness valleys as do models based on the founder effect [201-204]. This model also predicts that those transcription
factor-DNA binding site pairs, which are under weaker selection across a genome, would for the same reason give
rise to a greater contribution to reproductive isolation, as the balance between selection and sequence entropy would
be shifted to give common ancestors with weaker binding on average [190].

5.5.3. Marginal stability of compact proteins

Equilibrium statistical mechanical ideas also have the potential to explain the observed marginal stability of com-
pact proteins. Various databases show that proteins have stabilities (measured through free-energy differences) of
order AG ~ —10 kcal/mol, which is only a few hydrogen bonds [205], when their potential maximum stability could
be orders of magnitude greater. Although adaptive explanations have been suggested related to the necessity of protein
flexibility [206], a more straightforward explanation is offered in light of the free fitness of phenotypes; for a given
chain length there are many more sequences that give poor protein stability and so this sequence entropy pressure bal-
ances the tendency of natural selection to choose proteins of higher stability. Simulations and theory of the evolution
of protein folding [205,207-210] reproduce this marginal stability, with a particular property that the distribution of
AAG, the change caused by mutations in the stability of a protein, is roughly independent of AG, the stability of the
protein. The marginal stability of proteins shows an interesting behaviour as function of population size N,; as we
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Box 5.5.1
Quadratic free fitness landscape

We examine a quadratic free fitness landscape, which is a simple description for the statistical mechanics
of transcription factor DNA binding. For moderately large L, we can make the standard Gaussian ap-
proximation of the binomial distribution in the degeneracy function (10), such that the sequence entropy
function (up to a constant) is approximately quadratic

k
S(h) ~ ——(h — (h))?, 11
(h) Mﬁ(ﬂ (11D
where (h) = (k — 1)L/ k is the mean of the binomial distribution ((#) = L/2 for binary, and (h) = 3L /4
for quaternary alphabets). Further, if we assume that the fitness landscape of binding affinities is quadratic
of the form F(h) = —%Kth, whose maximum is for the best binders (2 = 0), then from Eq. (9) the free
fitness of binding energies/Hamming distance /4 is then itself quadratic with new curvature k = kr + ﬁ

k

and with shifted maximum A* = —
ok

1 *\2
®(h) = EK(h —h®)~. (12)
This new maximum is shifted to poorer binding affinities and represents the balance between selection
and sequence entropy:

d@_dF+ 1 ds
dh = dh  2N,dh

It is instructive that the drift-load for this simple GP map varies as D ~ N, ! a far stronger dependence
on population size than if we considered evolution on only a phenotypic landscape F(r), which would
vary as D ~ N, 1/ 2; this significant difference arises as the sequence entropic pressure causes the peak
of the phenotypic distribution to shift, whilst ignoring this would simply give rise to a broadening of the
distribution.
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Fig. 4. Divergence for a simple GP map of transcription factor DNA binding. After a geographic split a once unique species evolves into two
independent ones. Within simulations, the fitness of various hybrid combinations of loci from each lineage can be calculated and the number of
inviable combinations (incompatibilities) recorded. Numerical results show that incompatibilities arise more quickly in smaller populations [190].
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might expect, as the population size is increased, selection dominates genetic drift, and simulations [209,211] show
that the average stability

(AG) ~ —kgT In(N,) (13)

in the weak mutation limit (uN, < 1). This result can be obtained from simple scaling arguments [211], and it
has been theoretically shown that, under global selection against misfolding, a broader scaling relationship between
protein folding stability, protein cellular abundance, and effective population size holds [212]. Also, Eq. (13) can be
shown to arise from similar reasoning to that in Box 5.5.1, as a result of a balance between selection and sequence
entropy enhanced genetic drift at a given population size N, [213].

5.5.4. Free fitness, universality and developmental system drift

The question naturally arises: how universal or general is this effect in the genetic divergence of populations
under stabilising selection? In developmental biology it is commonly found that closely related species that have
similar organismal level phenotypes, such as body plans, nonetheless have diverged in the regulatory networks that
control this patterning [214-216]. This cryptic variation is known as “developmental system drift” [217,218] and is
a potential source of hybrid incompatibilities and ultimately reproductive isolation as previously explored by using
simple gene regulatory networks [219,220]. However, in analogy to transcription factor DNA binding, if the GP map
of developmental patterning has large degeneracy or phenotypic biases, we may also expect to find a rapid increase in
the rate that hybrid incompatibilities arise as the population size decreases.

To explore this, a previously studied multi-level GP map for developmental spatial patterning [84] was used, in
which gene regulation is manifested by multiple transcription factor DNA binding interactions, each described by a
Hamming distance model as described above. Importantly, the GP map has the property that stabilising selection acts
to maintain a body patterning phenotype, but the underlying genotypic degrees of freedom and molecular (binding
energy) phenotypes can drift. In addition, the GP map has the essential property that allows an equilibrium analysis
[84] that it is ergodic for small population sizes, which is in itself surprising given its state space is many orders
of magnitude greater than can be explored in any realistic or relevant evolutionary timescale [221]. This ergodic
property is closely related to the idea of space-shape covering, where the property of high dimensional maps means
many phenotypes are potentially accessible from each other by only a few mutations. The main result is that in this
more complex GP map, reproductive isolation also arises more quickly for small populations [85], which is related
to the strong phenotypic bias. In addition, analogous to transcription factor DNA binding, it is also found that the
molecular binding energy phenotypes—that underlie the organismal level patterning phenotype—which are under
weakest selection, are most likely to give rise to the earliest hybrid incompatibilities.

Altogether, these results point to a universal picture to understand divergence between populations and the role of
population size for strongly conserved traits; high-fitness phenotypes tend to be also highly specified, which means
in converse low fitness phenotypes will have a large relative degeneracy or phenotypic bias. This means that the
balance between fitness and sequence entropy, embodied by the maximum of free fitness, will be a strong feature of
the equilibrium probability distribution of strongly conserved phenotypes, which are under stabilising selection. For
simple biophysical traits like transcription factor DNA binding or protein stability, it is clear this is true since there
will always only be a few sequences that give maximum affinity or stability, however, this has been found to be true
even in a more complex GP map for developmental system drift. It is likely that in some way the sequence entropy
constraints of transcription factor DNA binding propagate up in determining the sequence entropy of the organismal
level patterning phenotype. The open questions are: how universal is this phenomenon?, will far more complex GP
maps also show this behaviour?, will such maps maintain their property of ergodicity?, and is there a broad theoretical
framework that can address this question without the more complex and computationally intensive simulations needed
to address the former? Beyond an equilibrium analysis, there is the open question of dynamics and adaptation in GP
maps [94,132,185,222], as well as extending this formalism to the strong mutation regime, yet still at finite population
size (as compared to the infinite population size, quasispecies regime [182,183,222,223]).

6. GP maps as evolving objects

Important new insights on quantitative features of adaptation have been obtained by studying evolutionary pro-
cesses with realistic, highly nonlinear GP maps, as presented in previous sections. However, the concept of a
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Fig. 5. The region of the genotype space selected by a population within an RNA world model is highly special as compared to controls. (a)
Secondary structure of a replicase (4 strand) and its — strand which is optimized for maximum replication rate. (b) Functional classes in the
I-mutation-away mutational neighbourhood. Black: replicases; yellow: parasites; green: helpers; red: stallers; gray: junk; blue: unclassified. From
left to right, pie charts correspond to a purely evolved replicase, a replicase optimized for maximum replication rate, and an average random
replicase, respectively. Strong reduction of replicases and parasites and strong over-representation of helpers convey robustness to high mutation
rates. (c) 1- to 10-mutations-away neighbourhoods (x-axis of each functional type) of the evolved GP map: at larger mutational (and therewith
spatial) distances, frequencies of helper mutants decline drastically, whereas the frequency of stallers increases, thereby preferentially helping the
ancestor and stalling others, including parasites.

predefined GP map on which evolutionary processes occur is not realistic. Not only should we expect the phenotype-
to-fitness relation to vary due to environmental fluctuations—changing the fitness landscape into a seascape [224]—,
but it is the GP map itself that is subject to evolution. Indeed, one might argue that in the long term what occurs is the
evolution of the GP map, rather than a simple adaptation on a sort of preexisting genotype space.

By evolution of the GP map we mean two things: first, that the assignment of phenotypes to genotypes is a dynamic
process that depends on context. As a consequence, the same genotype can present very different phenotypes during
the course of evolution. And, second, that the dimensionality of the map changes during the course of evolution [83].
Indeed, duplications, deletions or large-scale chromosomal rearrangements, among others, are very frequent and often
related to the acquisition of new or different phenotypic features [225].

In the following we will explore two computational models where the GP map itself is allowed to evolve, each
demonstrating one of the features of GP map evolution mentioned above. We focus our discussion on the evolution
of mutational neighbourhood, that determines which phenotypes are accessible from an evolved (evolving) genotype.
As we will see, evolved populations in these two models fine-tune their mutational neighbourhoods so that adaptive
phenotypes arise more frequently as a result of mutation. It appears that the explicit consideration of the mutational
neighbourhood determined by the evolution of the GP map is essential for understanding not only long and short term
evolution, but also the functioning of present day organisms.

6.1. Evolution of a multifunctional quasispecies in an RNA world model

The RNA World model [226] envisages a plausible scenario for the origin and early evolution of life. Understanding
how the RNA World could have arisen involves explaining how diverse molecular function might emerge in the
absence of faithful replication. Interestingly, it has been suggested that phenotypic bias could have played a main
role in solving this problem [227]. Evolution and selection become possible only once the replication machinery is in
place. In perspective, two alternative approaches have been extensively used for studying evolution of the RNA world:
those that study the evolution on the RNA-sequence-to-secondary-structure GP map and those studying the impact
of spatial pattern formation on what is selected. While the former class of models study the RNA world using the
GP map with predefined fitness criteria, the latter explores the eco-evolutionary dynamics of replicator interactions
without a predefined fitness. These two approaches have been combined [228,229] in a case study of the evolution of
the qualitative, emergent functional properties of mutational neighbourhoods.

In this model, RNA sequences are embedded in a 2D grid and interact with their closest neighbours by comple-
mentary base pairing, forming complexes. If one of the molecules X folds into a structure with predefined motifs and
binds to a molecule Y, replication can occur and the complementary strand of the molecule Y is formed. No fitness is
explicitly defined, and therefore it arises as an emergent property of the population. Because of the spatial embedding,
the interactions that occur are shaped by emergent spatial structures. Such emergent spatial structures constitute a new
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level of selection and deeply affect the evolutionary outcome of replicators (as it has been shown in previous examples
related to the RNA world [230,231]).

At all mutation rates studied, replicases rapidly evolve symmetry breaking between the complementary RNA
strands, with one strand having replicase functionality and the complementary strand evolving an optimal template
function—i.e. optimally binding the replicase. This symmetry breaking is also seen in non-GP-map-based toy mod-
els [232,233]. The stationary phenotypic composition of the population, however, strongly depends on mutation rate.
At high mutation rates, only one, highly polymorphic quasispecies of replicases exists, whereas at lower mutations
rates multiple quasispecies coexist. At intermediate mutation rates, there is coexistence between replicases and par-
asites, RNA molecules that act as templates for the replicases but which have no catalytic function themselves. At
lower mutation rates, two different replicase-parasite communities coexist. Finally, at the lowest mutation rates these
communities compete with each other sometimes going to extinction.

Let us focus now on the mutational neighbourhood of the replicases that evolve at the highest sustainable mu-
tation rates. The functional composition (see Box 6.1) of the mutational neighbourhood of such evolved replicases
is compared to two controls, i.e. a replicase that has been optimised for its replication rate, and randomly sampled
replicases (Fig. 5b). In the mutational neighbourhood of the evolved replicases, replicases are scarce, parasites are
missing, helpers are over-represented, and non-viable stallers are above average. In contrast, the controls have many
replicases and parasites, and much fewer helpers (Fig. 5b).

The advantages of the multifunctional organisation of the mutational neighbourhood can be understood as follows.
Non-viable mutants tend to be spatially close to their ancestor. Thus the helpers, in the close mutational neighbour-
hood, tend to help their ancestor and siblings rather than others. The non-viable helpers are essential for survival: if
they are eliminated, the whole system goes extinct. This advantage of helpers is true only because there are no par-
asites in the mutational—and therefore spatial—neighbourhood. In contrast, stallers are detrimental for the system,
but less so for their ancestor, for whose survival they are essential. This is because there are fewer stallers in the close
neighbourhood than farther away (Fig. 5b and c¢) and they therefore hinder others more than the ancestor. In particular,
they stall parasites if they emerge farther away. Indeed, if stallers are killed, parasites invade the system forming the
two-species system characteristic of lower mutation rates.

In this scenario, functions were not pre-conceived, but emerged. Because the implemented GP map is actually the
classical RNA GP map, and only point mutations are considered, the evolutionary dynamics could be seen as evolution
on this fixed GP map. However, the GP map described in terms of these functions, and their structural implementation,
fits better in the conceptualisation of evolution of the GP map, where some phenotypes (and thus functions, like helpers
or stallers) evolve not as separate lineages, but as mutants in the evolved mutational neighbourhood of a replicase.

6.2. Evolution of genome size and evolvability in virtual cells

Now we explore virtual cells (Fig. 6a), a second model where we allow the dimensionality of the GP map to
change while fixing a fitness function [234-236]. The system consists of a genome with genes coding for enzymes,
pumps and transcription factors, as well as transcription factor binding sites. The transcribed genes form a simple
metabolic network, which pumps in resources and transforms them into energy and building blocks. The external
resource fluctuates, and fitness is homeostasis: the energy carrier and internal resource have to be close to a preset
value. Average homeostasis over a cell’s lifetime determines its fitness at replication. Mutations include changes in
parameter values as well as gene duplications, deletions and large chromosomal rearrangements. Thus, genome size
is variable.

Fig. 6b summarises the dynamics of evolved virtual cells at different stages. Early in evolution, genome size
expands dramatically and immediately declines sharply. Although this transient is not generic, it occurs in those
evolutionary runs which later reach high fitness. Interestingly, genome expansion does not entail an immediate fitness
benefit, since there is no difference, in this time frame, between runs in which the common ancestor does and does not
expand its genome. Subsequently, gene loss dominates the evolutionary dynamics most of the time, and often conveys
increases in fitness.

The mutational neighbourhood, represented here as the fraction of mutants with decreasing fitness, has a character-
istic “U-shape” (Fig. 6¢), which becomes more pronounced during evolution. The fraction of neutral mutants remains
the same despite an overall fitness increase, whereas the fraction of lethal mutations increases and the fraction of
slightly deleterious mutations decreases.
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Box 6.1

Emergent functional classes in an RNA world model

In the RNA world model here described [228,229], molecular phenotypes were determined for pairs of
complementary sequences (+ and — strands), based on specific structure motifs. Under evolution, the
following phenotypes emerge:

Self-replicases can replicate both other molecules as well as themselves.

Parasites are RNA sequences that only work as templates and have no replicase ability.

Helpers can replicate other molecules but cannot be replicated.

Stallers can engage molecules in complexes, but can neither replicate them nor be replicated.

Junk cannot form complexes and are therefore mostly inert.
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Fig. 6. Virtual cell and evolutionary dynamics. (a) Scheme of a virtual cell. (b) Common ancestor through time. Red line is the average fitness
in three standard environments; shaded grey area depicts genome size, showing initial genome inflation followed by streamlining (gene loss). (c)
Mutational neighbourhood of the ancestor in various time periods, colour coded according to inset: during evolution the mutational neighbourhood
changes from the initial fitness distribution of the shaded grey area to a more pronounced “U-shape”, with peaks at neutral mutations (right side)
and strongly deleterious mutations (left side).

Through this process, populations become highly evolvable. After a drastic environmental change (here imple-
mented as a change in basic parameters) it sometimes takes only a few minor mutations to recover from nearly zero
fitness to a value comparable to that previous to the environmental change; in other cases, a relatively fast recovery
of fitness is mediated by genome expansion. After repeated environmental switches, evolvability through few muta-
tions becomes common. Such fast evolvability turns out to be easier to evolve than regulatory mechanisms to adapt to
changing environments [236].

These results are consistent with experimental reports. Phylogenetic reconstructions of long-term evolution show
surprisingly large genome sizes of common ancestors (LUCA and LECA) and evolutionary dynamics dominated by
gene loss [237]. The U-shape mutational neighbourhood has been observed in yeast [238] and viruses [239]. Lastly,
fast adaptation to environmental changes mediated by few mutations or by genome expansion are well documented in
many evolutionary experiments, for instance in yeast [240]. Antibiotic production in Streptomyces is done by highly
unfit mutants [241], an evolutionary signature resembling the multifunctional quasispecies described in the RNA
example. It is remarkable that all these surprising evolutionary signatures emerge in a minimal cell model, suggesting
that they are generic features of Darwinian evolution, if genome organisation and the GP map are allowed to evolve.

7. Empirical genotype-to-phenotype and genotype-to-function maps

Technological advances are facilitating the experimental characterization of GP maps at ever-increasing resolution
and scale [242,243]. The phenotypes of such maps include the activity or binding specificity of macromolecules such
as RNA and proteins [67,244-246], the exonic composition of transcripts [247], the spatiotemporal gene expression
pattern of regulatory circuits [248,249], as well as the function and flux of metabolic pathways [250]. In some cases,
it is even possible to measure organismal fitness en masse [251-254].
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When combined with a mapping from phenotype to fitness, biophysical GP maps provide a principled approach to
constructing a fitness landscape over the space of genotypes. In situations where an empirical genotype-fitness map is
available but a mechanistic understanding of its structure is lacking, one may instead try to infer the hidden phenotypic
level from the genotype-fitness data. Ideally the inferred phenotypes can be interpreted biologically, but even when this
is not the case, the introduction of an intermediate phenotypic layer helps to organise the high-dimensional genotypic
data set and to reduce its complexity.

In this section, we begin with GP maps that have been empirically characterised. Sometimes, the quantity that is
experimentally accessible is fitness, and not phenotype. We discuss how empirical data of that kind can be used to infer
the structure of fitness landscapes and some properties of the phenotypic level. Then, we delve into the characterisation
of GP and genotype-to-function maps in virus populations, discussing as well the implications of those maps in
evolutionary dynamics under constant and variable environments. Next we address the inference of intermediate
phenotypes from genotype-fitness data and, finally, we discuss approaches to the experimental characterisation of GP
maps that may be relevant to synthetic biologists.

7.1. Empirical GP maps

There are three main approaches for constructing empirical GP maps [242,243]: (i) a combinatorially complete
map is constructed using all possible combinations of a small set of mutations, such as those that occurred along
an adaptive trajectory in a laboratory evolution experiment or in natural history [255]; (ii) a deep mutational scan
assays the phenotypes of all single mutants, as well as many double- and triple-mutants of a single wild-type genotype
[256]; and (iii) an exhaustively-enumerated map is constructed from all possible genotypes—something which is only
possible for very small genotype spaces [32,33,257]. In some cases, such as with antibody repertoires [258,259] or
viral populations [260,261], a fourth method of construction is possible. Specifically, one can directly construct a
small portion of an empirical GP map by collecting a large number of genotypes with a particular phenotype from
nature (e.g., the ability of an antibody to bind an antigen). Below, we describe a recent example from each of the three
main categories, highlighting the biological insights gained from the construction and analysis of such maps.

7.1.1. A combinatorially complete map

Alternative splicing is a key step of post-transcriptional gene regulation, and exonic mutations that affect splicing
are commonly implicated in disease [262]. All possible combinations of mutations that occurred in the evolution of
exon 6 in the human FAS gene since the last common ancestor of humans and lemurs have been analysed [263]. A
total of 3,072 genotypes were assayed for the percentage of transcript isoforms that included the exon. This phenotype
of “percentage spliced-in” varied from 0% to 100% among the 3,072 genotypes, indicating that in combination, these
mutations are capable of producing the full range of exon inclusion levels. Importantly, the phenotypic change induced
by a mutation depended non-monotonically upon the phenotype of the genotype in which the mutation was introduced,
such that mutations to genotypes near the full-exclusion or full-inclusion phenotypic bounds had the smallest effects,
whereas mutations to genotypes with intermediate inclusion levels had the largest effects. The resulting biological
insight is that the evolution of an alternative exon from a constitutive exon will require several mutations, because
mutation effect sizes are smallest when the exon is near full inclusion. This observation led to the mathematical
derivation of a scaling law that applies to this and possibly other GP maps, and that may aid in the development of
drugs aimed at targeting splicing for therapeutic benefit, by helping to predict drug-sensitive splicing events.

Another example of a combinatorially complete map will be explored more fully in Section 7.2.

7.1.2. A deep mutational scan assay

Amino acid metabolism is fundamental to life, and is driven by complex metabolic and regulatory pathways. A
deep mutational scan of nineteen genes involved in four pathways that affect lysine flux in E. coli was performed [250].
The resulting GP map consisted of 16,300 genotypes, each of which was assayed for its resistance to a lysine analogue
that induces protein misfolding and reduces cell growth. The phenotype was therefore grown in the presence of the
analogue. Several resistance-conferring mutations were identified, including mutations in transporters, regulators, and
biosynthetic genes. For example, such mutations were often observed in a lysine transporter called LysP. These were
relatively evenly distributed across the gene, suggesting that loss-of-function mutations were a common evolutionary
path toward abrogated transport of the lysine analogue. More generally, this study represents a proof-of-concept that

80



S. Manrubia, J.A. Cuesta, J. Aguirre et al. Physics of Life Reviews 38 (2021) 55-106

deep mutational scanning experiments can be scaled up from individual macromolecules to regulatory and metabolic
pathways.

7.1.3. An exhaustively enumerated map

Binding of regulatory proteins to DNA and RNA molecules are central to transcriptional and post-transcriptional
gene regulation, respectively. The robustness and evolvability of these two layers of gene regulation has been studied
via a comparative analysis of two empirical GP maps [264]. At the transcriptional level, interactions between DNA
and transcription factors were considered, where a genotype was a short DNA sequence (a transcription factor binding
site) whose phenotype was its molecular capacity to bind a transcription factor. At the post-transcriptional level,
interactions between RNA and RNA binding proteins were analysed, where a genotype was a short RNA sequence
(an RNA binding protein binding site) whose phenotype was the capacity to bind an RNA-binding protein. Though
robustness at both layers of gene regulation was comparable, there were marked differences in evolvability, which were
suggestive of qualitatively different architectural features in the two GP maps. Specifically, the genotype networks of
binding sites for RNA binding proteins were separated by more mutations than the genotype networks of binding
sites for transcription factors, rendering mutations to the binding sites of RNA binding proteins less likely to bring
forth phenotypic variation than mutations to the binding sites of transcription factors. These observations are consistent
with the rapid turnover of transcription factor binding sites among closely related species, as well as with the relatively
high conservation levels of binding sites for RNA binding proteins. This comparative analysis may therefore help to
explain why transcriptional regulation is more commonly implicated in evolutionary adaptations and innovations than
post-transcriptional regulation mediated by RNA binding proteins.

7.2. Empirical fitness landscapes and adaptive dynamics of viral populations

The topography of fitness landscapes is key to understand evolutionary dynamics, and recent studies have focused
on epistasis as a measure of landscape ruggedness (see Box 7.2). Two different experimental approaches have been
taken to characterise the ruggedness of fitness landscapes through epistasis: a first, simpler approach is to analyse
the epistasis among random pairs of mutations [239,265-267], while a more exhaustive approach relies on recon-
structing a combinatorial fitness landscape that includes all possible combinations among a set of 7 mutations [242].
Usually, these m mutations have been observed during experimental evolution and adaptation of populations to novel
environments. Such empirical landscapes have been characterised for bacteria [255,268-272], protozoa [155], fungi
[273,274], and human immunodeficiency virus type-1 (HIV-1) [260,275-277].

In what follows, we review work focusing on the topography of an RNA virus fitness landscape. We begin with
an investigation of how prevalent different epistasis types are (see Box 7.2), and then continue with the influence of
landscape topography on the evolutionary potential of a virus population. Finally, we discuss the relevance of the
environment on viral evolution, through analyses of landscapes on different host species.

7.2.1. Description of epistasis among random pairs of mutations

The analysis of the effects of mutations on fitness provides information about the degree of ruggedness of the land-
scape at a coarse-grained level. In a study with Tobacco etch potyvirus (TEV) [283], 20 single nucleotide substitution
mutations randomly scattered along the RNA genome of the virus were analysed. These mutations were deleterious
when evaluated in Nicotiana tabacum, its natural host, through competition experiments against a reference TEV
strain [284]. Those single mutations were randomly combined to yield 53 double mutants, whose fitness was mea-
sured also in N. tabacum. Twenty combinations rendered €y values significantly deviating from the null expectation,
11 of which were positive and 9 negative (see Box 7.2). Interestingly, these nine cases were all examples of synthetic
lethality, that is, single mutations were deleterious but viable, but in combination became lethal. This represents an
extreme case of negative epistasis. Previous studies with other RNA viruses obtained comparable epistatic interactions
in type and sign [239,266,285].

How can we explain positive epistasis in the small and compact genomes of RNA viruses? Given the lack of genetic
and functional redundancy and, in many cases, overlapping genes and multifunctional proteins, a small number of
mutations can produce a strong deleterious effect. But, as mutations accumulate, they affect the same function with
increasing probability and thus, their marginal contribution to fitness diminishes. Hence, the observed fitness is above
the expected multiplicative value. In other words, epistasis is positive.
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Box 7.2
Epistasis and fitness landscapes

No epistasis, £,=0 - Magnitude epistasis
e /'

Sign epistasis Reciprocal sign epistasis

Epistasis means that the phenotypic effects of a mutation depend on the genetic background (genetic

sequence) in which it occurs [269]. Whereas the concept applies principally to any phenotypic trait, in
the evolutionary context epistasis for fitness is of primary importance, and we will focus on this case
in what follows. The degree of epistasis, €y, between a pair of mutations x and y can be estimated as
€xy = WooWyy, — WyoWo,y, where Wy is the fitness of the non-mutated genotype, Wy, the experimentally
determined fitness of the double mutant and Wy and Wy, are the measured fitness of each single mutant.
Under a multiplicative fitness effect model, W,oWo,/Woo represents the expected fitness value of the
double mutant and, therefore, €y, represents the deviation from this null hypothesis. The sign of ey,
corresponds to the sign of epistasis.
Magnitude epistasis causes deviations from the multiplicative model, but the landscape remains mono-
tonic; sign epistasis means that the fitness sign of at least one of the mutations in the pair changes in
presence of the other mutation; reciprocal sign epistasis occurs when both mutations change the sign of
their fitness effect when combined, so both potential adaptive pathways connecting the nonmutated ances-
tor with the double mutant necessarily must cross a valley. Epistasis thus determines the ruggedness of a
fitness landscape [278-280] and therefore the accessibility of adaptive pathways [281]. If there is either
magnitude epistasis or no epistasis at all, fitness landscapes are smooth and single-peaked, and evolving
populations can reach the global maximum. In the case of sign epistasis, only a fraction of the total paths to
the optimum are accessible. Reciprocal sign epistasis is a necessary but not sufficient condition for rugged
landscapes with multiple local optima [280], a situation where an evolving population might get stuck
into suboptimal peaks. Most studies on epistasis have focused on pairwise epistasis, ignoring interactions
among more than two mutations. However, higher-order epistasis appears in almost every published com-
binatorial fitness landscape [282], so the topographical features of fitness landscapes seem to depend on
all orders of epistasis.
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Fig. 7. Snapshot of an empirical fitness landscape constructed with combinations of mutations observed during experimental adaptation of tobacco
etch potyvirus (TEV) to its new experimental host Arabidopsis thaliana. Each string of dots represents a genotype. Black dots represent a mutation
in the corresponding locus, while grey dots correspond to the wild-type allele at that locus. Green lines stand for mutations with beneficial effect,
red lines for deleterious mutations and orange lines for neutral mutations in the corresponding genetic background. Lines link genotypes which are
one mutation away. The global optimum for this landscape corresponds to the 01001000 genotype. Data has been processed with MAGELLAN,
which qualitatively orders genotypes along the x-axis according to the number of mutations [286].

7.2.2. Description of a combinatorial landscape and higher-order epistasis

TEV was evolved in a novel host, Arabidopsis thaliana, until it achieved high fitness [287]. The consensus genome
of this adapted strain had only six mutations, three of which were nonsynonymous. The fitness effect of five of
these mutations (the sixth one had to be discarded) was individually evaluated: two were significantly beneficial (one
synonymous and one nonsynonymous), one was neutral (nonsynonymous), one deleterious (synonymous), and one
lethal (nonsynonymous) [287]. All 23 = 32 possible genotypes that result from combining the observed five mutations
were created in order to generate a complete five-sites landscape (Fig. 7), with abundant epistasis. Thus, the obtained
landscape was rugged and without neutrality.

The pervasiveness of higher-order epistatic interactions in all empirically characterised combinatorial landscapes
[282] prompted its study in the small TEV combinatorial landscape [288]. Using the Walsh-transform method [282,
289], higher-order epistatic interactions were found to be as important as pairwise interactions to fully understand the
topological properties of adaptive landscapes.

Interestingly, and despite previous reports claiming that pervasive epistasis results in predictable evolutionary
dynamics [242], repeated evolutionary experiments starting from different genotypes of the TEV virus resulted in
different evolutionary endpoints, and populations were able to escape local optima, moving efficiently in this highly
rugged landscape, with new mutations appearing in the course of evolution [290]. This result suggests that evolution-
ary predictions based on extrapolations from non-exhaustive fitness landscapes have to be taken with care, as evolving
populations are often able to find new, previously undescribed mutations that introduce new evolutionary dimensions.

7.2.3. Effect of host species on the topography

Another quite common observation in evolutionary experiments with RNA viruses, as well as in natural popula-
tions, is the existence of pleiotropic fitness costs across different hosts [29 1 ]—beneficial mutational effects in one host
may become deleterious in an alternative host. These negative fitness effects limit the host range of viruses to closely
related species that share most of the molecular targets needed for the virus to complete its infectious cycle.

The concept of pleiotropy can be explored in terms of changes in the topography of fitness landscapes across hosts.
The fitness of TEV single and double mutants was measured in four different susceptible hosts that differed in their
degree of genetic relatedness [267]: the natural host N. tabacum, Datura stramonium (in the same botanical family,
Solanaceae), Helianthus annuus (an Asteraceae phylogenetically related to the Solanaceae—both are Asterids), and in
Spinacea oleraceae (an Amaranthaceae). Both the sign and the magnitude of epistasis changed across hosts: epistasis
was positive (exy > 0) only in the natural host, and it diminished as the host species relatedness to N. tabacum
decreased.

The topography of the combinatorial fitness landscape was more rugged in N. tabacum when evaluated with the
TEV strain adapted to A. thaliana [292]. Though the global optimum was the same in both landscapes, it was less
accessible in N. tabacum given the greater magnitude of reciprocal sign epistasis in its vicinity.

Altogether, these results suggest that the topography of the adaptive fitness landscape for an RNA virus is strongly
dependent on the environment (host species), though some general properties, such as the existence of lethal geno-
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types, minimal or null neutrality and high ruggedness, remain. In this light, novel frameworks that explicitly account
for environmental changes on the properties of landscapes, such as seascapes or adaptive multiscapes [293], should
yield a better picture to think about these experiments and even provide some predictive power.

7.3. Inferring phenotypes from genotype-fitness maps

Massively parallel empirical studies that examine a large ensemble of genotypes often yield information on their
biological activity, or their overall fitness, while the identification of the phenotypes involved becomes difficult. In such
cases it is possible to infer a phenotypic level, ideally endowed with a biological meaning, from data analogous to that
of the previous sections. The key assumption underlying these formal approaches is that the mutational effects on the
unobserved phenotypic traits are additive, such that any epistatic interaction for fitness arises from the nonlinearity of
the phenotype-fitness map [294]. In the simplest case of a one-dimensional trait that maps monotonically to fitness,
the trait variable has been referred to as the fitness potential [295,296] and the nonlinearity of the phenotype-fitness
map as global epistasis [297]. Because a monotonic phenotype-fitness map preserves the rank ordering of genotypes
with respect to fitness, it can account for magnitude epistasis, but not for sign epistasis [279].

Sign epistasis can however arise from non-monotonic one-dimensional phenotype-fitness maps. Consider a fitness
function f(x) where the wild type trait value is located at x = 0 and grows toward a single phenotypic optimum
at xopt > 0. A mutation that increases the trait value by an amount Ax < xop is then beneficial on the wild type
background but deleterious on a background with trait value x > xop¢ that overshoots the optimum. In an experimental
study of the ssDNA bacteriophage ID11, it was found that this scenario explains the pairwise epistatic interactions
between 9 individually beneficial mutations rather well [298]. In this case, the phenotype-fitness map was taken to
be a gamma function with 4 parameters, and the unknown phenotype was parametrised by the 9 single mutational
effects. The joint inference of the phenotypic effects and the phenotype-fitness map thus required 13 parameters to be
estimated from the fitness values of 9 single and 18 double mutants.

The range of epistatic interaction patterns that can be generated from a one-dimensional phenotypic trait subject
to a single-peaked phenotype-fitness map is obviously limited. In particular, any evolutionary trajectory composed
of mutations that are individually beneficial on the wild-type background can display at most one fitness maximum.
This criterion was used in a recent study of the combined resistance effects of synonymous mutations in the antibi-
otic resistance enzyme TEM-1 S-lactamase challenged by cefotaxime to conclude that the phenotype underlying these
effects is most likely multidimensional [299]. Multidimensional phenotypes allow for more versatile interaction struc-
tures but also require more parameters to be inferred from data. In a study of non-synonymous resistance mutations
in TEM-1, a two-dimensional phenotype combined with a sigmoidal phenotype-fitness map was found to provide a
good description of the measured resistance values [300]. In this case one of the phenotypes was taken to be protein
stability, which was determined computationally, whereas the second phenotype was inferred along the lines of the
experiment with the ID11 bacteriophage above [298]. A similar approach has been applied to the fitness landscape of
a norovirus escaping a neutralising antibody, where the folding stability and binding affinity of the capsid protein were
mapped to the probability of infection [254]. Importantly, in two-dimensional phenotype-fitness maps sign epistasis
can emerge even in the absence of a phenotypic optimum [300,301].

The models described so far can be viewed as variants of the geometric model devised by Ronald Fisher to argue
that the adaptation of complex phenotypes must proceed in small steps [302-304]. Originally, Fisher’s geometric
model (FGM) did not include the assumption of additive phenotypes, which was introduced later in a study of pairwise
epistasis between mutations in Escherichia coli and vesicular stomatitis virus [305]. In its modern formulation, the

model is based on a set of d real-valued traits forming a vector ¥ = (x1, X2, - - - , Xg) in the d-dimensional Euclidean
space R? and a nonlinear phenotype-fitness function f(¥) with a single optimum that is conventionally located at the
origin X = 0 (Fig. 8). The genotype is described by a sequence T = (11, T2, -+ , 1) of L symbols 7; drawn from the
allele set {0, 1, --- ,k — 1}, where t; = 0 denotes the wild type allele and in most cases a binary alphabet with k =2
has been considered. The additive GP map takes the form [306]
k=1 L
r)=%+ Y Y bnadias (14)
a=1i=1

where X is the wild type phenotype and the vector v; , € R? describes the phenotypic effect of the mutation 0 — a
at the i’th genetic locus. The genotype-fitness map is then obtained as F(t) = f[x(t)]. In applications of FGM to
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Fig. 8. Illustration of Fisher’s geometric model for a two-dimensional phenotype and a single-peaked phenotype-fitness map. Three phenotypic
mutations originating from the wild type (marked in red) combine additively, giving rise to a distorted three-dimensional cube in the phenotype
plane. As a consequence of the nonlinear mapping to fitness, two of the double mutants (marked in green) become local fitness maxima in the
induced genotypic landscape. Courtesy of Sungmin Hwang.

experimental data, the mutational effects v; , are usually treated as random vectors drawn from a multivariate Gaussian
distribution. Rather than inferring specific phenotypes, such analyses yield gross statistical features of the phenotypic
landscape, such as the number of phenotypic traits d, the distance of the wild type phenotype from the optimum |xp|,
and the variance of phenotypic mutational effects [305,307-309].

Current high-throughput sequencing methods are capable of measuring fitness and other functional phenotypes
for hundreds of thousands of genotype sequences in a single experiment, and methods based on the inference of
unobserved additive traits provide an important tool for organising and interpreting the resulting data sets. A recent
large-scale analysis of the fitness landscape of a segment of the His3 gene in yeast built out of amino acid substitutions
from extant species made use of a deep learning approach to infer the additive phenotype and its nonlinear mapping to
fitness [310]. Remarkably, large parts of the data were well described by a one-dimensional fitness potential combined
with a sigmoidal phenotype-fitness map, suggesting that much of the observed complexity of epistatic interactions
could potentially be explained in terms of thermodynamic considerations [297]. Combining such data-driven inference
methods with biophysical modelling and functional information appears to be a promising route towards a deeper
understanding of the relation between genotype, phenotype and fitness on the molecular level [311].

7.4. Synthetic biology approaches to characterising GP maps

A major goal in the field of synthetic biology is the re-purposing of biological components and systems to create
living cells with new, designed functionalities. So what is the link between synthetic biology and GP maps? Faced
with the challenge of understanding the function of biological parts and using this insight to rationally engineer cells,
synthetic biologists frequently assemble large numbers of genetic designs (genotypes) and measure key aspects of the
resultant cellular phenotypes. In doing so, novel methods for characterising GP maps have been developed (Fig. 9).
Key to many of these are two capabilities. First, it is necessary to be able to construct large numbers of diverse geno-
types (referred to as libraries) in a structured way. For example, assembling many genetic circuits simultaneously, each
one containing a different combination of functional DNA parts (e.g. protein coding genes or regulatory elements like
promoters, ribosome binding sites and terminators) [312-314]. Second, it should be possible to test these designs en
masse. To support both requirements, high-throughput, pooled DNA assembly and sequencing methods have been de-
veloped to measure the phenotype of every genetic circuit design (genotype) across huge libraries, effectively creating
a detailed GP map.

Genotype libraries can be constructed in many ways, each with their own advantages and pitfalls. Perhaps the
simplest and most transferable protocol involves pooled synthesis of a large library of pre-defined DNA parts, insertion
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Fig. 9. Synthetic biology methodologies can support the construction of detailed GP maps. Diverse sets of genotypes in cells can be generated using
combinatorial DNA assembly [315-317], chip-based DNA synthesis [318], or systems to induce structural DNA rearrangements, e.g. Synthetic
Chromosome Recombination and Modification by LoxP-mediated Evolution (SCRaMbLE) [319]. Pooled libraries of cells can then be sorted into
physically separated groups based on a parameter of interest, e.g. fluorescence of cells using fluorescence-activated cell sorting (FACS). Barcoded
sequencing libraries can be generated from cells in each group and deep-sequencing of DNA/RNA performed to measure a wide range of phenotypic
properties [313,320-325]. The inclusion of external standards during the sequencing allows for the conversion of relative phenotypic measures into
absolutes units that are comparable across contexts [326]. Genetic diagrams drawn using Synthetic Biology Open Language Visual notation [327].
Image courtesy of Thomas E. Gorochowski.

of each part into a circular plasmid backbone that enables self-replication in cells, and transformation of the resulting
plasmid library in the host cell of interest. This method can be used in combination with oligo(nucleotide) library
synthesis (OLS) [318] for generation of the DNA part library. Whilst limitations include genotype length (up to 200
nucleotides) and accuracy (error rate of 1 in 200 nucleotides), accessible genotype libraries allow access to regions
of genotype space distant from one another, with the latest OLS derived study characterising 244,000 sequences
simultaneously [320]. Other approaches for constructing libraries of genotypes include multiplexed DNA assembly
[315,317,328], and site-specific incorporation of random genetic diversity [329-332]. The latter approach was recently
used to characterise millions of promoter variants [333].

Multiplexed measurement of many different phenotypes of the constructed genotype library is possible [320,326],
though it must be ensured that each genotype contains a unique nucleotide-encoded barcode, to enable sequencing
reads to be matched to the correct genotype [334]. Sequenceable phenotypes such as DNA or RNA abundance [320,
323,324,330] can be studied directly, in absolute units [321,322]. Non-sequenceable phenotypes can be measured too,
by sorting phenotypes into groups and then appending a unique barcode sequence to genotypes in each group (Fig. 9).
In this way, genotypes are mapped to phenotype categories. A detailed framework for design of pooled sequencing
experiments (Multiplexed Assays for Variant Effects, MAVEs or Massively Parallel Reporter Assays, MPRAS) is
available [313].

Much of the focus to date has been on using these methods to characterise genetic part function, measuring the
behaviour of parts taken from distantly related species or designed in silico. However characterisation of mutationally-
connected genotype networks elucidates structural properties of GP maps for phenotypes which have not previously
been characterised empirically at such scale. The resulting data can enable the construction of new in silico models
for predicting phenotypes from genotypes [264,335] (section 7.1.3), a goal common to both synthetic biology and
GP map researchers. Indeed, the synergy goes both ways: GP map studies highlight important principles which are
only beginning to be considered by synthetic biologists during genetic circuit design. A clear example is genotypic
robustness to mutations [264], which may prove important for genetic circuit longevity [336,337]. New science and
technology brings new questions: ecological implications of microorganisms containing mutationally robust synthetic
sequences have yet to be considered.
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Fig. 10. Cancer progression models. (a) Main steps in the analysis of patient data. On the right, the DAG of restrictions shows genes in the nodes;
an arrow from gene i to gene j indicates that a mutation in gene i must occur before a mutation in gene j can occur and, thus, indicates a direct
dependency of a mutation in gene j on a mutation in gene i. The absence of an arrow between two genes means that there are no direct dependencies
between the two genes. According to this DAG a mutation in the fourth gene can only be observed if both the second and third genes are mutated,
but mutations in the first, second, and third gene do not have any dependencies among themselves. (b) Genotypes that fulfil the restrictions encoded
in the DAG of restrictions: these are the accessible genotypes under the DAG. Genotypes are shown as sequences of 0 s and 1 s, where “1100”
means a genotype with the first and second genes mutated. (c) Fitness graph or graph of mutational paths between accessible genotypes; nodes
are genotypes (not genes) and arrows point toward mutational neighbours of higher fitness (thus, two genotypes connected by an arrow differ in
one mutation that increases fitness [242,342]). Under CPMs, each new driver mutation with its dependencies satisfied increases fitness; therefore,
all accessible genotypes that differ by exactly one mutation are connected in the fitness graph and the genotype with all driver genes mutated is
the single fitness maximum. The fitness graph shows all the paths of tumor progression that start from the “0000” genotype and end in the fitness
maximum. Figures modified from [343,344].

Expansion of this approach to study GP maps for different genotypes and phenotypes lies ahead. Innovations in
nucleic acid sequencing are beginning to open up high-throughput characterisation of new types of phenotype in
detail without sorting, such as epigenetic signatures or protein concentrations [325,338,339]. The advent of long read
sequencing [340] beckons high-throughput characterisation of GP maps for whole-cell genotypes. This is becoming
possible with methods for high-throughput genome modification [341], such as SCRaMbLE which uses recombination
for in vivo combinatorial genomic rearrangement [319].

Pooled DNA assembly and sequencing is by no means the final solution for synthetic biologists or GP map re-
searchers: crucially, it is limited by the number and length of assembleable genotypes and to phenotypes that can be
inferred from sequencing data or for which high-throughput sorting methods (e.g. FACS) exist. Nonetheless, this ap-
proach offers a significant increase in the size of GP maps that can be studied empirically and highlights the potential
for mutually beneficial collaboration across these two emerging areas of biological research.

8. Consequences of GP maps for models of tumour evolution and cancer progression

Epistatic interactions between genetic alterations can constrain the order of accumulation of mutations during
cancer progression (e.g. in colorectal cancer, mutations in the APC gene are an early event that generally precedes
mutations in the KRAS gene [345]). Cancer progression models (CPMs) have been developed to try to identify these
restrictions during tumour progression using cross-sectional mutation data [346,347]. CPMs take as input a cross-
sectional sample from a population of cancer patients: each individual or patient provides a single observation, the
cancer genotype in that patient. Thus, the input for CPMs is a matrix of individuals or patients by alteration events,
where each entry in the matrix is binary coded as mutated/not-mutated or altered/not-altered (Fig. 10). The output
from CPMs are directed acyclic graphs (DAGs) that encode the restrictions inferred (which are in fact sign epistasis
relationships [43,342]). In these DAGs, an edge between nodes i and j is to be interpreted as a direct dependence of an
alteration of event j on an alteration of event i; j should never be observed altered unless i is also altered. CPMs regard
different patients as replicate evolutionary experiments, assume that the cancer cells in all patients are under the same
genetic constraints [345-347], and ignore back mutations in the alteration of driver events. Thus, CPMs implicitly
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encodes all the possible mutational paths or trajectories of tumour progression (Fig. 10) [343], and some methods
(e.g., CBN) provide estimates of the probabilities of the different paths of tumour progression [343,348]. As in other
domains, such as predicting antibiotic resistance, even small increases in our capacity to predict disease progression
would be valuable for diagnostic, prognostic, and treatment purposes [349]; this renders CPMs a potentially useful
tool in precision medicine. (Note that the focus here is on predicting mutational paths, but see also Section 5.3.1 for
transition forecasts, a different objective and approach when predicting evolution using GP maps.)

Several CPM methods have been developed, including oncogenetic trees (OT) [350,351], conjunctive Bayesian
networks (CBN) [345,352,353], and CAncer PRogression Inference (CAPRI) [354,355]. The different methods differ
in their model fitting procedures and in the types of restrictions they can represent. For example, OT can only return
trees, where a mutation in a given gene has a direct dependence on only one other gene mutation; this is in contrast
to CAPRI and CBN, where a mutation in a gene can depend on mutations in two or more different genes, and thus
CAPRI and CBN return as output DAGs where some nodes can have multiple parents, as shown in Fig. 10. All CPMs
focus on “driver alterations”, i.e. those believed to actually drive, through selection, cancer progression (in contrast to
so-called passenger mutations or hitchhikers). The types of alterations studied in CPMs range from changes in genes
and pathways to gains and losses of chromosomal regions [345,351,355].

CPMs model sign epistasis, but they cannot model reciprocal sign epistasis (see section 6) [43], and thus CPMs
effectively consider fitness landscapes with a single global peak. As a consequence, predictions of tumour progres-
sion, compared to the true paths of tumour progression, are very poor under multi-peaked fitness landscapes [343].
Remarkably, even in the latter scenario, CPMs could be used to estimate an upper bound to the true evolutionary
unpredictability [343]; the analysis of twenty-two cancer data sets shows many of them to have low unpredictability.

CPMs do not force us to try to infer restrictions in the order of accumulation of alterations at any particular level
or layer, in so far as the alterations examined can be regarded as heritable alterations with no back mutations. Thus,
we could use the layers or levels of analysis (see also section 3.2) that are more relevant (e.g., metabolic pathways)
or more likely to satisfy assumptions. Germane to this task are phenotypic bias (see section 3.3.1) and the effect on
evolvability of many-to-many GP maps, relevant in the context of cancer [6,356]. These results suggest examining
which is the most appropriate layer of analysis when using CPMs, which might not be gene alterations, but a layer
closer to a “heritable phenotype”. On the one hand, layers other than genes could allow us to maximise predictive
ability (related to ideas on how to choose the relevant phenotypic dimensions [357]). On the other hand, at other
layers of analysis CPMs’ assumptions might be more likely to be satisfied—in particular, the lack of reciprocal sign
epistasis and local fitness maxima, as well as the absence of disjunctive (OR) relationships in dependencies between
alterations (when a mutation in a gene can happen if a mutation in at least one of its parents has occurred; in Fig. 10,
under an OR model, a mutation in gene 4 would need one of genes 2 or 3 to be mutated, but not both) [43,343].

CPMs assume Markovian evolution. However, non-Markovian dynamics on neutral networks [132] (see also sec-
tion 5) raises issues about choosing the layer of analysis for CPMs. For example, it seems unlikely that we could
detect the existence of non-Markovian evolution reliably from the cross-sectional data used by CPMs. Additionally,
non-Markovian evolution might be strong enough to cancel out possible benefits of working at other layers, and it
could even be having an effect at the usual gene level of analysis where we label genes as altered/not-altered (mu-
tated/not-mutated), because there is a many-to-one mapping between mutations in individual DNA bases and “altered”
gene status.

The effects that environmental changes might have on evolutionary dynamics, given the dependence of epistatic
relationships and fitness landscapes on the environment [6,169,243,267,292] (see also sections 6 and 7.2), could
be particularly relevant for the use of CPMs if, as posited by the “adaptive oncogenesis” hypothesis [358], a key
contribution to the relationship between age and cancer is the change in tissue fitness landscape with age (briefly,
under the fitness landscapes of youth most mutants would have low fitness, unlike in the landscapes at older age). At
a minimum, stratification of data sets by age would be warranted.

The sheer size of genotype and phenotype spaces is a potential matter of concern for CPMs, since the latter can
only analyse a limited number of events. High-dimensional fitness landscapes might show increased mutational ac-
cessibility [359] and thus show both increased evolvability [243] and decreased evolutionary predictability. From the
point of view of predicting tumour evolution with CPMs, robustness to alterations in the features examined by the
CPM would of course be a hurdle; but then, hopefully, these features would not have been regarded as “drivers”.
However, it should be mentioned here that “passenger” mutations in cancer, traditionally considered neutral, might
actually reduce fitness of cancer cells and prevent tumour progression [360]; this raises the question of how to incor-
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porate this lack of robustness in CPMs and, more generally, the extent of robustness and fitness landscape navigability
in the cancer genome. The existence of a large pool of mildly deleterious passengers can also have consequences for
procedures, such as CPMs, that analyse only a small subspace of the GP map.

Of note, CPMs are often used in cancer progression scenarios where aneuploidies and karyotipic changes are
common [361]. This becomes an example of evolution of the GP map [234-236], a question deeply related to the
proper comparison between GP maps of variable sequence length (see section 6). Choosing the right layer of analysis
might again alleviate this problem, at least from the point of view of using CPMs to predict tumour evolution. Possible
applicability of concepts emerging from evolving GP maps to the cancer genome is intriguing, especially given the
possible costs of chromosomal instability and aneuploidy in cancer [360], with the caveat that cancer constitutes a
short-term evolution experiment that starts from cells with a long evolutionary history and that dies with its host
[362]. Finally, the extent to which neutrality and phenotypic bias (see sections 3.3.1 and 5) affect CPMs remain as
open questions, since CPMs are predicated on the idea that natural selection is what matters for the features studied.

9. Summary and short-term perspectives

Exhaustive enumerations of genotype spaces are only feasible for short sequence lengths. These enumerations may
be sufficient in specific empirical cases, as to study transcription factor binding sites (see Sections 5.5 and 7.1.3) or
to build, in the near future, the first complete RNA GP maps incorporating experimentally measured fitness (SELEX
experiments of small synthetic aptamers exploring the whole sequence space of length 24, such as those of Ref. [33],
are already available). However, the number of possible genotypes for most biologically relevant sequence lengths is
out of reach and, in the vast majority of cases, will always be: The estimated number of particles in the universe is of
order 103, a quantity comparable to the number of RNA sequences of length L = 133 (the shortest known viroid has
length L = 246) or to that of proteins with 62 amino acids (the class of “small proteins” refers to those with fewer
than 100 amino acids).

On the other hand, complete GP maps using RNA folding, the HP model, and toyLIFE [46], or using transcription
factor binding [186,190], have proven to be very valuable resources for unveiling and testing some general properties
of GP relationships, which seem to be common to several models. Further efforts toward theoretical developments that
allow extrapolations to arbitrarily large genotype sizes, as well as approaches targeting higher levels of abstraction to
study GP relationships without exploring the whole genotype space [113], appear as two main avenues to complement
computational studies. Though the specifics of folding algorithms do not seem to affect the statistical properties of GP
maps, we cannot forget that the predictive abilities of those algorithms depend on the accuracy of the energy model
and its parameters, which in the case of RNA or proteins are extrapolated from experimental measurements obtained
under very specific conditions. Therefore, any improvement on this aspect will have a huge impact, not only in the
accuracy of RNA, proteins, and possibly other GP maps, but in every related research field concerned with functional
prediction. Computational analyses might also benefit from approaches that do not demand an exhaustive enumer-
ation, but are tailored to test theoretical predictions, for example. One of them might be computations of the dual
partition function of multiple RNA structures. Also, complete inverse folding methodologies can be used to develop
computational frameworks for the study of genotype-phenotype-function relationships. Current algorithms can poten-
tially build partial GP maps focused on phenotypes of interest, in which experimental data available can be fit, thus
providing an appropriate context to make predictions and guide further experiments. New tools able to produce reli-
able estimates of structural properties, like neutral set size, robustness or evolvability, should be ideally independent
of the GP map, as well as experimentally compatible, i.e. they should allow predictions from small samples of geno-
types. In this context, a sampling method that produces a genotype sample that optimally represents the phenotype of
interest would be an important advance. There was some progress towards this goal in the form of a computational
tool [92] which produces estimates of the size and robustness of RNA secondary structure phenotypes—but is in
principle transferable to other GP maps—or through the estimation of the versatility of genotypes (see Section 4.2),
but ample space for improvement remains. Also, and while these tools can predict neutral set size and robustness, no
approaches exist yet for estimating phenotype evolvability or phenotype-phenotype correlations, which would yield
the framework required to understand the evolution of evolvability or the deeply related concept of selection of the
mutational neighbourhood.

We are only beginning to understand how the structure of GP maps depends upon environmental conditions
[363-366]. We mostly ignore how the structure of a GP map changes with the dimensionality of genotype space,
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a topic that, beyond simple evolvable cells [236] or toyLIFE [29], could potentially be explored using artificial genetic
codes [367,368] or expanded nucleotide alphabets [369]. Finally, no matter the technological advance, the hyper-
astronomical size of genotype space precludes the experimental construction of exhaustively-enumerated GP maps
for large macromolecules, gene regulatory circuits, and metabolic pathways [11]. This inconvenient fact necessitates
the development of methods that can reliably infer the structure of a GP map from a relatively small sample of the
map [370,371]. Besides analytical approaches based on generic properties of GP maps that allow inferences of their
large-scale structure (see section 4), advances in deep learning are already offering promising solutions to this key
problem [372].

9.1. Towards an improved understanding of GP map architecture: Is it universal?

As discussed in section 4, notable similarities exist amongst GP map properties giving rise to the notion of “uni-
versal” [4,27] properties of GP maps, such as genetic correlations and phenotypic bias. Phenotypic bias, genetic
correlations and evolvability are discussed in most studies of GP maps, but other properties, such as the assortativity
of neutral networks [48], have only been analysed for some models. These topological properties could either provide
a way of distinguishing between sequence-to-structure and artificial life GP maps or they could also be “universal”
across a variety of models. At present, the universality of the structure induced in genotype spaces by evolutionarily
sensible GP maps is a conjecture that those analyses, among others, could help to prove or disprove. Behind this
conjecture, there is the main question of which fundamental mechanisms are responsible for the potentially universal
features. As discussed in Section 4.1, spaces of high dimensionality that facilitate interconnections between genotypes
and phenotypes seem to be a must.

More specific explanations for the striking similarities detected among dissimilar GP maps have come from simple
analytic models [44,45] (see section 4.2). These models differ, but qualitatively they are all based on the fact that,
depending on the phenotype, a part of the genotype is more constrained than the rest, for example to enable base
pairing in RNA [45]. Interestingly, such a model can also be constructed to predict GP map properties in Richard
Dawkins’ biomorphs [123]. The fact that such widely different GP maps can be understood with similar models,
supports the hypothesis that sequence constraints are an important cause for the observed similarities between GP
maps. A question for future research is the extent to which these sequence constraints generalise to other biological or
artificial life GP maps. Are there any counter-examples? And do the kind of assumptions about sequence constraints
in the analytic models always hold or can we observe GP maps with similar properties which cannot be modelled
based on sequence constraints?

In the context of mathematical models of GP maps, it would also be desirable to further develop the existing models
to explain more complex and biologically relevant situations, and to find out whether generic structural properties of
genotype spaces are maintained under those circumstances. More realistic models should include mutations other
than point mutations, such as deletions, duplications or insertions (there are just a few examples where the genome
size is variable, among them that described in Section 6.2), and recombination (see Section 5.1). Extension to many-
to-many GP maps by allowing multiple and semi-optimal phenotypes for a genotype—as it is the case for RNA
sequences, for which there can exist multiple secondary structures with quite similar free energies—seems essential
to fully understand adaptability [39,40]. Models such as toyLIFE and virtual cells should be further studied if we
want to explore issues relevant to synthetic biology, among others. A very relevant question for the synthetic biology
community has been to design gene regulatory circuits that are mutationally robust [373]. Results with toyLIFE show
that genotypic robustness is a function not only of the individual components, but also of the complete network, which
could be designed to be robust even if the individual components are not [30]. Actually, these extended models would
have to come along with redefinitions of structural properties like neutral set size, robustness and evolvability.

9.2. Evolution on and of genotype spaces

Since the eventual aim of GP map studies is to understand evolutionary processes, a key question is how each of
the universal GP map properties—should they exist—affect evolutionary outcomes. Phenotypic bias, for example,
implies that only very abundant phenotypes will be visited when adapting to a new evolutionary challenge. This im-
plies that the evolutionary search is constrained to look in the space of very abundant solutions. This constraint might
lead to a limitation in the number of possible phenotypes attainable through evolution: it has been put forward, and
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supported with simple developmental models, that the small fraction of phenotypes visible to evolution are highly
clustered in morphospace and that the most frequent phenotypes are the most similar [374]—recalling the relevance
of phenotype-phenotype correlations. Since evolutionary search is a consequence of the stochastic nature of the evo-
lutionary dynamics, and is not dependent on the particulars of the GP map, there is no reason why this phenomenon
should not be observed in real GP maps.

It has been also shown that transition times between phenotypes depend very strongly on how they are connected
in genotype space, and there is also a strong indication that the genotypic robustness in a neutral network plays a role
[375]: transition times between phenotypes depend strongly on how accessible a given phenotype is from the most
robust genotypes. Because evolution naturally tends to visit the most robust genotypes [133], their connections to other
phenotypes may be more relevant than those of less robust genotypes. The natural question to address is if there is a
mutational bias in evolution towards phenotypes that connect to robust genotypes. Though computational GP maps
have been the primary tool to explore this question in depth, some experimental work on this topic has been carried
out as well. Indeed, Pseudomonas aeruginosa preferentially chooses three particular mutational pathways to evolve
an adaptive phenotype under certain conditions [376]. When these pathways are repressed (through gene knockouts),
the bacteria are able to evolve the same phenotype, but using new mutations. Actually, those mutations were available
in the original population, but the probability of fixing them is very small compared to the three preferred pathways.
This work gives empirical support to the relevance of mutational neighbourhoods for evolution (see Section 6.1), and
highlights once more the need for further computational and experimental investigations of this topic.

Our knowledge of how the GP map properties individually affect evolutionary outcomes is still incomplete. For
example, phenotypic bias is known to affect evolutionary outcomes due to at least three mechanisms: the ‘survival of
the flattest’ [181], the ‘arrival of the frequent’ [94], and its effect on the free fitness of phenotypes in monomorphic
regime [84,158,182,190]. Despite this progress, it may still be difficult to estimate for more complex cases than the
scenario studied by Schaper and Louis, how strong the ‘arrival of the frequent’ effect will be and whether phenotypic
frequency or phenotypic fitness are likely to determine evolutionary outcomes. Ultimately, this knowledge will help
us answer the bigger questions of whether and how we can use GP maps to predict short- and long-term trends in
evolution [377-379].

The application of the tools of network science to the previous context, and to evolutionary dynamics of heteroge-
neous populations at large, opens a promising avenue that, as of today, faces however some limitations and difficulties.
First, and although the hyperastronomical sizes of genotype networks seem an insurmountable obstacle, the theory of
competing networks shows that, in genotype spaces where function is relatively sparse, only the much smaller local
subnetworks are relevant to analyse the evolution of populations—while the rest of the huge network of networks is
in practice negligible [169]. A different promising avenue is the generic construction of a phenotype network that can
be computationally—and likely analytically—tackled [91,94,132]. Second, most theoretical work has been developed
using models that only consider point mutations. The introduction of different mutational mechanisms, as discussed
in the previous sections, would drastically transform the topology and spectral properties of genotype networks. How-
ever, once the new network defined through those rules is known, the analysis proceeds following standard procedures.
When the GP map is many-to-many, either due to environmental changes or to phenotypic promiscuity, more complex
configurations such as multi-layer networks should be introduced to properly describe the evolution of the system
[5,293]. Recombination cannot be easily cast in this network framework, which is unable to describe the process in
detail [141,273,380]. Different approaches can be used in this case though (see Section 5.1), and hopefully combined
to eventually yield a unified formal description of dynamics under a variety of microscopic processes generating
diversity.

10. Outlook: On the feasibility of a complete genotype-to-organism map

Systems such as RNA folding, protein secondary structure, and transcription factor binding are attractive models
for understanding the GP map because it is possible to compute the map from physical first-principles. But these
processes are only the first steps in the long chain of interactions whose end result is organismal function, structure,
viability, and reproduction [311]. At these higher levels of integration, it is the integration itself that in large measure
determines the GP map. To address the question of whether evolution of the GP map or evolution on the GP map
is the appropriate framework, it may be helpful to use a distinction [381] of two different properties of the GP map:
generative properties—how the genotype is actually used to produce the phenotype—and variational properties—the
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way that changes in the genotype map to changes in the phenotype. More recently, this distinction has been called
“formative” and “differential” properties, respectively [382].

Unravelling the generative properties of the GP map is the main agenda of molecular and developmental biol-
ogy. The variational properties ultimately derive from the generative properties, so the question is whether anything
systematic about either can be predicted from evolutionary theory. Tremendous resources have been dedicated to
molecular and cellular biology with the promise that, by identifying all the parts and interactions involved in a bio-
logical phenomenon, it could be understood, controlled, and even synthesised. The fruition of this promise has been
realised in many cases, as attested to by the advent of successful treatments for many diseases. This was the justifica-
tion of the Human Genome Project, with the hope that once all of the human DNA sequence was known, the genetic
basis of diseases and organismal functions would be attainable. But a surprise from the Human Genome Project was
the “missing heritability” that emerged from genome-wide association studies (GWAS). Analysis of DNA sequences
could identify only a small fraction of the genes responsible for human phenotypes known from family studies to have
high heritability.

Currently there are contradictory findings about the GP map at the whole organism level. On the one hand are
studies which find that organisms exhibit a modular structure over large classes of phenotypic variables [383] to the
point where modularity is often stated as an accepted fact [384]. On the other hand are studies which find that almost
every gene affects many characters (universal pleiotropy) and almost every character is affected by many genes,
summarised as the omnigenic model of the GP map [385]. The omnigenic model proposes that while there may be
“core genes” contributing to any given phenotype, the network of gene-interactions has a “small world” topology, a
property that leads to broad pleiotropy and polygeny in the GP map.

It may prove helpful that there is another field that is also trying to understand how complex functional behaviours
emerge out of the interaction of thousands or millions of simple parts—the artificial neural network community.
Artificial neural networks (ANNs) have now been created whose behaviours rival or exceed certain human cognitive
capabilities. Because of the recent achievements of ANNS, the field is currently in an explosive state of development.
The achievement of the engineers outpaced the understanding of the theoreticians as to why deep learning networks
perform so well, and the theoreticians are working to catch up. As of now, there are several observations about ANNs
that may be instructive to those making computational models of the GP map.

The multilayered “deep neural networks” (DNNs), which have proven to be the most successful ANNs, are defined
by a collection of thousands or millions of algorithmically learned numbers. The numbers specify the weights of
connections between nodes, and each node sums its inputs from other nodes, and then outputs a function of this
sum as inputs to other nodes. What is most notable about DNN engineering is that there is very little interest in the
specific values of the numbers, and no way to understand how the specific numbers generate the network behaviour.
While there has been some success at interpreting DNNs—where one identifies what feature of an input causes a
particular neuron in the network to activate—there is currently little understanding of how the all weights connecting
the neurons produce this behaviour. The main focus has been on the processes that generate the numbers, and this is
where theoreticians are attempting to generate understanding. The most successful process for training the weights
is based on their variational properties: how changes in the weights change the error between the network’s actual
behaviour and its desired behaviour. The methods of back-propagation and stochastic gradient descent change the
weights until there is little or no error on a set of training examples applied to the network [386]. The variational
properties of greatest interest are how the network behaves on novel inputs, and how changes in the inputs map to
changes in the network behaviour.

A similar situation may hold in complex organisms. Without understanding or even knowing how the thousands
of organismal components are generating phenotypes on the whole-organism level, we may nevertheless be able to
understand its variational properties based on evolutionary processes. Here we briefly list a few principal processes
that are understood to shape the variational properties of genotypes.

10.1. The evolution of re-evolvability under varying selection

In a number of different GP map models, evolution under recurring variation in natural selection moves the genome
to places in genotype space where fewer and fewer mutations are needed to re-evolve previous adaptations when the
old environment returns. This has been observed for a model of two neutral networks [387] (also called the evolution

of “genetic potential” [388]), networks of logic gates (the variation is called “modularly varying goals” [389]), gene
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regulatory networks and the virtual cells discussed above (just called the “evolution of evolvability” [236,390,391]).
However, not all GP maps support this phenomenon [389]. Exactly what properties a GP map must possess to allow
the evolution of re-evolvability remains an open problem.

10.2. Constructional selection

Genes not only provide material for the generation of the phenotype, but provide degrees of freedom for varying
the phenotype. A gene duplication or de novo gene origin thus differs from a point mutation in that it increases the
degrees of freedom of the GP map, and thus adds new variational properties to the genome. Gene duplications and
deletions are frequent events in eukaryotic reproduction. Any variational property of a gene that is associated with
the gene being retained in the genome can thus become enriched in the GP map [381]. The likelihood of a duplicate
copy of a gene to be retained by evolution has been called its “gene duplicability” [392]. The identification of gene
properties that are associated with gene duplicability is an active area of research. Some of the properties identified
include:

e peripheral versus central position in protein-protein interaction networks [393];

high levels of gene expression [394];

high rates of sequence evolution before duplication [395];

ordered, versus intrinsically disordered proteins [396];

signalling, transport, and metabolism functions increase gene duplicability, while involvement in genome stability
and organelle function reduces it, for whole genome duplications in plants [397].

While the causes of differential gene duplicability have been subject of a great deal of investigation, its conse-
quences for organismal evolvability have received limited thought. Quantitative models for how differences in gene
duplicability can shape the variational properties of the entire genome [381] have been applied to examples of evo-
lutionary computation [398—400] under the rubric “constructional selection”. One can conceive of the genome as a
population of genes, and differences in gene duplicability as fitness differences, not on the organismal level, but on
this level of genome-as-population. Constructional selection results in the enrichment of the genome in genes that
have a higher likelihood of being retained when copies of them are created. These are gene copies that evolve to
where deletion or inactivation becomes deleterious to the organism. This occurs for genes more likely to subfunc-
tionalise, or escape adaptive conflict, or neofunctionalise. It provides a ubiquitous mechanism for the evolution of
evolvability.

10.3. Entropic evolutionary forces

The GP map is mostly cast as a many-to-one map because there may be multiple genotypes that result in the
same phenotype, due to low-level properties such as synonymous codons, but also due to multiple ways that ligand-
receptor bonds may be achieved, and multiple ways that the same gene regulatory interactions may be encoded.
This degeneracy of the GP map [401] creates the possibility of evolution along neutral networks of mutationally-
connected genotypes with the same fitness. The randomness of evolution along neutral networks brings forth sta-
tistical mechanical forces of entropy increase. This entropic behaviour has been described as “biology’s first law”
[402].

Entropic phenomena that result from evolution along neutral networks include:

Subfunctionalization. If different functions in a gene are modular enough so that they can be individually disabled
without affecting each other, then the process of gene duplication and complementary loss of functions effectively
spreads the functions among multiple genes [403—405]. Since there are many more ways to spread the functions apart
than to keep them in one gene, there is an entropic force in the direction of separating separable functions.

Constructive neutral evolution. Stoltzfus [404] introduced the general concept of entropic processes that produce
greater genetic complexity to traits simply because there happen to be more complex ways to generate a trait than
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there are simple ways. If there are neutral mutational pathways between alternate means of generating traits, then the
more numerous class will come to dominate.

Non-optimal phenotypes. As explored in Section 5.5, in the context of the weak mutation monomorphic regime,
there is an exact analogy to statistical mechanics, embodied in a quantity called free fitness [182,185], which is the
sum the fitness of phenotypes and the sequence entropy (log degeneracy) weighted by the analogue of temperature, the
inverse of the population size. This means that for small populations, evolution gives rise to non-optimal phenotypes
that balance fitness and entropy, or free fitness.

Developmental systems drift. Primary sequences may diverge between species even while the same developmental
outcomes are maintained [217]. Within the free fitness framework traits this has been explored (Section 5.5) under
stabilising selection, and for small populations it is predicted that the effect of sequence entropy is that populations
develop isolation more quickly [85].

The great variation in genome sizes over different taxa and even within closely related taxa suggests that the
quantity of DNA maintained in the genome may function as a quantitative trait subject to species-specific natural
selection. Just as in physical systems, where entropic forces can be counteracted by energy potentials, natural selection
on genomic complexity as a quantitative trait may counteract the entropic tendencies in constructive neutral evolution.
Such dynamics may be at work in the genomic streamlining discussed in Section 7. As is seen with the infinitesimal
model of quantitative genetics, even though any individual streamlining event or an individual complexification event
may have unobservable effects on fitness, the aggregate forces of entropic complexification and quantitative selection
on genome size may statistically push the genome toward a balance, the character of which depends on the species-
specific costs of genome maintenance.

10.4. Omnigenic integration

When adaptations are produced by large scale interactions of organismal components, the GP map can be ex-
pected to be highly polygenic. Complex interactions of many components make the individual components also highly
pleiotropic. Any given genetic change may beneficially affect certain traits while being detrimental to others. When
their net effect is beneficial, then they are selected, but the deleterious effects they produce on certain traits creates
the opportunity for other genetic variation to compensate for these effects. The GP map then becomes a patchwork
of compensatory effects. In the limit of small effects, this patchwork becomes Fisher’s infinitesimal model, [406] in
which pleiotropy and polygeny are continuous and ubiquitous and there is little structuring of the GP map.

10.5. Selection for mixability

Natural selection in sexual organisms with genetic recombination favours alleles that have high average fitness
among all the different genotypes in which they appear in the population. An allele which might produce a highly
adaptive phenotype when combined with just the right alleles at the same or other loci faces the breakup of such an
advantageous combination due to segregation and recombination. Alleles which produce a reliable fitness advantage
regardless of the genetic variation they are recombined with—a property called “mixability”—have a selective advan-
tage [407]. The aggregate consequence of selection for mixability is toward greater modularity in the production of
phenotypes: alleles individually produce the adaptive advantage without reliance on particular states of alleles at other
loci. It suggests a process that counteracts the “omnigenic” model of complete genomic integration. The consequences
of selection for mixability on the GP map have only begun to be elucidated [408].

10.6. Epistatic smoothing of the fitness landscape

Conrad noted that a mutation which smoothed the fitness landscape for other loci would enhance their chance of
producing advantageous mutations, and hitchhike along with such mutations, thus providing a constant force toward
reducing reciprocal sign epistasis. This is the earliest mechanism proposed for the evolution of evolvability [409,410],
and has yet to be fully investigated theoretically.

94



S. Manrubia, J.A. Cuesta, J. Aguirre et al. Physics of Life Reviews 38 (2021) 55-106

10.7. Summary

We have identified a patchwork of processes that in principle are able to shape the variational properties of the
GP map for phenotypes at the level of whole organisms, where complex integration leaves us unable to derive the
properties from physical first-principles. This is an area in which evolutionary theory needs much greater development.
At levels of complexity at which detailed reductionist modelling is currently impossible, we have surveyed efforts to
date that attempt to analyse how evolutionary processes shape the GP map. The body of results described, while not
a fully fleshed-out theory, is perhaps sufficient to demonstrate that this process-based approach can inform a research
program for the GP map at the whole organism level.
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