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Abstract

Networks are ubiquitous, underlying systems as diverse as the Internet, food webs, societal
interactions, the cell, and the brain. Of crucial importance is the coupling of network struc-
ture with system dynamics, and much recent attention has focused on how information,
such as pathogens, mutations, or ideas, flow through networks. In this dissertation, we ad-
vance the understanding of how network structure affects information flow in two important
classes of models. The first is an independent interaction model, which is used to investi-
gate the propagation of advantageous alleles in evolutionary algorithms. The second is a
threshold model, which is used to study the dissemination of ideas, fads, and innovations
throughout populations.

This journal-format dissertation comprises three interrelated studies, in which we inves-
tigate the influence of network structure on the dynamical properties of information flow.
In the first study, we develop an analytical technique to approximate system dynamics in
arbitrarily structured regular interaction topologies. In the second study, we investigate
the flow of advantageous alleles in degree-correlated scale-free population structures, and
provide a simple topological metric for assessing the selective pressures induced by these
networks. In the third study, we characterize the conditions in which global information
cascades occur in threshold models of binary decisions with externalities, structured on
degree-correlated Poisson-distributed random networks.
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Chapter 1

Introduction

The last decade has witnessed an unparalleled advance in our understanding of the interac-

tion patterns of real-world systems, fueled by a dramatic increase in computational power

and the availability of large-scale datasets. Protein-protein interactions in the cell (Jeong

et al., 2001), router connectivity in the Internet (Faloutsos et al., 1999), and even some

human relationships (Ebel et al., 2002; Liljeros et al., 2001) have been mapped, and their

structures are both more complex and, in some ways, more similar than most had previously

imagined. These findings have spurred an intense research effort to model the structural

evolution of large-scale networked systems (Newman et al., 2006) and to investigate the

influence of network structure on dynamical processes (Barrat et al., 2008), uncovering sev-

eral important relationships between the topological properties of interaction networks and

system dynamics. For example, the evolution of altruism (Werfel and Bar-Yam, 2004) and

cooperation (Hauert and Doebeli, 2004; Nowak and May, 1992; Santos and Pacheco, 2005),

the spreading of disease (Keeling, 1999; Kiss et al., 2008; Newman, 2002b; Pastor-Satorras

and Vespignani, 2001) and ideas (Watts, 2002), and the propagation of failures in critical

technological infrastructures (Kinney et al., 2005; Sachtjen et al., 2000) have all been shown

to be strongly affected by the structural characteristics of the underlying interaction net-

work. In addition to understanding how interaction topologies affect dynamics in real-world
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systems, there has also been an increasing interest in exploiting explicit population struc-

tures to improve the search performance of nature-inspired optimization algorithms (Alba

and Dorronsoro, 2005; Alba and Tomassini, 2002; Bryden et al., 2005; Rudolph, 2001; Sarma

and De Jong, 1996; Whitacre et al., 2008), as a means to improve diversity maintenance

and increase system evolvability.

In order to understand how interaction topologies affect system dynamics in both evo-

lutionary algorithms and real-world dynamical processes, models are often constructed by

whittling the system down to something much simpler, abstracting away many of the con-

founding features of the real system. The states of system components, whether these com-

ponents are individuals, routers, or web pages, are often represented as binary values (e.g.,

an individual is either sick or healthy, a router is either broken or functioning properly, etc.).

Interaction patterns are commonly represented as static, undirected, unweighted networks,

where vertices denote system components and edges (connections between vertices) denote

their potential ability to interact. For example, routers may be represented as vertices with

edges denoting their physical connection; metabolites may be represented as vertices with

edges denoting enzyme-catalyzed reactions that change one metabolite to another. Lastly,

an appropriate mechanism for updating vertex states is chosen. For example, in an epi-

demiological model, the probability of an individual changing from a healthy to an infected

state may be dependent on the number of independent contacts with infected individuals.

Alternatively, in a model of the power grid, the probability of a transmission component

changing from a functioning to a failed state may be dependent on the cumulative energy

load transferred from adjacent power generation components.

While such simplified models are idealized abstractions of real systems, their analy-

sis can provide useful insights regarding the influence of the structural characteristics of

interaction networks on the dynamical properties of both evolutionary algorithms and real-

world systems. For example, simple models of the flow of advantageous alleles in structured

populations (Sarma and De Jong, 1996; Giacobini et al., 2005b) have demonstrated that
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the performance improvements obtained with lattice-based population structures in evo-

lutionary computing result from a slowed spread of high fitness solutions. In the context

of real-world systems, simple lattice-based models of individual competition have demon-

strated that increased spatial locality of interaction events facilitate the maintenance of

genetic diversity (Kerr et al., 2002; Sayama et al., 2003) and can potentially lead to spe-

ciation (Eppstein et al., 2009; Payne et al., 2007); and in social systems, simple models

of contagion have demonstrated that the ability of a single piece of information, be it a

song or fashion trend, to spread throughout a population results from the presence of an

interconnected community of “early adopters” (Watts, 2002; Watts and Dodds, 2007).

Despite these recent findings, many questions regarding the intricate and complex rela-

tionships between interaction topologies and information flow still remain unanswered. In

this dissertation, we advance the understanding of how network structure affects informa-

tion flow in both evolutionary computation and real-world systems, through an investigation

of two important classes of models on a variety of interaction topologies.

1.1 Information Flow

We use the term information flow to denote the spreading dynamics of entities (e.g.,

pathogens, mutations, ideas, etc.) throughout a system. This term is therefore quite

general, and could be as easily applied to the dissemination of ideas between cultures as to

the propagation of failures in technological networks.

Models of information flow employ a great variety of information transmission mecha-

nisms. At one extreme lies the independent interaction model, where each contact with a

piece of information (referred to as an exposure) yields an independent probability of infor-

mation transmission (Dodds and Watts, 2004). At another extreme is the threshold model,

in which the probability of information transmission abruptly jumps from low to high as

a critical number of exposures is exceeded (Dodds and Watts, 2004). In this Section, we

describe two instantiations of these models, which will be the focus of investigation in this
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dissertation.

1.1.1 The Flow of Alleles

The first model is used to study the flow of advantageous alleles in evolutionary algorithms.

Individuals are represented as vertices, and conceptualized as either possessing an advanta-

geous mutation or not, resulting in a binary state space of high and low fitness individuals,

respectively. The state of a vertex is updated by randomly selecting an adjacent vertex

and then adopting the state of the adjacent vertex if it is of higher fitness (Fig 1.1). Thus,

each contact provides an independent probability of transmitting information, making this

an independent interaction model, akin to models of disease spread (Dodds and Watts,

2004). Since it is assumed that the population is connected (i.e., a path exists between any

two vertices), the quantity of interest in this model is the amount of time required for an

advantageous allele to fully saturate the population.

Monitoring the saturation dynamics of advantageous alleles is referred to as takeover

time analysis (Goldberg and Deb, 1991), and is used to assess the impact of various tunable

parameters on selective pressure in evolutionary algorithms. If the takeover time is rapid,

then advantageous mutations flow quickly throughout the population, and selective pressure

is high. If takeover time is slow, then the flow of advantageous mutations is more gradual,

inducing a lower selective pressure on the population. Lower selective pressures are known

to enhance the exploration phase of evolutionary optimization (Goldberg and Deb, 1991;

Giacobini et al., 2005b), and aid in curbing premature convergence to a local suboptima.

1.1.2 The Flow of Ideas

The second class of models considered in this dissertation are referred to as binary decisions

with externalities, and were originally developed in the social sciences (Granovetter, 1978;

Schelling, 1973) to study the dissemination of fads, ideas, and innovations. The term binary

decision refers to an either-or situation, such as choosing to ratify a treaty, or subscribe to
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Figure 1.1: Illustration of the mechanisms of information transmission considered in this
dissertation. The focal individual is colored gray, the black vertices denote high fitness
(active) individuals and the white vertices denote low fitness (inactive) individuals. In our
formulation of takeover time analysis, the probability of the gray vertex activating is 1/4 in
(a) and 1/2 in (b). In our model of binary decisions with a threshold of 1/3, the probability
of the gray vertex activating is 0 in (a) and 1 in (b).

a new telephone service. The state space thus consists of individuals who have, and have

not, adopted the piece of information under investigation (referred to as active and inactive

individuals, respectively). Externalities refer to the choices of others, which affect your own.

For example, the utility of a particular cell phone plan may depend on the proportion of your

contacts that have also adopted that plan. A nation’s decision to sign a treaty may depend

on the fraction of its allies that have also signed that treaty. This model of information

propagation can be similarly applied to technological systems as well (Kinney et al., 2005;

Sachtjen et al., 2000). The probability of failure for a transmission component in a power

grid may be contingent on its incoming power load; when a specific proportion of adjacent

components have failed, this critical load is no longer met, and the focal component fails

as well, thus resulting in cascading failures. In these examples, the “decision” of a system

component to adopt a piece of information is dependent on the proportion of its contacts

that have also adopted this information. As such, binary decisions with externalities are

threshold models (Dodds and Watts, 2004).

There are many possible variations in the mechanisms of information transmission in

these models. We consider a basic Heaviside threshold mechanism, where vertex activation is

dependent on whether or not the proportion of adjacent vertices that are active exceeds the

threshold of the focal individual. Every individual is initialized with an identical activation

threshold. The dynamics of the model begin by placing a single active individual into a

5



population of inactive individuals, and then monitoring the spread of this information. In

each update, every individual calculates the proportion of their contacts that are active. If

this proportion exceeds the individual’s threshold, then it becomes active itself (Fig. 1.1).

Once an individual has activated, it is assumed to remain active and the spreading dynamics

continue until a steady state is reached.

Aside from the mechanism of information transmission, this model differs from our model

of the flow of alleles in two primary ways. First, this system is purely deterministic. Second,

the propagation of information does not always saturate an entire population, even if the

population is connected. The spread of information often fizzles out very quickly, frustrated

by the presence of highly connected individuals that are difficult to influence. However,

situations also arise in which information spreads to a significantly large proportion of

the population, giving rise to what is referred to as a global information cascade (Watts,

2002). The quantities of interest in this model are therefore the frequency with which global

cascades occur and their final size.

1.2 Interaction Topologies

The focus of this dissertation is on how interaction patterns influence the flow of information

in these two models. These interaction patterns are represented as networks, which provide

a useful and general abstraction of system structure. As an object of study, graphs have

been a topic of interest in mathematics for centuries (Euler, 1741). However, the sheer

volume of data involved in recent mappings of real-world networks, such as the proteome

(Jeong et al., 2001) and the World Wide Web (Albert et al., 1999), have necessitated the

development of a new suite of topological metrics that can succinctly characterize such

complex, large-scale interaction patterns.
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1.2.1 Topological Metrics

The number and diversity of topological metrics that have been developed to characterize

real-world interaction networks is vast. Here, we outline the metrics that are considered

in this dissertation and provide an example of their relevance to real systems. (These

metrics will be formally defined in the main body of this dissertation.) Perhaps the most

basic is the degree distribution, which captures the probability with which a vertex has

a given number of connections (referred to as the degree of the vertex). Recent analyses

of systems as diverse as the Internet (Faloutsos et al., 1999), genetic regulatory networks

(Ravasz et al., 2002), and societal interactions (Ebel et al., 2002; Liljeros et al., 2001) have

revealed that these seemingly disparate interaction networks possess degree distributions

that follow a similar mathematical form. Specifically, their probability distributions follow

a power-law, meaning that the majority of vertices possess only a few connections, but a

few vertices possess an extremely large number of connections. Such networks are referred

to as “scale-free” (Barabàsi and Albert, 1999), because the degree distribution does not

possess a characteristic scale. That is, the network’s average degree is not representative

of the overall connectivity distribution, in sharp contrast to Erdős-Renyi (ER) random

networks (Erdős and Rényi, 1959), which possess Poisson degree distributions. The extreme

heterogeneity in the degree distribution of scale-free networks has important implications

for system dynamics. For instance, power-law degree distributions render systems robust

to random failure, but vulnerable to targeted attack (Albert et al., 2000).

In an analysis of social, technological, and biological networks, Watts and Strogatz

(1998) discovered two common trends: the average distance between any two vertices is

quite short and the neighbors of a given vertex are likely to be neighbors themselves. These

networks are referred to as “small-world” and these two distinctive topological properties

are quantified as the characteristic path length and clustering coefficient, respectively. Char-

acteristic path length, which is the average all-pairs shortest distance between vertices, has

been shown to largely govern the rate of pathogen invasion in a simple model of disease
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spreading (Watts and Strogatz, 1998). The clustering coefficient, which is the frequency

of triangular subgraphs, has also been shown to impact the dynamics of pathogen inva-

sion. Keeling demonstrated that increased clustering in the contact network decreased the

probability of large-scale epidemics (Keeling, 2005).

Subsequent analyses of social, technological, and biological networks revealed a more

subtle structure. Newman found that the degrees of adjacent vertices are often correlated,

with social networks generally possessing positive degree-degree correlations and biological

and technological networks generally posessing negative degree-degree correlations (New-

man, 2002a, 2003a). These correlations are quantified in a metric referred to as assortativity,

which is the Pearson correlation coefficient of the degrees of adjacent vertices. The intro-

duction of degree-degree correlations has been shown to affect the evolution of cooperation

in models of social dilemmas (Rong et al., 2007) and the rate of pathogen invasion in simple

models of disease spread (Kiss et al., 2008).

Some prior work exists regarding the influence of interaction topologies on our two

exemplary models of information flow and we now briefly review these studies on regular

(where all vertices have the same degree) and irregular interaction topologies.

1.2.2 Regular Interaction Topologies

The Well-Mixed Case

As a starting point, models of information flow typically treat system interaction patterns as

“well-mixed,” in which any individual is equally likely to interact with any other individual

in the population. This interaction pattern can be thought of as a complete graph, wherein

all vertices are interconnected (Fig. 1.2a). Such an interaction topology often allows for the

development of an analytically tractable model and provides a useful frame of reference for

any deviation from this assumption.

Goldberg and Deb (1991) introduced the concept of takeover time analysis to the evo-

lutionary computation community, as a means of quantifying selective pressure. Their
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focus was on the impact of several commonly implemented selection schemes on the flow

of advantageous alleles in well-mixed populations. In a head-to-head comparison of fit-

ness proportionate, linear ranking, and tournament selection, they demonstrated that some

selection policies lead to faster population convergence than others. Specifically, larger tour-

nament sizes were shown to lead to faster takeover times than smaller tournaments, and

linear ranking and binary tournament selection were shown to induce qualitatively similar

selection pressures under certain conditions.

Models of binary decisions with externalities in well-mixed interaction topologies were

investigated by Granovetter (1978). His work focused on how the distribution of individual

thresholds affected the aggregate behavior of the population, and demonstrated that small

perturbations in the threshold distribution could lead to large changes in collective behavior.

For example, a slight change in the standard deviation of a Gaussian threshold distribution

could tip collective behavior from information spreading through only a few individuals

to spreading throughout the entire population. Using riots as an illustrative example of

collective behavior, Granovetter employed this result to argue that the population-level

composition of rioting preferences (i.e., how many individuals you must see rioting before

you decide to riot) need not be substantially different in a rioting population than in a non-

rioting population. That is, individual preferences are not easily inferred from aggregate

behavior.

The Ring and the Lattice

The assumption of complete mixing is a convenient, but crude approximation to the in-

teraction patterns of most real-world systems. For example, many terrestrial ecological

communities are spatially-embedded on the two-dimensional surface of the earth, with in-

teraction events constrained by geographical distance. As such, ecological models developed

under the assumption of complete mixing are often unable to accurately characterize system

dynamics. Motivated by this realization, modeling efforts began to relax the assumption
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Figure 1.2: Schematic diagram of (a-c) regular and (d-f) irregular interaction topologies.
The regular networks depicted are (a) a complete graph, (b) a ring, and (c) a lattice. The
irregular networks depicted are (d) an ER random graph, (e) a small-world graph, and (f)
an AB scale-free graph.
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of a complete interaction topology by structuring populations on regular networks, such

as a one (Fig. 1.2b) or two-dimensional (Fig. 1.2c) lattice. In the context of evolution-

ary computation, the utilization of explicit population structures was initially motivated

not by biological realism, but by algorithm parallelization (see Alba and Tomassini (2002)

for a review of this topic). Early studies focused on coarse-grained parallelization, where

independent, well-mixed subpopulations are placed on separate processing units and cou-

pled by occasional migration events (Grefenstette, 1981). Fine-grained parallelism, where

each individual is assigned to a separate processing unit and individuals interact according

to a specific communication topology, was investigated later. Specifically, Manderick and

Spiessens (1989) considered a two-dimensional lattice topology with localized neighborhoods

and found that this population structure not only facilitated parallelism, but also improved

the effectiveness of evolutionary search, with smaller neighborhoods yielding higher qual-

ity solutions. This observation led to the development of cellular evolutionary algorithms,

where individual populations are structured on regular lattices (whether serial or parallel)

and mating events are restricted to occur in spatially-localized neighborhoods (Alba and

Dorronsoro, 2008).

The first takeover time analyses of regular interaction topologies were performed by

Sarma and De Jong (1996). Their study focused on the influence of local neighborhood

size and shape on takeover times in two-dimensional toroidal lattices. Their results demon-

strated that a simple metric of neighborhood dispersion, referred to as a neighborhood’s

radius, largely governs takeover times in regular lattices. Specifically, they demonstrated

that the growth coefficient in a logistic model of takeover dynamics increased logarith-

mically with the ratio of the local neighborhood radius to the global lattice radius, and

asymptotically approached the growth coefficient of a well-mixed system. Thus, increasing

the ratio of these two radii allows one to easily tune the selective pressures induced by a

regular interaction network from low (nearest neighbor interactions) to high (well-mixed

interactions). These empirical observations were soon followed by mathematical models of
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takeover dynamics in one and two-dimensional lattices (Rudolph, 2000; Giacobini et al.,

2005b).

In an analysis of segregation processes, Schelling (1971) investigated a model of binary

decisions with externalities on both one and two-dimensional lattices. As his study was

focused on racial segregation, he employed a method of information transmission that is

different from the one treated in this dissertation. Regardless, his analyses provided some

useful insights regarding information flow on regular interaction topologies. Specifically,

Schelling (1971) showed that mild preferences for one type over another within local neigh-

borhoods could lead to global population segregation, again casting doubt on the possibility

of determining micromotives from collective behavior.

1.2.3 Irregular Interaction Topologies

The Random Graph

The properties of random graphs have been rigorously studied since the seminal work of

Erdős and Rényi (1959). One classic result of random graph theory is that a giant connected

component exists in these Poisson-distributed networks so long as its average degree is

greater than one, and as the average degree continues to increase, the size of this component

approaches that of the entire graph (Fig. 1.3, dark gray diamonds). An average degree of

one is thus referred to as the percolation threshold, since this is the point where the giant

connected component first occupies a finite fraction of an infinite graph.

In the context of takeover time analysis, ER random interaction topologies (Fig. 1.2d)

were first considered by Giacobini et al. (2005a). They provided empirical and analytical

results for takeover dynamics on connected ER random graphs well above the percolation

threshold (with an average degree ranging from 10 to 50), demonstrating that takeover

times decrease as the average degree of the network increases. One important result of their

research is that the selective pressures induced by ER random networks with high average

degree are quantitatively similar to those induced in the well-mixed (complete graph) case.
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Figure 1.3: Fractional size of the giant connected component (dark gray diamonds) and
the frequency of global information cascades (light gray circles). The giant connected com-
ponent was calculated as the average of those observed in 10 random ER graphs. The
frequency of global cascades was calculated via simulation on these graph instances, using
a vertex threshold of 0.18, replicating the results of Watts (2002)

However, it remains unclear how their results scale to ER random networks with an average

degree closer to the percolation threshold.

Binary decisions with externalities were investigated on ER random networks by Watts

(2002). He demonstrated that global information cascades can only occur if there exists a

percolating subnetwork of individuals that each activate in the presence of a single active

neighbor. This connected component of vulnerable individuals (a.k.a. “early adopters”)

acts as the network’s critical mass; once they activate, the rest of the network is easily

tipped. For ER random graphs with low average degree, the frequency (Fig 1.3, light

gray circles) and size of a cascade was shown to be limited by the connectivity of the

network; that is, the spread of information was limited to the giant connected component. In

contrast, for random graphs with high average degree, where the size of the giant connected

component approaches that of the entire network, the frequency of global cascades was

shown to be vanishingly small, but when global cascades did occur, they would topple the

entire network (Fig 1.3, vertical arrow). Information cascades on sufficiently dense networks
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thus possess a “robust yet fragile” quality, where information spreading is typically limited

by the presence of well-connected individuals that act as barriers, but under the right

conditions, information can saturate the entire network. Watts (2002) also demonstrated

that increased heterogeneity in the threshold distribution expanded the parameter range in

which global cascades occur.

The Small-World and the Scale-Free

As previously mentioned, recent analyses have clearly demonstrated that the interaction pat-

terns of numerous systems are highly heterogeneous, often possessing heavy-tailed degree

distributions, short characteristic path lengths, high clustering, and degree-degree correla-

tions. These observations have prompted the development of myriad models of dynamical

processes on irregular networks (Barrat et al., 2008), and have also inspired research into

the utilization of irregular population structures for evolutionary optimization. Giacobini

et al. (2005a) were the first to investigate takeover times in both small-world (Fig. 1.2e)

and scale-free (Fig. 1.2f) interaction topologies. For small-world networks, they devel-

oped mathematical approximations of takeover dynamics and showed that takeover times

decreased as the interaction network was rewired to possess a shorter characteristic path

length. Takeover dynamics on scale-free interaction topologies were investigated empiri-

cally, using the graph generating algorithm provided by Barabàsi and Albert (1999) (AB).

These results demonstrated that takeover dynamics are at least as fast in AB scale-free

interaction topologies as they are in random networks, and that takeover times could be de-

creased significantly if the initial high fitness information is strategically placed in a highly

connected vertex.

Centola et al. (2007) investigated a model of binary decisions with externalities on

small-world interaction topologies with fixed average degree. Their results demonstrated

that edge rewiring dramatically decreased the parameter range in which global informa-

tion cascades occur, since these random links weaken local structure and thus reduce the
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probability of receiving multiple signals from an active cluster. Information cascades have

also been investigated on scale-free interaction topologies. Watts (2002) demonstrated that

the introduction of power-law degree distributions severely limited the parameter range in

which global information cascades occur, resulting from the presence of highly connected

vertices that are difficult to tip, and thus frustrate information flow.

1.3 Motivation and Contributions

Regular interaction topologies have been shown to improve performance in many forms of

evolutionary algorithms, including genetic programming (Folino et al., 2003b; Spector and

Klein, 2005) algorithms (Alba and Dorronsoro, 2004, 2005), and particle swarm optimiza-

tion (Kennedy and Mendes, 2002). These performance improvements are often attributed

to a slowed spread of high fitness solutions throughout the population, which reduces se-

lective pressure and facilitates diversity maintenance. The models of takeover dynamics

that have been previously developed provide a useful reference for understanding how a

chosen interaction network will affect selective pressure. However, these existing models are

network-specific, and for the common case of two-dimensional networks, models only exist

for nearest-neighbor interactions (Giacobini et al., 2005b). One goal of this dissertation is to

develop a general method for estimating takeover dynamics in arbitrarily structured regular

interaction topologies. To this end, we present in Chapter 2 a reformulation of takeover time

analysis in terms of the classic Susceptible-Infectious-Susceptible model of disease spread.

We then adapt a general technique, referred to as the pair approximation, for estimating

takeover dynamics in regular interaction topologies. Our results demonstrate that the pair

approximation, as originally formulated, is insufficient for capturing pre-equilibrium dy-

namics of information flow because it does not properly account for the interaction between

neighborhood structure and population size. We then show that the pair approximation can

be parameterized by the ratio of the local neighborhood radius to the global lattice radius

to yield more accurate results. We empirically analyze this method for estimating takeover
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dynamics on a variety of regular interaction topologies with several population sizes.

The use of irregular interaction topologies has also recently received increasing interest

in the evolutionary computation community. In particular, scale-free population struc-

tures have been investigated in genetic algorithms used for a variety of single (Giacobini

et al., 2006) and multiobjective (Kirley and Stewart, 2007a,b) optimization problems, and

in a mobile robotics application (Gasparri et al., 2007). However, these studies have pro-

duced variable results, with scale-free population structures enhancing search performance

in some cases and hindering it in others. In order to properly assess the potential value

of scale-free interaction networks for evolutionary algorithms, a deeper understanding of

their impact on selective pressure is required. While empirical results of takeover dynam-

ics exist for AB scale-free networks (Giacobini et al., 2005a), these results pertain only to

uncorrelated networks possessing a degree distribution with a fixed scaling exponent and

a single combination of average degree and population size. In Chapter 3, we investigate

takeover dynamics on scale-free interaction topologies with various population sizes, aver-

age degrees, scaling exponents, and assortativities. Our results demonstrate that average

takeover times increase with both decreased scaling exponents and increased assortativity,

with nonlinear interactions between these two topological properties. We show that sev-

eral topological metrics of interest in related studies of information flow are not able to

explain the takeover times observed on the broader class of scale-free interaction networks

that we consider. Rather, we demonstrate that 97% of the variability in the logarithmically

transformed average takeover times can be simply described using a planar function of two

simple topological metrics, providing an easily computable estimation of the selective pres-

sures induced by scale-free interaction topologies. However, this simple relationship does

not capture the effects of assortativity, which are shown to interact nonlinearly with scaling

to influence the variability in takeover times both within and between graph instances, in

distinctly different ways.

In the context of threshold models of binary decisions with externalties, there have
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been several recent studies focused on the relationship between the structural properties

of interaction topologies and information cascades. These results have demonstrated how

modularity (Galstyan and Cohen, 2007; Watts and Dodds, 2007), edge directionality (Glee-

son, 2008b), the presence of long distance interactions vs. local clustering (Centola et al.,

2007), and degree heterogeneity (Watts, 2002; Watts and Dodds, 2007) affect both the

size and frequency of global information cascades. However, relatively little attention has

been paid to the influence of degree-degree correlations. Gleeson has recently provided

an analytic approximation for the size of global information cascades on degree-correlated

random networks (Gleeson, 2008a) and we have complemented these results by providing

an analytic solution for global cascade frequencies (Dodds and Payne, 2009). Despite these

advances, much remains unclear regarding the influence of degree-degree correlations on

information cascades in this model. In Chapter 4, we experimentally investigate a model

of binary decisions with externalities on degree-correlated random interaction topologies.

We demonstrate that increasing degree-degree correlations generally expands the parameter

range in which global information cascades occur. However under certain conditions, global

information cascades are found to occur for sufficiently positive or negative degree-degree

correlations, but not when correlations are relatively small. We demonstrate that the abil-

ity of high degree vertices to trigger a global information cascade is strongly affected by

degree-degree correlations; in negatively assortative networks, high degree vertices trigger

the largest average information cascades, but in positively assortative networks, the oppo-

site result is found. Lastly, we show that cyclical triggering motifs are present in these large

finite graphs that trigger cascades on denser networks than predicted analytically.

Chapters 2-4 thus represent the body of this journal format dissertation. In Chapter 5,

we provide some concluding remarks and discuss directions for future research.
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Chapter 2

Pair Approximations of Takeover

Dynamics in Regular Population

Structures

Abstract

In complex adaptive systems, the topological properties of the interaction network are strong

governing influences on the rate of flow of information throughout the system. For example,

in epidemiological models, the structure of the underlying contact network has a pronounced

impact on the rate of spread of infectious disease throughout a population. Similarly, in evo-

lutionary systems, the topology of potential mating interactions (i.e., population structure)

affects the rate of flow of genetic information and therefore affects selective pressure. One

commonly employed method for quantifying selective pressure in evolutionary algorithms

is through the analysis of the dynamics with which a single favorable mutation spreads

throughout the population (a.k.a. “takeover time analysis”). While models of takeover dy-

namics have been previously derived for several specific regular population structures, these

models lack generality. In contrast, so-called “pair approximations” have been touted as a
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general technique for rapidly approximating the flow of information in spatially structured

populations with constant (or nearly constant) degree of nodal connectivities, such as in

epidemiological and ecological studies. In this work, we reformulate takeover time analy-

sis in terms of the well-known Susceptible-Infectious-Susceptible model of disease spread

and adapt the pair approximation for takeover dynamics. Our results show that the pair

approximation, as originally formulated, is insufficient for approximating pre-equibilibrium

dynamics, since it does not properly account for the interaction between the size and shape

of the local neighborhood and the population size. After parameterizing the pair approxi-

mation to account for these influences, we demonstrate that the resulting pair approxima-

tion can serve as a general and rapid approximator for takeover dynamics on a variety of

spatially-explicit regular interaction topologies with varying population sizes and varying

uptake and reversion probabilities. Strengths, limitations, and potential applications of the

pair approximation to evolutionary computation are discussed.

2.1 Introduction

In complex adaptive systems, the topological properties of the interaction network are

strong governing influences on the rate of flow of information throughout the system. For

example, in epidemiological models, the structure of the underlying contact network has

a pronounced impact on the rate of spread of disease throughout a population (Keeling,

1999; Newman, 2002; Pastor-Satorras and Vespignani, 2001). Similarly, in evolutionary

systems, the topology of potential mating interactions (i.e., population structure) affects

the rate of flow of genetic information and therefore affects selective pressure (Giacobini et

al., 2005a; Giacobini et al., 2005b; Payne and Eppstein, 2007, 2008; Rudolph, 2000; Sarma

and De Jong, 1996). In classical mathematical epidemiology (Anderson and May, 1995),

quantitative genetics (Falconer and Mackay, 1996) and canonical evolutionary algorithms

(Holland, 1975), inter-individual interactions are typically assumed or allowed to be random.

Whether studying the proliferation of infectious disease or the spread of an advantageous
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genetic mutation, such well-mixed (i.e., panmictic) contact networks facilitate the rapid

propagation of information throughout the population. In contrast, when inter-individual

interactions are spatially constrained, the rate of dissemination of information is significantly

mitigated.

Most natural populations exhibit some form of spatial structure, and the important in-

fluence of the spatial scale of inter-individual interactions has thus become increasingly ap-

preciated in many recent modeling efforts (e.g., Eppstein and Molofsky (2007); Payne et al.

(2007); Rauch and Bar-Yam (2006); Sayama et al. (2003); Werfel and Bar-Yam (2004)). For

example, human populations have been shown to exhibit complex networks of interactions

(e.g., Ebel et al. (2002); Liljeros et al. (2001); Watts and Strogatz (1998)). The assumption

of panmixia in a model of disease spread may therefore limit the applicability of its re-

sults. Accordingly, several recent epidemiological models have employed more biologically

realistic contact networks (Eames and Keeling, 2002; Keeling, 1999; Keeling and Eames,

2005; Meyers et al., 2006; Newman, 2002; Pastor-Satorras and Vespignani, 2001), and the

topological characteristics of these networks have been shown to dramatically impact the

dynamics of disease spread. Similarly, in evolutionary models, the spatial nature of inter-

individual interactions significantly impacts the emergent dynamics. Imposing constraints

on the spatial locality of interaction events has been shown to facilitate the emergence of

evolutionary phenomena that would be otherwise impossible in well-mixed systems. For

example, the maintenance of genetic diversity (Kerr et al., 2002; Sayama et al., 2003), the

suppression of evolutionary pathologies (Altenberg, 2005), and the evolution of altruism

(Matsuda et al., 1992; Van Baalen and Rand, 1998; Werfel and Bar-Yam, 2004) and coop-

eration (Hauert and Doebeli, 2004; Ohtsuki et al., 2006; Santos and Pacheco, 2005) have

all been shown to be largely influenced by the spatial nature of the underlying contact

network. Such spatially-explicit contact networks have also received an increasing amount

of attention for use as population structures in evolutionary algorithms (Bryden et al.,

2005; Giacobini et al., 2005a; Giacobini et al., 2005b; Giacobini et al., 2006; Kirley and
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Stewart, 2007; Payne and Eppstein, 2006, 2007, 2008; Rudolph, 2000; Sarma and De Jong,

1996; Sprave, 1999; Whitacre et al., 2008). For example, cellular evolutionary algorithms

(cEAs), in which populations are structured on low-order regular graphs and mating events

are restricted to occur in spatially localized, overlapping neighborhoods, can be used as a

means of maintaining population diversity by mitigating selective pressure (Giacobini et al.,

2005b).

One useful method for quantifying how the flow of information is influenced by a given

interaction topology is through the analysis of takeover time (Goldberg and Deb, 1991).

Takeover time is defined as the expected number of generations until a population consists

entirely of copies of the best individual, starting from an initial population that contains

only one copy of the best individual. This analysis removes the confounding effects of

variation operators, such as recombination and mutation, with selection acting as the only

evolutionary operator. Higher takeover times imply lower selective pressure, and vice versa.

Takeover dynamics have been previously investigated for several specific interaction

topologies. Goldberg and Deb (1991) analyzed takeover dynamics in panmictic popula-

tion structures under a variety of selection mechanisms and showed that takeover is quite

rapid in such well-mixed populations. Takeover dynamics in one-dimensional (1D) and

two-dimensional (2D) cEAs have also received a large amount of attention. For example,

Rudolph (2000) provided exact analytical solutions for ring topologies (1D toroidal lattices)

and lower and upper bounds for array topologies (1D non-toroidal lattices). Sarma and De

Jong (1996) analyzed 2D toroidal lattices with spatially localized neighborhoods of various

shapes and sizes and showed that selection pressure is strongly influenced by the radius of

the local mating neighborhood (see equation (2.2) in Section 2.2). Under both synchronous

and asynchronous updating policies, Giacobini et al. (2005b) provided mathematical models

of takeover dynamics in 1D and 2D toroidal lattices (with Von Neumann neighborhoods).

The general result of these studies is that regular lattice population structures with local-

ized interaction neighborhoods reduce selective pressure, relative to panmictic interaction
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topologies, and can thus enhance the exploratory power of evolutionary search. However,

all of these models of takeover dynamics are specific to the particular interaction topologies

for which they were designed. The hypergraph model (Sprave, 1999) is somewhat more gen-

eral, and has been shown to model takeover dynamics in panmictic, metapopulation, and

toroidal ring interaction topologies with reasonable accuracy. However, this model relies

upon the success probabilities of selection operators that were derived (Chakraborty et al.,

1997) under the assumption of panmixia and thus is not directly transferable to spatially

structured populations with localized interactions. In addition, the hypergraph model re-

quires computationally expensive calculations of recursive probabilistic formulations using

possibly large and dense matrices. It would be useful to formulate a general method for esti-

mating takeover dynamics that is not only broadly applicable, but also quickly computable,

so that takeover dynamics could be rapidly predicted for a variety of regular population

structures with varying selection and reversion probabilities.

Pair approximations (PAs) were originally derived as a statistical mechanics formulation

to approximate equilibrium conditions in spatially structured biological populations, in

order to determine conditions for the evolution of altruism (Matsuda et al., 1992). PAs

are so-named because they use differential equations to estimate the dynamics of states

of neighboring pairs of individuals. This technique has gained popularity in theoretical

biology, ecology, and epidemiology (Eames and Keeling, 2002; Hauert and Doebeli, 2004;

Heibeler, 2000; Joo and Lebowitz, 2004; Keeling, 1999; Keeling and Eames, 2005; Ohtsuki

et al., 2006; Petermann and De Los Rios, 2004; Satō and Iwasa, 2000; Satō et al., 1994;

Van Baalen, 2000; Van Baalen and Rand, 1998) due to its purported generality and the

rapidity with which the resulting analytical expressions can be solved. For example, Van

Baalen and Rand (1998) used PAs to derive explicit conditions for the invasion of altruistic

mutants into non-altruistic populations on a variety of population structures, including

triangular and hexagonal lattices and random graphs. Hauert and Doebeli (2004) used PAs

to estimate equilibrium proportions of cooperators in the snowdrift game on rectangular
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(with both Von Neumann and Moore neighborhoods), triangular, and hexagonal lattices.

Ohtsuki et al. (2006) formulated a PA of the spatially extended Prisoner’s dilemma on

regular graphs, in order to derive a simple rule for the evolution of cooperation. In most

cases, the PA has been used to predict equilibrium frequencies, in accordance with their

original intent. An exception to this is the work of Keeling (1999), where the PA was used

to estimate the dynamics of disease spread for a single population size in a specific type

of random graph, which was designed to have nearly constant nodal degree and spatially

localized clustering. Another notable exception is the work of Petermann and De Los Rios

(2004), in which the PA was extended and generalized to model higher order interactions

between individuals and was used to estimate the saturation dynamics of infectious disease

in random graphs and lattices with triangular and Von Neumann neighborhoods.

While PAs have thus been applied to a wide variety of spatial topologies in the context

of epidemiology, ecology, and evolutionary biology, each of the previous studies has been

restricted to a single population size for a given population structure. To date, there has

been no analysis of the accuracy of the PA as a function of the interaction between the

topological characteristics of the local neighborhood structure and population size. And

despite the potential advantages of general applicability and low computational effort, PAs

have yet to be applied in the context of takeover dynamics in evolutionary algorithms.

Our intent is to investigate whether the PA can be used as a rapid and general method

for approximating takeover dynamics of evolutionary algorithms using spatially explicit

local interaction neighborhoods with regular topologies, for various population sizes and

selection and reversion probabilities. First, we reformulate takeover time analysis for evolu-

tionary algorithms in terms of the well known Susceptible-Infectious-Susceptible (SIS) model

of disease spread (Anderson and May, 1995; Keeling and Eames, 2005; Newman, 2002) and

adapt the PA to predict takeover dynamics. We show that the PA, as originally formulated

(Matsuda et al., 1992), over-predicts the rate of spread of advantageous alleles, since it does

not properly account for the interaction between the size and shape of the local neighbor-
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hood and the population size. After parameterizing the PA to account for these influences,

we demonstrate that the resulting PA is an efficient approximator of takeover dynamics

on a variety of spatially-explicit regular interaction topologies. We discuss the strengths,

limitations, and potential improvements to the PA, and suggest how this approach may be

useful to practitioners of evolutionary computation.

2.2 Methods

2.2.1 Representing population structure as a graph

The population structure of an evolutionary algorithm can be represented as a graph as

follows. A graph, G = (V,E), is defined as a nonempty finite set of vertices (V ) and a finite

set of edges (E) connecting these vertices. Each individual in the population is represented

by a vertex i ∈ V , so that |V | = µ, where µ is the population size. An undirected edge

〈i, j〉 is added to E for each individual j in the mating neighborhood of individual i, for

all i ∈ V . Note that many commonly implemented population structures (Giacobini et

al., 2005b; Rudolph, 2000; Sarma and De Jong, 1996), including all of the population

structures considered herein, are embedded in Cartesian space. However, it is important to

note that adjacency in Cartesian space does not imply adjacency in the interaction graph,

and vice versa. That is, two individuals that share an edge in the graph representation of

the population structure are not necessarily spatially proximal in Cartesian space. In this

manuscript, the term neighbor is always used to mean adjacency in the interaction graph

G.

2.2.2 Structural properties of graphs

When quantifying the structural properties of a graph, there are several metrics of potential

interest (e.g., see Newman (2003)). In this section, we briefly define the structural properties

considered in the current study. The so-called “clustering” metric (φ) of a graph G, stored
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as an adjacency matrix A, can be computed as the ratio of closed triangles to total triplets

(Keeling, 1999), as follows:

φ =
#triangles
#triplets

=
trace(A3)

||A2|| − trace(A2)
(2.1)

where the superscripts denote matrix exponentiation, ‖M‖ denotes the sum of all of the

elements in a matrix M , and trace denotes the sum of the elements on the main diagonal.

The radius of an interaction neighborhood N captures the level of dispersion present

in that neighborhood (Sarma and De Jong, 1996). Selective pressure has been shown to

increase as the ratio of the radius of the local neighborhood (radiusN ) to the radius of

the underlying lattice (radiusG) increases (Sarma and De Jong, 1996). For an interaction

neighborhood N of size k (i.e., k is the degree of the nodes in the population structure)

centered on a vertex located at 〈x, y〉 in Cartesian space, this metric is formally defined as,

radiusN =

√√√√ 1
k + 1

( k+1∑
i=1

(xi − x̄)2 +
k+1∑
i=1

(yi − ȳ)2
)

(2.2)

where

x̄ =
1

k + 1

k+1∑
i=1

xi, ȳ =
1

k + 1

k+1∑
i=1

yi (2.3)

and xi and yi are the Cartesian coordinates of the vertex 〈x, y〉 and the k vertices in its

interaction neighborhood. The radius of the entire graph (radiusG) can be calculated using

equations (2.2) and (2.3) by assuming that the central vertex (x =
√
µ

2 , y =
√
µ

2 ) of graph G

is connected to every other vertex in the topology (i.e., k = µ− 1). We calculate the ratio

ρ of the radius of the interaction neighborhood radiusN to the radius of the underlying

population structure radiusG:

ρ =
radiusN
radiusG

(2.4)

Thus, ρ will take on a value of 1 only in the limiting case of a well-mixed system. Note

that both the clustering coefficient (φ) and radius of an interaction neighborhood (radiusN )

are independent of population size, while graph radius (radiusG), and thus also ρ, are both

a function of population size.
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2.2.3 Population structures

A regular graph is one in which every vertex has the same degree k. In this study, we

investigate takeover dynamics on ten distinct types of regular population structures, each

based on 2D toroidal lattices, but with different local interaction neighborhoods. The

naming conventions and corresponding schematic diagrams of the population structures are

provided in Table 2.1, and their relevant structural characteristics are provided in Table

2.2a. Note that Table 2.2a presents the population structures in order of increasing radius;

all subsequent tables and figures will follow this convention. For each population structure,

we considered a total of eight population sizes µ ∈ {576, 1024, 1600, 2304, 3136, 4096,

5184, 6400}, each structured on a (
√
µ × √µ) node toroidal lattice. The corresponding

graph radius for each population size is provided in Table 2.2b.

The local neighborhood structures considered in this study vary in both the number

and the spatial locality of the individuals they contain, resulting in differing vertex degrees

(k) and clustering (φ) characteristics (Table 2.2a). The topologies considered in this study

include the most commonly implemented locally interacting population structures in the

literature. For example, the Von Neumann (VN1, Table 2.1a) and Moore neighborhoods

(M3, Table 2.1a) are the most frequently employed interaction networks in spatially struc-

tured evolutionary algorithms (e.g., (Giacobini et al., 2005b; Sarma and De Jong, 1996).

We also investigated common variations of these with larger interaction neighborhoods;

specifically, Moore neighborhoods with diameter 5 (M5, Table 2.1a) and 7 (M7, not shown)

and extended Von Neumann neighborhoods (VN2, Table 2.1a, and VN3, not shown). The

triangular population structures considered herein (T, AT, and ST, Table 2.1b) are com-

monly employed in various models of ecological (Van Baalen, 2000), evolutionary (Hauert

and Doebeli, 2004; Van Baalen and Rand, 1998), and physical systems (Ong and Cava,

2004).
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Table 2.1: Naming conventions and schematic diagrams of the (a) rectangular and (b)
triangular neighborhood structures considered in this study. (M7 and VN3 are not shown,
but can be easily inferred). Abbreviated names for each population structure are provided,
as are the names as they appear in (Sarma and De Jong, 1996), where applicable (in italics).
In (a), the links between vertices are implicit; each vertex in the interaction neighborhood
(black circles) centered around a given vertex (×) is connected to this center vertex. In
(b), the links between individuals are shown explicitly (solid lines). For clarity, only one
representative interaction neighborhood is shown for each type of graph.

(a)

M3 M5 VN1 VN2 MVN

Moore (d = 3), Moore (d = 5) Von Neumann, L9 C13
C9 L5

(b)

T AT ST

Triangular Alternating Semi
Triangular Triangular
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Table 2.2: (a) Structural metrics of the spatial interaction topologies considered in this
study, presented in order of increasing radius of the local neighborhoods. (b) Graph radius
as a function of population size on square lattices.

(a)

Population Structure k φ radiusN
VN1 4 0 0.89
ST 5 0.3 0.97
AT 6 0.4 1.03
T 6 0.4 1.07

M3 8 0.43 1.16
MVN 12 0.46 1.47
VN2 8 0.21 1.49
M5 24 0.52 2.00

VN3 12 0.27 2.08
M7 48 0.54 2.83

(b)

Population Size (µ) radiusG
576 9.79
1024 13.06
1600 16.32
2304 19.59
3136 22.86
4096 26.13
5184 29.40
6400 32.66
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2.2.4 Takeover time

Consider a population with only two levels of fitness; i.e., let Λi(t) be the fitness value

of vertex i ∈ V at time t, where Λi(t) ∈ {0, 1} and 1 is more fit than 0. In the initial

population, Λi(0) = 1 for exactly one i ∈ V and Λj(0) = 0∀j 6= i ∈ V . Let Nt denote the

proportion of nodes with value 1 at time t:

Nt =
1
|V |

∑
∀i∈V

Λi(t) (2.5)

Following Rudolph (2000), we define the takeover time T = min{t|Nt = 1} to be the

minimum number of generations such that copies of the most fit individual fully saturate

the entire population, starting with only one such individual in the initial population. This

definition of takeover time thus assumes that Nt can never decrease.

Ei[T ] is defined as the empirical estimate of the expected takeover time given that the

initial best individual is located in vertex i. Thus, the overall empirically estimated expected

takeover time of a beneficial mutation, averaged over all potential initial conditions, is simply

E[T ] =
1
|V |

∑
∀i∈V

Ei[T ] (2.6)

assuming that the initial best individual is equally likely to appear in any given node.

2.2.5 Selection

In this study, we adopt a simple “replace if better” selection mechanism (a.k.a. uniform

selection (Gorges-Schleuter, 1999)), where nodes are updated synchronously, as follows. For

each node i ∈ V , a node j is selected at random with uniform probability from the mating

neighborhood of node i, with neighborhood size k. Thus, if there are x nodes containing

the fittest value in the mating neighborhood of node i, then the probability of selecting one

of them (Psel) is simply

Psel =
x

k
(2.7)

With uptake probability pup, the value of the selected node j then replaces the value of

node i if Λj(t) > Λi(t). Therefore, the probability of a high fitness individual replacing a
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given node (Prep) is given by the product of the uptake probability (pup) and the selection

probability (Psel):

Prep = pupPsel (2.8)

Decreasing pup serves as a simple means for decreasing selective pressure in models of

takeover dynamics (Rudolph, 2000), although pup < 1 is non-standard in evolutionary

algorithms.

2.2.6 Reversion

While the definition of takeover time assumes that Nt can never decrease, this nonextinc-

tion assumption can be relaxed by allowing vertices of value 1 to revert back to 0 with

some probability g (Rudolph, 2001). This reversion probability is analogous to mutation

in evolutionary systems, where genetic information is occasionally lost, or to recovery from

infection in models of disease spread, where infected individuals may recover and either

become immune or again become susceptible.

In all experiments performed herein, reversion of high fitness individuals occurred, with

probability g, at the end of each generation, after the population had been updated with

the selection mechanism. Thus, the probability of a given high fitness individual reverting

to low fitness was independent of the fitness values of the other individuals in its mating

neighborhood.

2.2.7 Reformulating takeover time analysis in terms of the SIS model

In the SIS model, a population of µ individuals is compartmentalized into two discrete

states: susceptible (S) and infected (I). This model evolves according to the following

transition rules

S
pup→ I

g→ S (2.9)
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where pup governs the rate at which infection occurs and g governs the rate of recovery

from infection. Once a node has recovered, it again becomes susceptible. In a spatially

structured population, the transmissibility of disease across a connection is (Keeling, 1999)

τ =
pup
k

(2.10)

The SIS model and our model of takeover dynamics are thus equivalent. The susceptible

state (S) corresponds to low fitness individuals (with fitness 0) and the infected state (I)

corresponds to high fitness individuals (with fitness 1). The probability of a given node

becoming infected (Pinf ) is given by the product of the number of infected neighbors (x)

in its contact neighborhood and the probability of disease transmission across a connection

(τ):

Pinf = τx (2.11)

By substituting equation (2.10) into equation (2.11) and equation (2.7) into equation

(2.8), it is clear that the probability of infection in the SIS model (Pinf , equation (2.11))

is equivalent to the replacement probability in our formulation of takeover time analysis

(Prep, equation (2.8)). Lastly, the reversion probability (g) corresponds to the probability

of mutation back from high to low fitness. Note that when there is no reversion (g = 0),

the system behaves as an SI model, or “contact process” (Satō and Iwasa, 2000). Despite

the clear relationship between these two classes of models, this is the first time, to the best

of our knowledge, that this correspondence has been explicitly made.

2.2.8 Pair approximations

Instead of estimating the dynamics of the states of nodes in a contact network, pair approx-

imations (PAs) estimate the dynamics of states of neighboring pairs of nodes. By capturing

the correlations between pairs of vertices, some aspects of the structure of the interaction

topology can be accounted for.

The PA works as follows. Consider a population of size µ structured on an interaction

topology wherein every node has k neighbors. (It is important to note that PAs assume
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that the underlying contact network is regular, or at least possesses a well defined average

degree k.) Following Keeling (1999), let [X] denote the number of nodes in state X, [XY ]

denote the number of pairs of connected nodes in state XY , and [XY Z] denote the number

of connected triplets of nodes in state XY Z, such that XY pairs are always counted once

in each direction (i.e., [XY ] = [Y X]) and XX pairs are counted twice (i.e., [XX] is always

even). PAs work by tracking the changes in the numbers of all possible combinations of

pairs [XY ]. Since the interaction topology is regular with constant degree k, the number

of singles can always be recovered from the number of pairs, as follows (Keeling, 1999):

[X] =
1
k

∑
W

[XW ] (2.12)

However, the rates of change in the number of pairs depend upon the numbers of config-

urations larger than pairs, such as triplets, and this information is not maintained by the

PA. Even if the number of triplets were maintained, the rates of change in the number

of triplets would similarly depend upon the numbers of quadruplets, and so on for larger

connected motifs. Thus, in order to estimate the dynamics in terms of the numbers of pairs,

the numbers of configurations larger than pairs must be approximated to some degree of

accuracy. This is referred to as “closing” the system (Keeling, 1999; Matsuda et al., 1992;

Van Baalen, 2000).

The simplest closure strategy (Keeling, 1999; Satō and Iwasa, 2000) is to assume that the

nodes at the ends of triplets are not connected to one another (i.e., that triplets are linear,

not triangular). Under this assumption, the number of triplets [XY Z] can be approximated

as (Keeling, 1999):

[XY Z] ≈ (k − 1)[XY ][Y Z]∑
W

[YW ]
=

(k − 1)
k

[XY ][Y Z]
[Y ]

(2.13)

While this assumption closes the system at the level of pairs, it can introduce a significant

amount of error, since it ignores all of the spatial structure beyond pair-wise interactions

and therefore neglects possible correlations between the nodes at the ends of triplets. For
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example, consider the takeover dynamics of a population structured on a square 2D lattice

with 3×3 (Moore) interaction neighborhoods (Table 2.1a, M3). In the early stages of the

dynamics, only a few of the most fit individuals (with state 1) are present in the topology,

and they are propagating locally into a sea of less fit individuals (with state 0). Under the

closure assumption of equation (2.13), [101] (i.e., the number of triplets in state 101) would

be approximated by ((k − 1)/k)([10][01]/[0]). Both [10] and [01] are computed globally, so

can be expected to be quite small (and [0] quite large) during the early stages of the takeover

dynamics, when there are only a few 1’s in the topology. Consequently, the approximation of

[101] by equation (2.13) will also be very small. However, since fit individuals are spreading

only locally, the true value of [101] will be larger than the number estimated by equation

(2.13), because the 1’s that are present in the graph are in the same local region. This error

is especially pronounced if the interaction topology has a preponderance of triangular paths

(e.g. M3), in which case it is not safe to assume that the distant ends of a triplet are not

connected.

In order to more accurately estimate the number of triplets [XY Z], one can explicitly

take into consideration the proportion of triplets in the interaction topology that form

closed triangles (Keeling, 1999). The ratio of closed triangles to total triplets (φ, equation

(2.1), also known as the clustering coefficient) can be incorporated directly into the closure

method, as follows (Keeling, 1999):

[XY Z] ≈ (k − 1)
k

[XY ][Y Z]
[Y ]

(
(1− φ) +

φµ

k

[XZ]
[X][Z]

)
(2.14)

Thus, the closure method of equation (2.14) captures the correlation between nodes at the

opposing ends of a triplet in proportion to the ratio of the number of closed triangles to

total triplets inherent in the underlying population structure. Note that when there is no

clustering (φ = 0), the closure method of equation (2.14) reduces to equation (2.13). Spatial

structure beyond triplets, however, is not considered in equation (2.14).
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2.2.9 Estimating takeover dynamics with pair approximations

In this section, we develop a PA of takeover dynamics by modifying the Susceptible-

Infectious-Recovered (SIR) PA proposed by Keeling (1999). In the SIR model each vertex

has 3 potential states, and the PA developed by Keeling (1999) thus requires a total of

5 coupled differential equations. However, in the reformulation of takeover time analysis

in terms of the SIS model (equation (2.9)) each vertex has only 2 potential states: 1 for

high fitness individuals and 0 for low fitness individuals. With a binary state space, there

exist four distinct types of pairs; due to symmetry, the following three differential equations

suffice:

d[00]
dt

= c(−τ [001] + g[01] + g2[11])

d[01]
dt

= 0.5c
(
τ([001]− [101]− [01]) + g([11]− [01])

)
d[11]
dt

= c(τ([101] + [01])− g[11]− g2[11])

(2.15)

where the additional factor of 0.5 in the second equation accounts for the symmetry between

[01] and [10]. In the original derivation of the PA (Matsuda et al., 1992), designed for the

prediction of population densities at equilibrium, the value of the coefficient c was proposed

to be the constant 2, and this value has since been used in numerous other studies (e.g.,

Keeling (1999); Petermann and De Los Rios (2004); Satō et al. (1994); Van Baalen (2000)).

In fact, it is trivial to show that equilibrium conditions are independent of the particular

choice of the coefficient c. However, if one is to use the PA to approximate pre-equilbrium

dynamics, then the value of c becomes important. As will be shown in Section 2.3.1, our

results clearly demonstrate that the optimal choice of c is a function of ρ (equation (2.4)),

which depends on both the local neighborhood of interactions and the population size.

In this study, all occurrences of [XY Z] in equation (2.15) are computed using equation

(2.14), τ from equation (2.10), and the parameterized coefficient c from equation (2.24),

which we present in Section 2.3.1. Thus, the PA employed herein is parameterized by the
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population size (µ), the ratio (ρ, equation(2.4)) of radiusN to radiusG, the vertex degree

(k), the ratio of closed triplets to total triangles (φ, equation (2.1)), the reversion probability

(g), and the uptake probability (pup). For small reversion probabilities the effect of g2 in

equation (2.15) is negligible, so this term is often ignored (e.g., (Keeling, 1999)). However,

since we wanted to test the accuracy of the PA as a function of g, the inclusion of the g2

term was necessary.

2.2.10 Experimental design

For each combination of the ten population structures (Table 2.2a) and eight population

sizes (Table 2.2b), takeover dynamics were observed by placing a single copy of the best

individual in only one node and then observing the rate with which this advantageous allele

spreads through the population. Since each of the 10 population structures considered in this

study are regular, the takeover dynamics are unaffected by the placement of the initial copy

of the high fitness individual (in sharp contrast to irregular spatial structures (e.g., Giacobini

et al., 2005b; Payne and Eppstein, 2007, 2008). For each of the 80 distinct combinations of

population structure and population size, 50 such simulations were performed and averaged,

in order to mitigate the stochasticity inherent in the selection and reversion policies. When

g = 0, the simulations were carried out until saturation occurred; when g > 0, simulations

were performed for a total of 500 generations, long after the saturation sill had been reached.

Takeover dynamics were also approximated by solving the coupled differential equations

of the PA (equation (2.15)) via numerical integration, using a Runga-Kutta method with

adaptive step size (Matlab’s ode45 function). For each combination of population size and

population structure, we considered pup ∈ {0.5, 0.75, 1} (which spans the range of feasible

selection probabilities in evolutionary algorithms) and g ∈ {0, 0.05, 0.1} (which are common

mutation rates in evolutionary algorithms).
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error, A represents area error, and E[T ] represents expected takeover time. See text for
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2.2.11 Assessing error

Since we are interested in using the PA to estimate pre-equilibrium takeover dynamics,

we employ several error metrics in order to assess the accuracy of the approximation. All

error metrics are represented as percentages, relative to the values observed through direct

simulation. To clarify the presentation of these error metrics, we depict representative curves

for takeover dynamics predicted by the PA (Figure 2.1, dashed black line) and observed

through direct simulation (Figure 2.1, solid black line) for the VN2 population structure

with pup = 1 , g = 0, and µ = 1024. While these curves are later described in the results

section, they are provided here as a visual aid to help elucidate the definition of the error

metrics. Throughout the rest of this manuscript, Sim(t) refers to the simulation data for

Nt, while PA(t) refers to the pair approximation of Nt. Since the PA is a continuous

approximation to discrete system dynamics, Nt only asymptotically approaches 1 (when

g = 0). Consequently, the expected takeover time of the simulation data (Figure 2.1,
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E[T ]Sim) and the PA (Figure 2.1, E[T ]PA) were calculated as the first generation in which

Nt was within 1% of the maximum saturation value of 1. When g > 0, E[T ]Sim and

E[T ]PA are technically undefined, since complete takeover will never occur. In this case,

we use E[T ]Sim and E[T ]PA to denote the first generation in which Nt is within 1% of its

respective saturation sill. The values of the saturation sills were estimated for both the

PA and the simulation data by averaging Nt over generations 300 through 500 (long after

saturation had occurred).

The first error metric, area error, quantifies the area between the predicted and observed

takeover curves, as a percentage of the total area under the observed takeover curve. (Area

errors were thus normalized by the total area under the simulation curve ASim, in order to

provide a relative error metric that is independent of takeover time.) A portion of the area

error is negative (Figure 2.1, A−) where the PA is predicting a slower spread of the high

fitness individuals than that observed through direct simulation, and a portion is positive

(Figure 2.1, A+) where the PA is predicting a more rapid spread. Specifically, if t1 denotes

the number of generations when the two curves intersect and t2 denotes the maximum of

E[T ]Sim and E[T ]PA, then

ASim =
∫ t2

t=0
Sim(t)dt (2.16)

A− =
∫ t1

t=0
PA(t)dt−

∫ t1

t=0
Sim(t)dt (2.17)

A+ =
∫ t2

t=1
PA(t)dt−

∫ t2

t=1
Sim(t)dt (2.18)

and the area error metrics are defined as:

NegativeAreaError =
A−

ASim
× 100% (2.19)

PositiveAreaError =
A+

ASim
× 100% (2.20)

After fitting spline curves to both the PA and simulation data, equations (2.16-2.18) were

computed using the trapezoidal rule at 1000 uniformly spaced points on the spline curves,

between the lower and upper bounds of each integration. The total absolute area error was
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then computed as:

|AreaError| = |NegativeAreaError|+ |PositiveAreaError| (2.21)

Generation error quantifies the maximum generation difference (in either direction), for the

same degree of saturation Nt, between the takeover dynamics predicted by the PA and as

observed through simulation, and is given as a percentage of the takeover time observed

through simulation (E[T ]Sim). Generation error is more robust for assessing dynamics than

simply assessing error in takeover time, since it is assessed over the entire pre-equilibrium

range. These discrepancies take on a positive value (Figure 2.1, G+) when the PA is

predicting a slower spread of the high fitness individuals than that observed in the simulation

data and negative value (Figure 2.1, G−) when the PA is predicting a more rapid spread.

Generation error is defined as the maximum of the absolute values of G− and G+ and is

normalized by the simulation data, as follows,

GenerationError =
max{|G−|, G+}

E[T ]Sim
× 100% (2.22)

When g > 0, we also assess (a) the percentage of unsuccessful introductions, out of the 50

trials, where unsuccessful introductions occurred when all high fitness individuals disap-

peared, due to reversion, in the first few generations, and (b) the Sill Error, which is the

error in the proportion of high fitness individuals that are predicted by the PA to exist at

saturation if the introduction was successful. As before, the values of the saturation sills

for the PA (SPA) and the simulation data (SSim) were calculated as the average value of

Nt over generations 300 to 500 of the PA and simulation data, respectively. The sill error

was then normalized by the sill of the simulation data, as follows,

SillError =
SPA − SSim

SSim
× 100% (2.23)

Thus, the sill error is negative when the PA predicts a smaller sill than that observed

through simulation, and is positive otherwise.
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2.3 Results

2.3.1 Accounting for ρ in the PA

In order to determine the values of c needed for equation (2.15), we varied the coefficient

from 0.1 to 2.0, in increments of 0.01, for each combination of population structure and

population size (using pup = 1 and g = 0), and then selected the value that minimized

generation error (equation (2.22)) as the empirically determined optimal value for c. In

Figure 2.2, we show these optimal values for c, as a function of ρ, along with the best fit

logarithmic curve. The equation for the best fit curve is

c ≈ 1.82 + 0.9 log10(ρ) (2.24)

with R2 = 0.88, and a maximum residual of 0.19 (which occurred with neighborhood

structure T, µ = 576). Our intent is to try to create a rapid and general method which

can be applied to arbitrary regular population structures of arbitrary size. If one had to

perform extensive simulations in order to estimate the optimal coefficient c before the PA

could even be applied, this would defeat the purpose. Thus, equation (2.24) was used in
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all subsequent experiments (rather than the optimally determined values of c) to assess the

accuracy of the PA (equation (2.15)) with the c parameterized by ρ. The value of c = 2,

used in previous studies, is shown for reference (Figure 2.2, horizontal dash-dot line); in all

cases, the optimal coefficient values for c were well below 2.

Sarma and De Jong (1996) found that the rate of saturation increased logarithmically

with the ratio of local neighborhood radius to grid radius. Thus, it makes sense that the

coefficient c must increase logarithmically with ρ, in order to compensate for the decreased

takeover times that occur with larger ρ. A key finding of this work is that, if one is to use the

PA to approximate dynamics, the PA must be parameterized to account for the interaction

between the size and shape of the local neighborhood and the population size.

2.3.2 Non-extinctive dynamics

We first consider the nonextinctive case, where g = 0. For all combinations of popula-

tion size and population structure considered, takeover time was found to decrease as the

radius of the local neighborhood increased, in concurrence with the results of Sarma and

De Jong (1996). Figure 2.3 shows takeover dynamics predicted by the PA (dashed black

lines) and observed by direct simulation (solid black lines) on six representative regular

population structures with pup = 1 and µ = 1024. When plotting simulation results here

and elsewhere in this paper, we depict the proportion of nodes (Nt) containing maximum

fitness at generation t, averaged over all 50 independent simulations on that combination of

graph type and population size. The scale of the horizontal axis varies for each topology in

order to best elucidate the discrepancies between the approximation and simulation data,

since this is the relevant measure of accuracy in this case (as opposed to a comparison of

takeover dynamics between topologies, in which case the scale of the horizontal axes would

be held constant). Error metrics for all graph types and population sizes are quantified in

the subsequent sections, but first we offer some general observations.

For the PA, all takeover curves are sigmoidal, exhibiting exponential growth (R2 > 0.95
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for an exponential fit below the inflection point, for all PA curves) followed by saturation.

In contrast, takeover curves on 2D lattice topologies with local interaction neighborhoods

are known to be polynomial (Giacobini et al., 2005b; Gorges-Schleuter, 1999) below the in-

flection point (polynomial exponent varied from 1.9 to 2.8, R2 > 0.96, for all topologies and

population sizes considered herein, where the exponent increased linearly with increasing

radiusN , (R2 > 0.96 for all population sizes)). Thus, the PA is not an actual mechanistic

model of the governing dynamics of this system, but is more appropriately characterized

as an approximation, and all PA curves were statistically different from the corresponding

simulation curves (p < 0.001, χ2). In general, the slope of the PA tends to increase too

slowly early in the growth phase and later, too rapidly, as compared to the simulation data.

However, in most cases the resulting curves are in reasonably good agreement with the data

observed through simulation (Figure 2.3c-f). (In contrast, the curves resulting from the PA

using c = 2, shown in Figure 2.3 as dash-dot lines, always dramatically overestimate the

rate of spread of the advantageous allele.)

If the optimal c were used, the Sim(t) and PA(t) curves would intersect at the inflection

point. However, the use of equation (2.24) to estimate c introduces a small amount of error,

sometimes causing the curves to intersect at little too early (as for VN1, Figure 2.3a), or a

little too late (as for T, Figure 2.3b), thus resulting in an over- or under-estimate of the rate

of takeover, respectively. Other errors are due to simplifications in the PA itself, causing

the PA to be least accurate on the VN1 topology, and most accurate for populations with

large neighborhood radii and small population sizes. These results are quantified in the

next section and discussed in Section 2.4.

Area error and generation error

Both area error (Figure 2.4a) and generation error (Figure 2.4b) were found to decrease

approximately exponentially as a function of ρ. The average goodness of fit was R2 = 0.73

between the logarithm of area error and ρ andR2 = 0.79 between the logarithm of generation
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Figure 2.4: (a) Area error and (b) generation error as a function of (ρ), for all population
sizes and population structures, with pup = 1 and g = 0. The solid line in each figure
depicts the best exponential fit to the data for all population structures, and is provided as
a visual aid only. Note the logarithmic scale on the vertical axis.
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error and ρ. In both cases, the decay coefficient varied with population structure, as can

be seen from the individual symbol types shown in Figure 2.4. The maximum area error

(31%) was observed on the VN2 population structure with µ = 5184, the minimum (5%)

was observed on the M7 population structure with µ = 1024, and the overall average area

error was 19%. The maximum generation error (29%) was observed on the VN1 population

structure with µ = 4096, the minimum generation error (3.2%) was observed on the M7

population structure with µ = 576, and the average generation error was 17%. Since area

error was highly correlated to generation error across all population structures, population

sizes, and uptake/reversion probabilities (R2 > 0.9), we present generation error, but not

area error, in our subsequent results.

The exponential decrease of generation error as ρ increases has the ironic implication

that the PA, even after the formulation has been adjusted to compensate for ρ, becomes

more accurate for estimating saturation dynamics as the system approaches the well-mixed

case. This finding also has the important implication that for any given local interaction

neighborhood, the accuracy of the PA depends heavily upon population size (µ), with

smaller population sizes yielding more accurate results. To better elucidate the dependence

of the accuracy of the PA on population size, Figure 2.5 depicts the takeover dynamics

observed on the M3 population structure as population size is increased from µ = 1024 to

µ = 6400. As population size increases, the discrepancy between the PA and simulation

curves becomes more pronounced, with generation error increasing from 10% (Figure 2.5a)

to 18% (Figure 2.5d). This results from the increase in the number of generations required

for complete saturation to occur as population size increases, providing the exponential

trend of the PA curve more time to diverge from the polynomial trend of the simulation

curve.
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Figure 2.5: Influence of population size on the accuracy of the PA. Takeover dynamics as
estimated by the PA (dashed line) and as observed through direct simulation (solid line)
on the M3 population structure, with a population size of (a) µ = 1024, (b) µ = 2304, (c)
µ = 4096, and (d) µ = 6400

Relaxing selection pressure, pup < 1

For a given combination of population structure and population size, takeover time was

found to increase in proportion to p−1
up , shifting both the PA and simulation curves to the

right as pup decreases (Figure 2.6). Decreasing pup causes the PA to predict a slower spread

of the high fitness allele than that observed through direct simulation (as explicitly shown

for two graph types, VN2 and M3, in Figures 2.6a-c and 2.6d-f, respectively), shifting the

PA curve more to the right, relative to the curve observed through simulation (e.g., compare

Figures 2.6a and 2.6c). Thus, decreasing pup causes an improvement in the accuracy of the

PA for combinations of population structure/population size in which PA(t) intersected

Sim(t) before the inflection point when pup = 1 (such as VN2, µ = 1024, Figure 2.6a-c)

and a degradation in accuracy for populations in which PA(t) intersected Sim(t) at or after

the inflection point pup = 1 (such as M3, µ = 1024, Figure 2.6d-f). Decreasing pup from

1 to 0.5 resulted in a maximum improvement in generation error of 11%, observed on the

VN2 population structure with µ = 6400, and a maximum degradation in accuracy of 12%,

observed on the M7 population structure with µ = 1024.
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Figure 2.6: Influence of uptake probabilities pup on the accuracy of the PA. Representative
takeover dynamics as estimated by the PA (dashed line) and as observed through direct
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axes of each panel.
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Table 2.3: Percentage of unsuccessful introductions as a function of pup ∈ {1, 0.75, 0.5}
and g ∈ {0.05, 0.1}. The data represent the percentage out of 50 independent trials on
each graph type, averaged over all population sizes. Note that the data for g = 0 are not
displayed, since an unsuccessful introduction is impossible in this case.

Population Structure Unsuccessful Introductions (%)
pup = 1 pup = 0.75 pup = 0.5

g = 0.05 g = 0.1 g = 0.05 g = 0.1 g = 0.05 g = 0.1
VN1 2.50 5.00 6.25 15.25 12.00 26.50
ST 2.75 4.25 4.25 11.75 8.75 16.50
AT 4.50 6.25 5.50 12.75 7.00 18.75
T 2.75 10.25 5.25 8.25 7.25 16.50

M3 2.00 7.50 4.00 10.00 8.75 19.75
MVN 2.25 9.00 6.50 8.75 9.00 21.75
VN2 3.00 5.50 4.50 11.75 10.25 21.50
M5 1.25 6.75 4.25 13.00 8.00 18.00

VN3 3.00 6.25 5.50 11.00 6.50 20.75
M7 2.25 7.00 4.75 12.75 6.25 17.00

2.3.3 Relaxing the non-extinction assumption, g > 0

We now consider the case in which reversion is possible, where high fitness individuals can

revert back to low fitness with probability g.

Percentage of unsuccessful introductions

Table 2.3 shows the percentage of all 50 trials with unsuccessful introductions, using pup ∈

{0.5, 0.75, 1} and g ∈ {0.05, 0.1}. Since the percentage of unsuccessful introductions was

unaffected by population size, the data presented in Table 2.3 depict the average of the

percentages observed on all eight population sizes. Note that data for g = 0 are not

displayed, as extinction is not possible in this case. As expected, increasing g or decreasing

pup generally increased the number of unsuccessful introductions. However, no obvious

relationship was observed between introduction success and neighborhood radius (radiusN ),

degree (k), or ρ.

47



Sill error

As g increases, the saturation sill decreases, as shown for representative population struc-

tures AT and M7 in Figure 2.7a-c and Figure 2.7d-f, respectively. The dash-dot horizontal

line represents the expected sill, which can be accurately predicted by 1− g/pup for regular

population structures with k > pup/g. For the simulation data, we plot the proportion of

nodes (Nt) containing maximum fitness at time t, averaged over all of the trials in which

extinction did not occur. Note that the proportion of high fitness individuals observed at

saturation using the PA (dashed lines) and direct simulation (solid lines) are both in good

agreement with the predicted sill (1− g/pup). For each value of pup, the absolute sill error

(equation (2.23)) was found to increase slightly as g increased from 0.05 to 0.1. For all

values of pup and g tested, the absolute sill error remained low, with an average value of

1%. The worst sill error was observed on the VN1 population structure, with absolute sill

errors of 2.3% (µ = 6400 and pup = 0.5) and 7.5% (µ = 5184 and pup = 0.5), for g = 0.05

and g = 0.1, respectively.

Generation error

Figure 2.7 shows that, as expected, increasing g slightly increases the number of generations

required to reach the sill. This shifts both the PA and simulation curves to the right, even

though the height of the sill is reduced for g > 0. For the AT population structure with

µ = 1024, Figure 2.7a-c shows the PA becoming increasingly accurate as g increases, whereas

Figure 2.7d-f shows the PA becoming increasingly less accurate with increasing g on the

M7 population structure. Similar to the changes in the PA observed with decreasing pup

(Figure 2.6), these improvements and degradations in accuracy are the result of a shift

in the dynamics predicted by the PA as g changes, relative to the shift in the dynamics

observed through simulation. Thus, those populations for which the PA was predicting a

slower spread of high fitness individuals than that observed through simulation when g = 0

become more accurate as g increases, and vice versa.
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Figure 2.7: Influence of reversion probabilities g on the accuracy of the PA. Representative
takeover dynamics with pup = 1 and µ = 1024, as estimated by the PA (dashed black line)
and as observed through direct simulation (solid black line), for the AT population structure
(top row, a-c) and for the M7 population structure (bottom row, d-f). The three plots in
each row correspond to g ∈ {0, 0.05, 0.1}, from left to right. The dash-dot horizontal line
denotes the saturation sill, as approximated by 1 − g/pup. The scale of the vertical and
horizontal axes are held fixed in each panel.
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Generation error was found to be more sensitive to changes in g than to changes in pup.

For a given value of pup, increasing g from 0 to 0.1 caused an average decrease in generation

error of 3.9% among those populations for which error decreased as g increased and an

average increase in error of 6.1% among those populations for which error decreased as g

increased. For a given value of g, decreasing pup from 1 to 0.5 caused an average decrease

in error of 3.8% and an average increase of 5.6%.

2.4 Discussion

The aim of this study was to investigate whether the pair approximation (PA) could be

used to easily and accurately estimate takeover dynamics for evolutionary algorithms that

are spatially-structured on regular graphs. PAs were originally derived as a statistical me-

chanics formulation to approximate equilibrium conditions in spatially structured biological

populations, in order to determine conditions for the evolution of altruism (Matsuda et al.,

1992). PAs have since been widely applied in various biological applications, as reviewed in

Section 1. In this manuscript, we first show that the takeover dynamics of an advantageous

allele are equivalent to the dynamics of the well-known Suceptible-Infectious-Susceptible

(SIS) model of disease spread. We then modify the epidemiological formulation of the PA

of Keeling (1999) to model takeover dynamics in this system.

The original presentation of the PA (Matsuda et al., 1992) incorporated a constant

coefficient of c = 2, and this value has since been used in numerous other studies. While

the value of this coefficient does not affect equilibrium frequencies, we show that it does

dramatically impact predictions of pre-equilibrium dynamics. Our results show that, in all

10 population structures tested, a value of c = 2 caused the PA to dramatically overestimate

the rate of spread of advantages alleles, consistent with the results of Petermann and De

Los Rios (2004). Furthermore, we show that, if one is trying to predict pre-equilibrium

dynamics, the value of c that minimizes generational errors depends on the interaction

between (a) the structure of the local interaction neighborhood and (b) the population size.
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We combine these two influences into a single parameter ρ (defined as the ratio of the radius

of the local interaction neighborhood to the radius of the entire population) and show that

the optimal value for the coefficient c can be estimated as a logarithmic function of ρ. Using

this formula for c in the PA, we systematically assessed the accuracy of both equilibrium

conditions and pre-equilibrium takeover dynamics for 10 regular neighborhood interaction

structures, at 8 population sizes, and with a variety of uptake and reversion probabilities.

Parameterizing the coefficient c by ρ effectively shifts the saturation curve predicted by the

PA so that it intersects with the simulation data at (or near) the inflection point, thereby

minimizing generational errors in the PA. In general, two primary sources of errors remain:

(a) residual errors introduced by using the regression curve to estimate c, and (b) errors

introduced by the simplifications in the PA itself.

If the optimal values of c were used for each specific ρ, the PA and simulation takeover

curves would intersect at the inflection point, thus balancing out positive and negative area

and generational errors and minimizing overall error. However, in general the optimal c

would not be known for a particular neighborhood structure and population size unless

extensive simulations were first performed, which would defeat the purpose of using the PA

to rapidly and easily predict takeover dynamics without simulations. Thus, the PA was

assessed using the values of c predicted by the empirically derived logarithmic fit relating

c to ρ. Although this fit was quite good (R2 > 0.88), individual values of c selected

according to this formula did contain some small residual error, which caused some predicted

curves to intersect the simulation curve a little before the inflection points, thus causing

a slight net over-prediction in the rate of spread, or a little after the inflection points,

causing a slight net under-prediction in the rate of spread. In general, decreasing the

uptake probability or increasing the reversion probability slows takeover time and had the

effect of shifting the PA curve slightly more to the right than the simulation curve. Whether

this increased or decreased overall error depended on where the two curves intersected at

pup = 1, g = 0, relative to the inflection point. We suspect that the coefficient c could be
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further parameterized in terms of both pup = 1 and g = 0, to reduce this variability.

The PA uses differential equations to model the dynamics of states of neighboring pairs

of vertices. Higher order interactions are not explicitly modeled, but must be approximated

using some method of closure. We employed the closure method of Keeling (1999), which

incorporates the proportion of closed to total triplets that exist in the local interaction

neighborhood (a.k.a. the clustering coefficient), thus closing the system at the level of

triplets. Interactions higher than triplets were ignored. Consequently, the PA yielded less

accurate predictions of dynamics on populations with Von Neumann neighborhoods, which

have no closed triangles (and thus no clustering) but do have a preponderance of closed

quadruplets. To illustrate why this is a problem, consider a closed wxyz quadruplet (i.e.,

a square) in the VN1 topology. While the state of node y cannot directly affect the state

of node w, it can have an affect on z, which in turn may affect w. By ignoring quadruplet

correlations and assuming no correlation between distant ends of triplets, the PA treats

the VN1 population structure as if it were a regular random graph with degree k. This

explains the more rapid saturation predicted by the PA than that observed through direct

simulation. Thus, if one wanted to use the PA to estimate takeover dynamics in populations

with Von Neumann (or other) neighborhoods with higher order interactions, accuracy could

be improved by explicitly accounting for these correlations. For example, Van Baalen (2000)

presented a closure method that captures quadruplet correlations, in order to improve the

accuracy of the PA in predicting the equilibrium dynamics of a simple birth-death-movement

process in lattice based population structures with Von Neumann neighborhoods. Satō

and Iwasa (2000) introduced a closure method, referred to as variable discounting, which

similarly improves the accuracy of the PA in estimating pathogen invasion in lattice based

spatial structures with spatially adjacent interactions (i.e., Von Neumann and Moore).

In contrast to these higher-order closure methods, Petermann and De Los Rios (2004)

developed a technique referred to as the “cluster approximation” that explicitly tracks higher

order correlations up to a specified degree, improving the accuracy of the approximation
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in estimating the dynamics of disease spread in lattice structured (Triangular and Von

Neumann) and random interaction topologies. Although the higher-order approximations

of Petermann and De Los Rios (2004) are able to more accurately predict equilibrium

frequencies, the required number of coupled differential equations grows exponentially in

the size of the correlation being tracked and growth rates are still over-predicted, especially

in the lattice structured populations. While these higher-order methods have yet to be

explored on different population sizes, our results suggest that the interaction between

neighborhood size and shape and population size will still need to be accounted for. Such

higher-order improvements could be used in combination with a paramterized coefficient

c as suggested in this manuscript, although the best fit curve for this would need to be

recomputed for a given approximation method.

The PA exhibits exponential growth below the inflection point, while the takeover curves

on lattices with local interactions increase only polynomially. Consequently, the accuracy of

the PA decreases exponentially with increasing ρ (i.e. with increasing neighborhood inter-

action radii and/or decreasing population size), in part because larger neighborhood radii

have higher polynomial exponents, and in part because as population sizes are decreased,

individual neighborhoods cover a larger portion of the population (and thus approach pan-

mixia). Furthermore, as population size increases, the exponential trend of the PA curve

has more time to diverge from the polynomial trend of the simulation curve, thereby in-

creasing discrepancies between the two curves. It is ironic that PAs, which were designed

to model local interactions, actually work better when interactions are far-ranging. It is

also usually assumed that continuous models of discrete systems work better as popula-

tion sizes approach infinity, but in this case the PA works better for small populations, a

counter-intuitive finding.

The “replace if better” selection mechanism employed herein is clearly a simplification

of the selection operators that are commonly used in evolutionary algorithms. However,

PAs can be modified to employ much more complicated selection policies, such as frequency
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dependence (Van Baalen and Rand, 1998) and game-theoretic payoff matrices (Hauert and

Doebeli, 2004; Ohtsuki et al., 2006). The PA could be similarly adjusted to include a more

sophisticated reversion mechanism as well (e.g., frequency dependence), and recent work

(Ellner, 2001) has demonstrated that the PA can even be adjusted to deal with processes

(e.g., selection and reversion) that operate on differing spatial scales.

One definite limitation of the PA is the assumption of topological regularity. For exam-

ple, while the proposed method for adjusting the PA as a function of ρ allows for nonuniform

lattice dimensions, the exponential trend of the PA will become increasingly inaccurate as

the dimensions of the lattice become more unequal; in the limiting case of the ring topol-

ogy, in which the actual saturation dynamics are linear (Rudolph, 2000), the PA would be

extremely inaccurate in capturing the saturation dynamics. The PA has been applied in a

few population structures with mildly heterogeneous degree distributions, such as random

graphs (e.g., Petermann and De Los Rios (2004)). However the extreme heterogeneity of

other spatial structures of recent interest, including small-world (Watts and Strogatz, 1998)

and scale-free (Barabàsi and Albert, 1999) topologies, prohibits the development of a PA for

predicting dynamics on these networks. For example, Ohtsuki et al. (2006) noted that the

simple rule for the evolution of cooperation in the graph-based Prisoners dilemma, derived

using a PA based on the assumption of a regular graph, was inaccurate for populations

structured on highly irregular topologies (e.g., scale-free). While the extreme irregularity

of some topologies may preclude the development of such a generalized methodology for

estimating takeover dynamics, the recent results of Payne and Eppstein (2007) suggest that

it may be possible to rapidly predict expected takeover times on arbitrary topologies, us-

ing only a few readily computable metrics of the underlying spatial structure, and work is

underway to refine this empirical prediction approach (Payne and Eppstein, 2008).

The PA, as formulated herein, implicitly assumes synchronous updating. The choice of

synchronous vs. asynchronous updating can have a significant impact on takeover dynamics

(Giacobini et al., 2005a; Giacobini et al., 2005b), and it has been reported that the PA
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produces more accurate results when the update policy is synchronous (Hauert and Doebeli,

2004). Thus, this represents a further limitation of the PA.

2.5 Summary

In summary, takeover time analysis for evolutionary algorithms was reformulated in terms

of the well-known Susceptible-Infectious-Susceptible (SIS) model of disease spread. An ana-

lytical technique, referred to as the pair approximation (PA), was then adapted to predict

takeover dynamics and parameterized by ρ, the ratio of the radius of the local neighbor-

hood and the radius of the graph. The accuracy of our parameterized reformulation of

the PA was then assessed on a total of ten distinct types of regular population structures,

each with different configurations of interaction neighborhoods, using eight population sizes,

and several combinations of selection and reversion probabilities. The results of this study

demonstrate that our parameterized formulation of the PA, using the closure method of

Keeling (1999), is a fast and reasonably accurate way to estimate both equilibrium and

pre-equilibrium takeover characteristics of synchronously updated populations embedded

on a variety of regularly structured graphs. A key result of this study is that the coefficient

c in the PA (which is commonly assumed to be c = 2) should be parameterized by ρ if one is

interested in approximating pre-equilibrium conditions. PAs are not appropriate for hetero-

geneous graphs, unless nodal degree is reasonably close to constant. Thus, in biological or

epidemiological studies, where interaction topologies are typically dynamic, heterogeneous,

and difficult to ascertain, we caution that PAs may produce misleading results. However, in

evolutionary computation, population structures are user-defined, frequently regular, and

their topological properties are readily computable. We conclude that PAs can be a useful

tool for rapidly estimating takeover dynamics in evolutionary algorithms on synchronously

updated regular graphs, as long as care is taken to assess the topological characteristics

of the graph in advance and the PA is appropriately formulated. Future work will seek

to demonstrate if such insights may prove useful for guiding choices of local neighborhood
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structures in evolving populations, as a potential means of statically or dynamically opti-

mizing selection pressure and convergence.
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Barabàsi, A. L. and R. Albert (1999). Emergence of scaling in random networks. Sci-

ence 286, 509–512.

Bryden, K. M., D. Ashlock, S. Corns, and S. Wilson (2005). Graph based evolutionary

algorithms. IEEE Transactions on Evolutionary Computation 10 (5), 550–567.

Chakraborty, U. K., L. Deb, and M. Chakraborty (1997). Analysis of selection algorithms:

a markov chain approach. Evolutionary Computation 4 (2), 133–167.

Eames, K. T. D. and M. J. Keeling (2002). Modeling dynamic and network heterogeneities

in the spread of sexually transmitted diseases. Proceedings of the National Academy of

the Sciences 99 (20), 13330–13335.

Ebel, H., L. Mielsch, and S. Bornholdt (2002). Scale-free topology of email networks.

Physical Review E 66, 035103.

Ellner, S. P. (2001). Pair approximations for lattice models with multiple interaction scales.

Journal of Theoretical Biology 210 (4), 435–447.

57



Eppstein, M. J. and J. Molofsky (2007). Invasiveness in plant communities with feedbacks.

Ecology Letters 10, 253–263.

Falconer, D. S. and T. F. C. Mackay (1996). Quantitative Genetics. Pearson Education

Limited, London.

Giacobini, M., M. Preuss, and M. Tomassini (2006). Effects of scale-free and small-world

topologies on binary coded self-adaptive cea. In J. Gottlieb and G. R. Raidl (Eds.),

Evolutionary Computation and Combinatorial Optimization, pp. 86–98. Springer-Verlag,

Heidelberg.

Giacobini, M., M. Tomassini, and A. Tettamanzi (2005a). Takeover times curves in random

and small-world structured populations. In H. G. Beyer (Ed.), Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO-2005, pp. 1333–1340. ACM Press,

New York.

Giacobini, M., M. Tomassini, A. Tettamanzi, and E. Alba (2005b). Selection intensity in

cellular evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary

Computation 9 (5), 489–505.

Goldberg, D. and K. Deb (1991). A comparative analysis of selection schemes used in

genetic algorithms. In G. Rawlins (Ed.), Foundations of Genetic Algorithms, pp. 69–93.

Morgan Kaufmann, San Francisco.

Gorges-Schleuter, M. (1999). An analysis of local selection in evolution strategies. In

W. Banzhaf, J. Daida, A. E. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R. Smith

(Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-

1999, pp. 847–854. Morgan Kaufmann, San Francisco.

Hauert, C. and M. Doebeli (2004). Spatial structure often inhibits the evolution of cooper-

ation in the snowdrift game. Nature 428, 643–646.

58



Heibeler, D. (2000). Populations on fragmented landscapes with spatially structured het-

erogeneities: landscape generation and local dispersal. Ecology 81 (6), 1629–1641.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ph. D. thesis, Univer-

sity of Michigan.

Joo, J. and J. L. Lebowitz (2004). Pair approximation of the stochastic susceptible-infected-

recovered-susceptible model on the hypercubic lattice. Physical Review E 70, 036114.

Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasions.

Proceedings of the Royal Society of London B 266, 859–867.

Keeling, M. J. and K. T. D. Eames (2005). Networks and epidemic models. Journal of the

Royal Society Interface 2, 295–307.

Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan (2002). Local dispersal

promotes biodiversityin a real life game of rock-paper-scissors. Nature 418, 171–174.

Kirley, M. and R. Stewart (2007). An analysis of the effects of population structure on

scalable multiobjective optimization problems. In D. Thierens (Ed.), Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO-2007, pp. 845–852. ACM

Press, New York.

Liljeros, F., C. R. Edling, L. A. N. Amaral, H. E. Stanely, and Y. Åberg (2001). The web
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Chapter 3

Evolutionary Dynamics on

Scale-Free Interaction Networks

Abstract

There has been a recent surge of interest in studying dynamical processes, including evo-

lutionary optimization, on scale-free topologies. While various scaling parameters and as-

sortativities have been observed in natural scale-free interaction networks, most previous

studies of dynamics on scale-free graphs have employed a graph generating algorithm that

yields a topology with an uncorrelated degree distribution and a fixed scaling parameter. In

this contribution, we advance the understanding of selective pressure in scale-free networks

by systematically investigating takeover times under local uniform selection in scale free

topologies with varying scaling exponents, assortativities, average degrees, and numbers of

vertices. We demonstrate why the so-called “characteristic path length” of a graph is a

nonlinear function of both scaling and assortativity. Neither the eigenvalues of the adja-

cency matrix nor the effective population size were sufficient to account for the variance in

takeover times over the parameter space that was explored. Rather, we show that 97% of

the variance of logarithmically transformed average takeover times, on all scale-free graphs
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tested, could be accounted for by a planar function of (i) the average inverse degree (which

captures the effects of scaling) and (ii) the logarithm of the population size. Addition-

ally, we show that at low scaling exponents, increasingly positive assortativities increased

the variability between experiments on different random graph instances, while increasingly

negative assortativities increased the variability between takeover times from different initial

conditions on the same graph instances. We explore the mechanisms behind our sometimes

counter-intuitive findings, and discuss potential implications for evolutionary computation

and other relevant disciplines.

3.1 Introduction

The behavior of a complex adaptive system is governed by the collective dynamics of its

interacting system components. Consequently, the topological characteristics of the in-

teraction network that specifies which components can interact with one another have a

pronounced influence on the rate of information flow throughout the system, and thus play

a critical role in determining emergent system-wide dynamics. For example, the evolu-

tion of altruism (Werfel and Bar-Yam, 2004) and cooperation (Hauert and Doebeli, 2004;

Nowak and May, 1992; Ohtsuki et al., 2006; Santos and Pacheco, 2005), species invasive-

ness (Eppstein and Molofsky, 2007), disease propagation (Keeling, 1999; Newman, 2002;

Pastor-Satorras and Vespignani, 2001), energy transfer in food webs (Borrett et al., 2007),

predator-prey dynamics (Rauch and Bar-Yam, 2006), the maintenance of genetic diver-

sity (Kerr et al., 2002; Reichenbach et al., 2007; Sayama et al., 2003), the suppression of

evolutionary pathologies (Altenberg, 2005), and the self-organization of barriers to gene

flow (Payne et al., 2007) have all been shown to be highly dependent on the topological

properties of the underlying interaction network.

In the context of evolutionary computation, interaction networks are often utilized as

population structures. This was initiated in the design of parallel evolutionary algorithms

(for a review of this topic, please see Alba and Tomassini (2002)), where populations are
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typically structured into subpopulations that are distributed onto separate processing units.

Mating interactions are usually panmictic within the subpopulations, with periodic migra-

tion occurring between subpopulations according to an explicit subpopulation interaction

topology (e.g., all-to-all, grid-based, etc.) (Cantú-Paz, 2000; Folino et al., 2001, 003a;

Herrera and Lozano, 2000; Lienig, 1997; Van Veldhuizen et al., 2003). While population

structures can thus be exploited for computational efficiency of parallel implementations

of evolutionary algorithms, there has also been an increasing interest in exploiting differ-

ent population structures to improve the effectiveness of evolutionary search. In cellular

evolutionary algorithms, populations are structured on low-order regular graphs, such as

a one-dimensional (1D) or two-dimensional (2D) lattice, and mating events are restricted

to occur within spatially-localized, overlapping neighborhoods. In these regular population

structures, the imposition of spatial constraints on recombination events has been shown to

improve the maintenance of genetic diversity, in part by retarding the flow of advantageous

alleles and consequently reducing the selective pressure (Giacobini et al., 2005b). While

1D and 2D lattice population structures are the most commonly used interaction networks

for evolutionary optimization, the utilization of other regular graph structures, such as the

generalized Peterson graph and the complete bipartite graph, have recently been investi-

gated as well (Bryden et al., 2005), wherein the performance improvements obtained on

each graph structure were shown to be problem dependent.

In contrast to these regular population structures, the interaction networks of numerous

natural populations have been found to be heterogeneous (i.e., different nodes in the inter-

action network have different numbers of connections). Of particular interest are scale-free

networks (Barabàsi and Albert, 1999), a class of highly heterogeneous graphs, which have

been shown to be quite ubiquitous in natural systems, ranging from networks of social inter-

actions, such as email networks (Ebel et al., 2002) and sexual contacts (Liljeros et al., 2001),

to cellular systems, such as metabolic networks (Jeong et al., 2000; Ravasz et al., 2002) and

protein-protein interactions (Jeong et al., 2001). Accordingly, there has been a recent surge
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of interest in studying dynamical processes on scale-free topologies; examples include the

saturation dynamics of infectious disease in epidemiological models (Pastor-Satorras and

Vespignani, 2001), information cascades in binary decision models (Watts, 2002), the emer-

gence of cooperative behavior in evolutionary games (Poncela et al., 2007; Rong et al., 2007;

Santos and Pacheco, 2005), and evolutionary optimization (Gasparri et al., 2007; Giacobini

et al., 2006; Kirley and Stewart, 2007a,b). In particular, scale-free population structures

have been analyzed in the context of genetic algorithms with self-adaptive mutation (Gi-

acobini et al., 2006) and multi-objective optimization (Kirley and Stewart, 2007a,b), and

have been applied to the localization problem in robotics (Gasparri et al., 2007), with each

study demonstrating varying degrees of success. For example, while Giacobini et al. (2006)

found that populations evolving on scale-free topologies were unable to outperform pan-

mictic populations on a variety of benchmark optimization problems, Gasparri et al. (2007)

found that scale-free population structures enhanced the genetic algorithm’s ability to solve

both the localization and kidnap problems in a mobile robotics application. Such mixed

results were also reported by Kirley and Stewart (2007a,b). While populations evolving on

scale-free topologies were outperformed by populations evolving on random topologies on

a two-objective problem (in terms of convergence speed and spread of solutions across the

Pareto-front) (Kirley and Stewart, 2007b), populations evolving on scale-free population

structures were shown to outperform populations evolving on random, small-world (Watts

and Strogatz, 1998), and regular lattice population structures as the number of objectives

increased, on specific multi-objective problems (Kirley and Stewart, 2007a).

Scale-free topologies exhibit a power-law distribution of vertex connectivity, such that

the probability p(k) of having a vertex of degree k is of the form p(k) ∝ k−γ , where γ

is referred to as the scaling parameter. Various scaling exponents have been measured

in natural systems, e.g., γ ∼ 2.4 for the number of species per genus of mammals and

γ ∼ 3.1 for the protein-protein interaction network of S. cerevisiae (Clauset et al., 2009).

The propensity with which vertices of similar degree (i.e., number of connections) are
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connected to one another is referred to as the assortativity (r) of the network (Newman,

2002). Some scale-free interaction networks (e.g., societal interactions) exhibit “positive

assortativity” (Newman, 2002), where vertices of high degree are more likely to be connected

to one another than to vertices of low degree. Other scale-free networks (e.g., protein-

protein interactions), exhibit “negative assortativity” (Newman, 2002), where nodes of high

degree are more likely to connect to nodes of low degree. Networks in which there is

no relationship between the degree of adjacent vertices, such as those produced by the

preferential attachment algorithm provided by Albert and Barabàsi (AB) (Barabàsi and

Albert, 1999), are referred to as “uncorrelated.”

While various scaling parameters and assortativities have been observed in natural sys-

tems, most previous studies of dynamics on scale-free graphs (including the evolutionary

optimization studies cited above) were generated using the AB algorithm, which yields

uncorrelated topologies (r ∼ 0) (Newman, 2002) with a scaling parameter that approaches

γ ∼ 3 (Barabàsi and Albert, 1999), as the number of vertices approaches infinity. However, a

few recent studies have shown that both scaling and assortativity exert important influences

on graph-based dynamical processes. For example, the equilibrium proportion of coopera-

tors in the prisoner’s dilemma played on scale-free networks has been shown to decrease as

the scaling exponent γ increases (Poncela et al., 2007), or as the assortativity deviates from

an uncorrelated mixing pattern (r 6= 0) (Rong et al., 2007). In the unbiased Voter Model,

recent results (Sood et al., 2008) have demonstrated that the expected consensus time on

scale-free graphs increases as the scaling exponent increases, and that assortativity has a

smaller secondary effect on the amount of time required to reach consensus.

In order to better understand the potential for evolutionary optimization on scale-free

graphs, it is important to understand how both scaling and assortativity affect fundamen-

tal system dynamics. Such an understanding may also provide insight into other types of

dynamic processes on scale-free networks, including spread of infectious disease and dissem-

ination of fads and ideas.
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One commonly employed method for quantifying selective pressure in evolutionary al-

gorithms is through the analysis of the dynamics with which a single favorable mutation

spreads throughout the population (a.k.a. “takeover time analysis”) (Goldberg and Deb,

1991). Higher takeover times imply lower selective pressure, and vice versa. Takeover

times have been previously investigated and modeled in several regular population struc-

tures. Goldberg and Deb (1991) investigated saturation dynamics in panmictic population

structures (i.e., complete graphs) under a variety of selection mechanisms and showed that

takeover is quite rapid in such well-mixed systems. Rudolph (2000) provided exact analyti-

cal solutions for expected saturation times on ring structures (i.e., 1D toroidal lattice) and

lower and upper bounds for array structures (i.e., 1D non-toroidal lattice). Sarma and De

Jong (1996) investigated takeover times in 2D toroidal lattices with neighborhoods of vari-

ous shapes and sizes and showed that selective pressure is largely governed by the radius of

the local mating neighborhood and Giacobini et al. (2005b) provided mathematical models

of takeover dynamics in 1D and 2D (with Von Neumann neighborhoods) toroidal lattices,

using synchronous and asynchronous updating policies.

Analysis of takeover times in irregular population structures has received considerably

less attention. Giacobini et al. (2005a) provided analytical approximations of takeover

dynamics in random graphs and empirical results for small-world topologies (Watts and

Strogatz, 1998). Their results demonstrated that random graphs induce a selective pressure

qualitatively similar to panmixia and that the selective pressures induced by small-world

topologies approach that of a random graph as the probability of creating long-distance

interactions increases. In the same study (Giacobini et al., 2005a), they showed that the

average selective pressures induced by the AB scale-free population structures they employed

were at least as strong as those induced by random graphs and that, when the initial copy

of the high fitness individual was strategically placed in a highly connected vertex of an AB

graph, takeover was even faster than with panmixia.

In a preliminary study (Payne and Eppstein, 2007), we measured takeover times using
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a variety of scale-free graph generating algorithms (Barabàsi and Albert, 1999; Holme and

Kim, 2002; Ravasz et al., 2002) with various degrees of clustering, modularity, and hier-

archical organization (which resulted in a variety of scaling exponents and assortativities,

although these parameters were neither systematically varied nor explicitly reported there).

We showed that selective pressures on different types of scale free graphs vary from very

high levels, comparable to those induced by random mixing, to very low levels that are even

weaker than those induced by nearest neighbor interactions (Moore neighborhoods). In a

follow-up study, we investigated the independent and combined influence of scaling (γ) and

assortativity (r) on takeover times in scale-free topologies at a single population size, with

fixed average degree (Payne and Eppstein, 2008). In that work, we found that takeover

times exhibited a nonlinear negative correlation with the scaling exponent and a nonlinear

positive correlation with assortativity, with additional nonlinear interactions between these

two topological properties. Further, we showed that with low scaling and high positive

assortativity, takeover times were much less dependent on the degree of initial placement

than on uncorrelated (Giacobini et al., 2005a; Payne and Eppstein, 2008) and negatively

assortative (Payne and Eppstein, 2008) scale-free graphs.

Ideally, expected takeover times in arbitrary population structures (regular or irregular)

could be simply predicted using readily pre-computable metrics of the underlying inter-

action network. In related application domains, such as statistical physics and ecology,

simple functional relationships have been determined between the structural properties of

the interaction networks and the dynamic properties of spreading behavior. For example,

consensus time in the unbiased Voter Model has recently been shown to be a function of the

population size and the first and second moments of the degree distribution (Sood et al.,

2008). Investigations in heterogeneous ecological networks have shown that indirect path-

ways are an important governing influence in graph-based dynamical processes (Borrett

et al., 2007; Caswell, 2001). Specifically, the leading eigenvalue of the network adjacency

matrix has been shown to be a good measure of the rate with which the number of paths
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between vertices grows as a function of path length (Caswell, 2001) and this has been shown

to have a pronounced influence on the rate of flow of matter and energy throughout ecosys-

tems (Borrett et al., 2007). In the context of evolutionary computation, expected takeover

time on regular graphs is known to be a positively correlated linear function of the charac-

teristic path length (Payne and Eppstein, 2007; Rudolph, 2000), a metric which quantifies

the mean shortest distance between all pairs of vertices. In addition, we have recently

shown that differential equation based analytical methods, based on pair approximations,

can be parameterized by the ratio of the local neighborhood radius to the global lattice

radius in order to rapidly estimate pre-equilibrium takeover dynamics in grid-based regular

population structures (Payne and Eppstein, 2009). The problem has proved more elusive

in the case of scale-free topologies with stochastic, degree-dependent update policies. In

(Payne and Eppstein, 2007), we suggested average takeover times on scale-free topologies

were positively linearly correlated with a combination of the maximum and variance of the

all-pairs shortest path lengths. However, our subsequent work (Payne and Eppstein, 2008)

showed that takeover times were actually a logarithmic function of the metric presented

in (Payne and Eppstein, 2007) in uncorrelated and positively assortative scale-free graphs,

with the slopes varying as a function of assortativity, while takeover times in negatively

assortative scale-free graphs were completely independent of this metric. Conversely, while

average takeover time was shown to be an ambiguous multifunction of the characteristic

path length in uncorrelated and positively assortative scale-free graphs, characteristic path

length was found to have a negative nonlinear correlation with takeover times in negatively

assortative scale-free graphs (a counter-intuitive result, given that this correlation is positive

in regular graphs).

The results of our previous studies thus indicate that metrics based on all-pairs shortest

direct paths are not sufficient to explain the rate of information flow in scale-free networks

with stochastic, degree-dependent update policies. In this research, we seek to understand

why this observation is true and to determine if there are other static network properties that
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govern takeover times on scale-free topologies with varying scaling exponents, assortativities,

average degrees, and population sizes (i.e., number of vertices). We significantly extend our

previous studies (Payne and Eppstein, 2007, 2008) on takeover times under local uniform

selection in scale-free interaction networks. In Section 3.2, we explain how we generated and

employed scale-free graphs with systematically varying scaling exponents, assortativities,

average degrees, and population sizes. In Section 3.3 we show why characteristic path

length is a nonlinear non-monotonic function of both scaling and assortativity, and thus does

not govern takeover time. We demonstrate that the influence of scaling and assortativity

on average takeover times is qualitatively similar under three different stochastic selection

mechanisms: uniform selection, binary tournament selection, and linear ranking selection.

We then show that the logarithm of average takeover times in scale-free topologies can be

described as a planar function of the average inverse degree and the logarithm of population

size, and that assortativity exerts a strong influence on the variability in takeover times at

low scaling exponents. In Section 3.4, we discuss our findings and their relevance to other

disciplines, and suggest ways in which the structural characteristics of scale-free interaction

networks can potentially be exploited in evolutionary optimization.

3.2 Methods

3.2.1 Representing Population Structure as a Graph

The population structure of an evolutionary algorithm can be represented as a graph

G = (V,E), defined as a nonempty finite set of vertices (V ) and a finite set of edges

(E) connecting these vertices. Each individual in the population is represented by a vertex

i ∈ V , so that |V | = N , where N is the population size. The graph is undirected, with

an edge 〈i, j〉 ∈ E for every individual j in the mating neighborhood of individual i, for

all i ∈ V . The number of neighbors in the mating neighborhood of individual i, also re-

ferred to as the degree of vertex i, is denoted by ki. Throughout this manuscript, the terms
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population structure, topology, network, and graph are used synonymously.

3.2.2 Structural Properties of Graphs

When quantifying the structural properties of graphs, there are several metrics of potential

interest (e.g., see Newman (2003)). In this section, we present the topological properties

considered in this study (for the readers’ convenience, we also present a glossary of variables

in Appendix 3.5). The distribution of vertex connectivity p(k) is a probability distribution

function (PDF) that depicts the frequency with which a node has degree k. The scale-free

topologies considered in this study possess a distribution of vertex connectivity of the form:

p(k) = Pr(K = k) ∝ k−γ (3.1)

The complementary cumulative distribution function (CCDF), commonly used to visualize

power-law distributions (Clauset et al., 2009), depicts the frequency with which nodes have

degree greater than or equal to k:

P (k) = Pr(K ≥ k) ∝ k−γ+1 (3.2)

In equations (3.1) and (3.2), the scaling parameter γ affects the shape of the power-law

distribution, such that distributions with smaller γ possess heavier tails (Fig. 3.1).

The ith moment (µi) of the degree distribution is given by:

µi =
∑
k

kip(k) (3.3)

such that µ1 is the average degree (〈k〉) and µ−1 is the average inverse degree. It is important

to point out that while the average degree (µ1) is unaffected by changes in the scaling

exponent (γ), the average inverse degree (µ−1) changes as a function of both γ and 〈k〉.

Since the graphs considered are connected, µ−1 is always well-defined.

A path is defined as a sequence of vertex-edge pairs, beginning at one vertex i and

ending at another vertex j; the direct distance dist(i, j) between any two nodes i and j is

defined as the length of the shortest path between i and j. The average individual path
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Figure 3.1: Data points show representative complementary cumulative distribution func-
tions (CCDF) of vertex connectivity in randomized scale-free interaction networks created
with the GN algorithm (Section 3.2.4), with the smallest and largest scaling exponents
used in this study γ ∈ {2.8, 4.0} and 〈k〉 = 4. Lines are drawn using the scaling exponents
measured using the algorithm described in Section 3.2.4 with a kmin of 4, and are delib-
erately offset in the vertical direction so as not to obscure the data. Data shown pertain
to N = 10, 000. Note the double logarithmic scale. Insets denote the corresponding prob-
ability distribution functions (PDF), showing how the observed frequency of occurrence is
lower-bounded by 1/N in these finite-sized graphs.
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length Li of a vertex i is defined as the mean of the shortest paths between i and all other

vertices in the graph:

Li =
1

|V | − 1

∑
∀j 6=i∈V

dist(i, j) (3.4)

The characteristic path length L of a graph G is defined as the mean of the individual path

lengths:

L =
1
|V |

∑
∀i∈V

Li (3.5)

The assortativity (r) of a graph G measures the propensity with which vertices of similar

degree are connected to one another. Assortativity is formally defined as (Newman, 2002),

r =

|E|−1
∑

∀〈i,j〉∈E

kikj −

|E|−1
∑

∀〈i,j〉∈E

1
2

(ki + kj)

2

|E|−1
∑

∀〈i,j〉∈E

1
2

(k2
i + k2

j )−

|E|−1
∑

∀〈i,j〉∈E

1
2

(ki + kj)

2 (3.6)

which is equivalent to the Pearson correlation coefficient of the degrees of vertices at the

opposing ends of an edge (Newman, 2002). A graph is said to be positively assortative if

r > 0, uncorrelated if r = 0, and negatively assortative if r < 0.

It is worth noting that the radius (Sarma and De Jong, 1996) of a local interaction

neighborhood, which exhibits a strong effect on saturation times in regular population

structures (Payne and Eppstein, 2009; Sarma and De Jong, 1996), is not a meaningful

metric in the case of scale-free topologies, since these graphs are not embedded in Cartesian

space.

3.2.3 Takeover Time Analysis

In order to most directly infer the influence of the structural properties of scale-free in-

teraction networks on the saturation times of advantageous alleles, we minimized (a) the

number of different alleles, and (b) the complexity of the selection operator. Specifically, we

consider a population with only two levels of fitness (as in (Giacobini et al., 2005b; Payne
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and Eppstein, 2007, 2008, 2009; Rudolph, 2000)); i.e., let Λi(t) be the fitness value of vertex

i ∈ V at time t, where Λi(t) ∈ {0, 1} and 1 is more fit than 0. In the initial population,

Λi(0) = 1 for exactly one i ∈ V and Λj(0) = 0 ∀j 6= i ∈ V . Let Nt denote the proportion of

nodes with value 1 at time t:

Nt =
1
|V |

∑
∀i∈V

Λi(t) (3.7)

Following Rudolph (2000), we define the takeover time T = min{t|Nt = 1} of an experiment

to be the first generation in which the most fit genotype fully saturates the population,

starting from a single copy of this genotype. This definition of takeover time thus assumes

that Nt can never decrease.

Ei[T ] is defined as the empirical estimate of the expected takeover time given that the

initial best individual is located in vertex i. Thus, the overall empirically estimated expected

takeover time of a beneficial mutation, averaged over all potential initial conditions, is simply

E[T ] =
1
|V |

∑
∀i∈V

Ei[T ] (3.8)

assuming that the initial best individual is equally likely to appear in any given node.

We tested three stochastic selection mechanisms that have been used in previous takeover

time analyses: local uniform selection (Gorges-Schleuter, 1999), binary tournament selection

(Giacobini et al., 2005b), and linear ranking selection (Giacobini et al., 2005b). Note that in

heterogeneous graphs with a minimum node degree of two, tournaments of larger sizes are

not possible for all nodes, and in takeover studies with only two levels of fitness, ranking

is arbitrary within nodes of the same fitness level. Our tests verified that the influence

of scaling and assortativity on takeover dynamics is qualitatively similar under these three

selection mechanisms, (see Section 3.3.2). Thus, consistent with previous studies of takeover

dynamics on heterogeneous networks (Giacobini et al., 2005a; Payne and Eppstein, 2007,

2008), the remainder of our experiments utilized local uniform selection (Gorges-Schleuter,

1999), with a simple “replace if better” survivor selection mechanism, as described below.

Each node is updated synchronously, as follows: for each node i ∈ V , a node j is

selected at random with uniform probability from the mating neighborhood of node i, with
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neighborhood size ki. Thus, if there are x nodes containing the fittest value in the mating

neighborhood of node i, then the probability of selecting one of them (Psel) is simply

Psel =
x

ki
(3.9)

The value of node i is then replaced by the value of node j if j has higher fitness (i.e.

Λj(t) > Λi(t)).

3.2.4 Generating Scale-Free Topologies with Tunable Scaling and Assor-

tativity

Several methods have been proposed for generating topologies with power-law distribu-

tions of vertex connectivity (e.g., Caldarelli et al. (2002); Park et al. (2005); Servedio et al.

(2004)). However, most of these graph-generating algorithms produce topologies that con-

sist of a single giant connected component and several small clusters of vertices that are

isolated from the rest of the graph, effectively resulting in an unnecessary reduction of the

population size. Further, most scale-free graph generating algorithms produce topologies

that asymptotically approach fixed structural properties (e.g., the AB algorithm produces

graphs with γ approaching 3 and r approaching 0, as N approaches ∞). In this study,

we wanted to generate connected scale-free topologies that possess well-controlled scaling

exponents and assortativities, but whose inter-connections are otherwise random. In the

following subsections we describe the algorithms used to create these graphs.

Tuning the Scaling Exponent

In order to generate scale-free topologies with tunable scaling exponents, we utilized the

growing network (GN) model of Krapivsky et al. (2000), which is a generalization of the AB

algorithm. Each graph was initialized as a fully connected clique of m0 nodes (whereas in

original GN model (Krapivsky et al., 2000) the graph is initialized with only one node). In

each time step t, a single node is added to the graph and is connected to m existing nodes,
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such that the probability of connecting to an existing node of degree k is proportional to

the linear connection kernel Ak:

Ak =

 m0 if k = m0

αk if k > m0

(3.10)

The probability Π that a newly introduced vertex attaches to an existing vertex i of degree

ki is then given by

Π(ki) =
Aki∑

∀j∈V
Akj

(3.11)

After t time steps, the graph consists of m0 + t vertices and
(
m0

2

)
+ mt edges, where

t = N −m0. So long as m = m0, graph connectivity is ensured, since the first incoming

node is forced to connect to all m0 nodes in the initial clique. Note that if α = 1, the AB

algorithm is recovered.

By tuning the parameter α in equation (3.10), the scaling exponent can be theoreti-

cally tuned anywhere in the range 2 < γ < ∞, for infinitely sized graphs. (Graphs with

γ ≤ 2 possess degree distributions with infinite mean and variance.) While an analytical

formulation of γ as a function of α is provided in (Krapivsky et al., 2000), this formulation

assumes that the graph is infinitely large, and can only be used as a rough approximation

for the finite graphs considered herein. Thus, the values of α used in this study to generate

graphs with specific scaling exponents, at various population sizes and average degree, were

determined empirically. Due to finite size effects and the stochastic nature of the GN algo-

rithm, the mapping of α to γ is not one-to-one, and a range of scaling exponents (γ) will

be observed for any given α. In order to generate a graph with a specific desired scaling

exponent γ, a graph was generated using the empirically pre-determined value of α, and

the observed γ was then calculated for the graph (as described in the subsequent section).

Only if the graph had the desired γ (to within 0.01) was it retained and included in the

study.
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Measuring the Scaling Exponent

Accurately estimating the scaling parameter (γ) of data that are thought to be drawn from a

power-law degree distribution is an area of current research (Clauset et al., 2009). One com-

mon method for estimating γ is to use the slope of the best linear fit between log10(p(k)) and

log10(k). While this method is straightforward, it has been shown to introduce significant

bias in common cases (Clauset et al., 2009).

In order to avoid such bias, we estimated γ using the method provided by Clauset

et al. (2009). This method systematically varies γ over a specified range and iteratively

applies the Kolmogrorov-Smirnov (KS) test to the observed data and fitted model. The γ

that minimizes the KS statistic is then chosen as the hypothesized power-law model. The

goodness of fit of this model is then calculated using a Monte-Carlo procedure (Clauset et al.,

2009) in order to verify that the degree distribution is, in fact, drawn from the hypothesized

power-law model. While the minimum degree (kmin) of the hypothesized power-law model

can be simultaneously estimated (Clauset et al., 2009), in this study it was sufficient to

simply use kmin = 〈k〉.

Shuffling the Edge Set

In order to eliminate any structural motifs that may have been inadvertently introduced

into the topology as an artifact of the GN algorithm, we utilized the method provided by

Maslov and Sneppen (2002) to randomize the edge set of every topology used in this study.

The Maslov-Sneppen algorithm is an iterative method that, in each iteration, randomly

chooses two edges, 〈a, b〉 and 〈x, y〉, from the edge set E (where a, b, x, y are all distinct).

These edges are then shuffled to create two new edges, 〈a, x〉 and 〈b, y〉, which replace the

original edges, so long as they are not already present in the graph. Since the degree of each

vertex remains unchanged by a shuffling event, this method exactly preserves the underlying

degree distribution.
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Tuning the Assortativity

In order to investigate the relationship between various assortativites and saturation times

in scale-free topologies, we devised a simple iterative method that allows for the direct

specification of assortativity within some error tolerance, as follows. In each iteration of our

algorithm, the assortativity of the graph is measured using equation (3.6) and compared to

the desired assortativity. Two edges, 〈a, b〉 and 〈x, y〉, are randomly selected from the edge

set E (where a, b, x, y are all distinct) with uniform probability. If the observed assortativity

is less than the desired assortativity, the edges are swapped such that the two nodes with the

larger degree are connected to one another and the two nodes with the smaller degree are

connected together (a “positive” assortative swap). If the observed assortativity is greater

than the desired assortativity, the reverse swap is done (a “negative” assortative swap). If

either of the new edges is already present in the graph, then the swap is aborted. The algo-

rithm iteratively continues swapping edges in this fashion until the observed assortativity

is within 0.01 of the desired assortativity or until a specified maximum number of swaps

is reached (in this study, we set the maximum number of swaps to 1,000,000). Like the

Maslov-Sneppen algorithm, this method exactly maintains the underlying degree distribu-

tion, since the degree of each node remains unchanged after a swapping event. Since neither

our assortative shuffling algorithm nor the Maslov-Sneppen algorithm guarantee that the

graph remains connected, we discarded graphs that became disconnected, as discussed in

Section 3.2.4, step 4.

Our algorithm is similar to the single-parameter shuffling algorithm proposed by Xulvi-

Brunet and Sokolov (2004), which probabilistically alternates between Maslov-Sneppen edge

swaps and edge swaps that alter assortativity. However, the non-determinism in the selec-

tion of the edge-swapping algorithm results in a range of assortativities for a given specified

probability, whereas our method enables us to more closely achieve the desired degree

of assortativity (to within some small error tolerance), thus facilitating the generation of

topologies with well-controlled assortativities.
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Figure 3.2: (a) Upper bound of positive assortativities (r+) and lower bound of negative
assortativities (r−) that we were able to obtain using the reshuffling algorithm described
in Section 3.2.4, as a function of the scaling parameter (γ). Data points are the averages
of the maximum (or minimum) assortativities that were achieved in 10 million assortative
edge swaps on each of 10 graph instances at each of the 5 population sizes with 〈k〉 = 4.
Error bars indicate the minima and maxima observed for each combination of parameters.
The shaded box indicates the range of experimental parameters examined in this study. (b)
Visualization of one representative positively assortative graph (γ = 2.8, r = 0.2, N = 500,
〈k〉 = 4), and (c) visualization of one representative negatively assortative graph (γ =
2.8, r = −0.2, N = 500, 〈k〉 = 4). In (b) and (c) the degree distribution of the graphs is
identical. For visual clarity, the graphs shown in (b) and (c) are deliberately smaller than
any used in the experiments; visualizations were made using Pajek (http://vlado.fmf.uni-
lj.si/pub/networks/pajek).
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Although assortativity can theoretically range from −1 ≤ r ≤ 1, in reality the actual

range of assortativities in scale-free graphs that we were able to obtain, using the algorithms

described above, was much more constrained. The positive (negative) assortativity limits

were empirically assessed by performing 10 million positive (negative) assortative edge swaps

on 10 graph instances, for population sizes N ∈ {1000, 1600, 3600, 6400, 10000}, and γ ∈

{2.4, 2.8, 3.2, 3.6, 4.0}, with 〈k〉 = 4 (Fig. 3.2a) and 〈k〉 = 8 (the data for 〈k〉 = 8 were very

similar to those for 〈k〉 = 4, so for clarity are not shown). Population size and number of

edges had no detectable effects on the achievable ranges of assortativity, however we observed

greater constraints on achievable assortativities at lower scaling exponents (γ). A symmetric

range of assortativities for each scaling exponent was implicitly limited by these constraints,

and further experiments were thus run using assortativities from −0.2 ≤ r ≤ 0.2, for

2.8 ≤ γ ≤ 4, as shown by the shaded box in Fig. 3.2a. This range spans to either side of

γ = 3, below which the variance of the degree distribution is theoretically infinite (this is not

possible for finite graphs, resulting in a degradation in the scale free behavior at high k, as

shown in Fig. 3.1 for γ ∼ 2.8). Parameters within this range have been observed in natural

systems (e.g., a recent analysis (Clauset et al., 2009) of empirical power law distributions

arising in a variety of systems provides statistical support for scaling exponents ranging

from 1.7 to 4.3). We use a relatively small (N = 500) scale-free interaction network with

γ = 2.8 and 〈k〉 = 4 to graphically illustrate how the topology qualitatively differs at two

extremes of the parameter range shown in Fig. 3.2a, when the assortativity of the graph

is reshuffled to have positive assortativity r = 0.2 (Fig. 3.2b) or negative assortativity

r = −0.2 (Fig. 3.2c). Note that the degree distributions of these two graphs are identical.

Summary of Scale-Free Graph Generation

For each desired scaling exponent γ, assortativity r, population size N , and average degree

〈k〉, we performed the following steps:

1. A graph was created using the GN algorithm, as presented in Section 3.2.4, with
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m0 = m.

2. The scaling exponent (γ) of the resulting graph was measured using the method pre-

sented in Section 3.2.4, with the minimum degree (kmin) at which the scaling behavior

was assessed set to 〈k〉 (Fig. 3.1). If the absolute difference between the observed and

desired γ was greater than 0.01, or if the goodness of fit of the hypothesized power

law model was not satisfactory (p < 0.1, as calculated using the Monte Carlo method

presented in (Clauset et al., 2009)), then the graph was discarded and step (1) was

repeated.

3. Once a graph was created with an acceptable scaling exponent, it was randomized by

performing 100,000 Maslov-Sneppen edge swaps, as described in Section 3.2.4. If the

graph became disconnected due to a swapping event, the shuffled graph was discarded

and step (3) was repeated.

4. The graph was then further shuffled to obtain the desired degree of assortativity (r),

using the method presented in Section 3.2.4, until the absolute difference between the

observed and desired assortativity was less than 0.01. If the graph became discon-

nected due to a swapping event, the shuffled graph was discarded and step (4) was

repeated. If the graph could not be shuffled to have the desired assortativity within

1,000,000 swapping events, the graph was discarded and step (1) was repeated.

Self loops were implicitly or explicitly precluded by all steps in graph generation.

3.2.5 Experimental Design

In this study, population sizes of N ∈ {1000, 1600, 3600, 6400, 10000} were considered with

average degree 〈k〉 ∈ {4, 8} (m = 2 and m = 4, respectively), where the scaling exponent

was varied between 2.8 ≤ γ ≤ 4.0 in increments of 0.4 and assortativity was varied between

−0.2 ≤ r ≤ 0.2 in increments of 0.1. For each combination of N , 〈k〉, γ, and r, ten
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independent graph instances were generated by performing the steps detailed in Section

3.2.4.

In contrast to regular population structures, the expected takeover times in scale-free

interaction networks are known to be affected by the placement of the initial high fitness

individual (Giacobini et al., 2005a; Payne and Eppstein, 2008). Therefore, for each graph

instance we systematically placed the high fitness individual of the initial population in

each vertex of the population structure, one at a time, and subsequently performed 10

independent takeover time simulations for each individual placement, in order to account

for the stochasticity inherent in the selection mechanism. Thus, 100 × N independent

simulations were performed for each combination of N , 〈k〉, γ, and r, resulting in a total of

over 140 million independent takeover time simulations.

To facilitate this extensive experimental design, simulations and graph generation were

performed on a cluster of 128 dual-processor, dual-core (Opteron 2220) IBM x3455s, each

with 6GB of memory. All of the graph generating algorithms, edge shuffling routines, and

takeover simulations were written in the C programming language for speed. Data analysis

was performed using Matlab, as were the methods employed to measure scaling exponents,

using the code provided with (Clauset et al., 2009).

3.3 Results

Results were qualitatively similar for all population sizes (N) and average degree (〈k〉), so

we initially present data for the representative population size of N = 3600 and 〈k〉 = 4, and

then show how the results scale as a function of population size and average degree. The

first subsection pertains to the influence of scaling and assortativity on the static structural

properties of the networks considered and the second subsection pertains to the dynamical

properties of the takeover times observed on these networks.
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Figure 3.3: (a) Characteristic path length (L) and (b, c) expected takeover time (E[T ]),
each shown as a surface function of assortativity (r) and scaling (γ) on a representative
population size and average degree (N = 3600, 〈k〉 = 4). The symbols represent the
data points for each of the 10 graph instances at each parameter combination, with lines
connecting the means. Panel (b) corresponds to local uniform selection and (c) to binary
tournament selection (• symbols, dashed line) and linear ranking selection (◦ symbols, solid
line). In (a, b), the dash-dot lines at γ ∼ 2.8 correspond to the data presented in Figs. 3.5
and 3.6, and the dashed lines at r ∼ 0.2 correspond to the data presented in Figs. 3.4 and
3.7.
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3.3.1 Static Properties

Characteristic path length (L) was found to vary non-monotonically as a function of both

the scaling exponent γ and assortativity r (Fig. 3.3a), consistent with the preliminary

results presented in (Payne and Eppstein, 2008). For r ∼ 0.2 (Fig. 3.3a, dashed line), L

first decreases from γ ∼ 4.0 to γ ∼ 3.2 (p � 0.01, ANOVA) and subsequently increases

from γ ∼ 3.2 to γ ∼ 2.8 (p � 0.01, ANOVA) . Similarly, for γ ∼ 2.8 (Fig. 3.3a, dash-dot

line), L is lowest at r ∼ 0 and increases as the magnitude of assortativity (either positive or

negative) increases. These nonlinear relationships between γ and L, and between r and L,

result from changes in the distribution of underlying path lengths Li, as described below.

Fig. 3.4 depicts the effect of decreasing the scaling exponent (γ) on the distribution

of individual path lengths (Li), and consequently on the characteristic path length (L),

for a single representative graph instance with N = 3600, 〈k〉 = 4, and r ∼ 0.2 (this

data corresponds to the dashed lines in Fig. 3.3a-b). For γ ∼ 4.0, the distribution of

individual path lengths is approximately normally distributed (p > 0.01, χ2 test) with a

mean of L = 6.05 and standard deviation of 0.6 (Fig. 3.4a). However, as γ decreases,

the distribution of path lengths deviates from normality (p � 0.01, χ2 test) and begins

to flatten and become increasingly skewed, with longer individual path lengths becoming

more common as γ continues to decrease (Fig. 3.4b-d). For γ ∼ 3.6 and γ ∼ 3.2, the

flattening of the distribution has the effect of decreasing L, but for γ ∼ 2.8 the increase

in the frequency of longer individual path lengths begins to play a dominating role, and L

consequently increases (dashed vertical lines, p� 0.01, ANOVA).

Increasing the assortativity (r) has a similar impact on the underlying distribution of

path lengths, and on the corresponding characteristic path length (L), as shown in Fig. 3.5,

for a representative scale-free interaction network with N = 3600, 〈k〉 = 4, and γ ∼ 2.8. The

path length distributions deviated from normality for all γ ∼ 2.8 (p� 0.01, χ2 test), though

for r ∼ −0.2, the path length distribution was found to be well centered around L = 5.26,

with very few long paths (Fig. 3.5a). However, for r > 0.2, the path length distribution
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was found to become increasingly flattened and skewed. Longer path lengths were found

to occur more frequently as r increases, and their overall magnitude was found to increase

(e.g., compare the horizontal spread of ∗ symbols in Fig. 3.5a with those in 3.5e). Similar

to the effect of decreasing γ, increasing r initially has the effect of decreasing L (dash-dot

vertical lines for −0.2 ≤ r ≤ 0, p � 0.01, ANOVA, Fig. 3.5a-c), but as the frequency of

longer path lengths and their overall magnitude increases, L subsequently begins to increase

(dash-dot vertical lines for 0 < r ≤ 0.2, p� 0.01, ANOVA, Fig. 3.5d-e). These changes in

topology as a function of assortativity are graphically illustrated by comparing Fig. 3.2b

(for positive assortativity), where there is a preponderance of long paths through vertices

of degree k = 2, and Fig. 3.2c (for negative assortativity), where individual paths tend to

alternate between high and low degree nodes, and are consequently more homogeneous in

length.

3.3.2 Dynamic Properties

While characteristic path length (L) varied non-monotonically with both the scaling expo-

nent (γ) and assortativity (r), (Fig. 3.3a), expected takeover times increased monotonically

(i) as assortativity was increased from r ∼ −0.2 to r ∼ 0.2 and (ii) as the scaling exponent

was decreased from γ ∼ 4.0 to γ ∼ 2.8 (Fig. 3.3b-c), for all three selection mechanisms

considered. The variability in the average takeover times, for each of the 10 graph instances

at each parameter combination, also increased with increasing r and decreasing γ (in Fig.

3.3b-c, each ∗, •, and ◦ symbol represent data points for the 10 graph instances at each

combination of r and γ).

The takeover times observed using binary tournament selection (Fig. 3.3c, • symbols,

dashed line) and linear ranking selection (Fig. 3.3c, ◦ symbols, solid line) were shorter than

those observed under local uniform selection (Fig. 3.3b), because both of these selection

mechanisms increase the probability of selecting high fitness nodes from the local neigh-

borhood, relative to uniform selection. However, the qualitative influence of scaling and
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Figure 3.4: Distribution of individual path lengths (Li) in representative networks with
N = 3600, 〈k〉 = 4, and r = 0.2 for (a) γ ∼ 4, (b) γ ∼ 3.6, (c) γ ∼ 3.2, and (d)
γ ∼ 2.8. The ∗ symbols are placed atop each bin as a visual aid. The insets magnify the
domain immediately surrounding the average characteristic path lengths L of the ten graph
instances (denoted by the thick dashed vertical lines) in order to illustrate the nonlinear
relationship between L and γ. Note that the data in this Figure corresponds to the data
along the dashed line in Figure 3.3a.
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Figure 3.5: Distribution of individual path lengths (Li) in representative networks with
N = 3600, 〈k〉 = 4, and γ ∼ 2.8 for (a) r ∼ −0.2, (b) r ∼ −0.1, (c) r ∼ 0, (d) r ∼ 0.1, and
(e) r ∼ 0.2. The ∗ symbols are placed atop each bin as a visual aid. The insets magnify the
domain immediately surrounding the average characteristic path lengths L of the ten graph
instances (denoted by the thick dash-dot vertical line) in order to illustrate the nonlinear
relationship between L and r. Note that the data in this Figure corresponds to the data
along the dash-dot line in Figure 3.3a.
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assortativity on average takeover times were similar under all three selection mechanisms

(compare Fig. 3b to 3c). The remainder of our results were achieved using local uniform

selection.

In Fig. 3.6, we depict the actual takeover dynamics (Fig. 3.6a,c,e), and corresponding

distributions of takeover times (Fig. 3.6b,d,f), observed on a single representative scale-

free interaction network with N = 3600, 〈k〉 = 4, and γ ∼ 2.8 (corresponding to the data

around the dash-dot lines in Fig. 3.3a-b). Fig. 3.3b indicates that both expected takeover

times, and the variability in the expected takeover times between graph instances, increases

with increasing assortativity. In contrast, Fig. 3.6 shows that the variability in takeover

times on a single graph instance, due to different initial placements of the high fitness

individual, actually increases with decreasing assortativity, while the average takeover time

simultaneously decreases (e.g., at γ ∼ 2.8 and r ∼ 0.2, E[T ] = 43.2, but this falls to

E[T ] = 31.3 at r ∼ −0.2, Fig. 3.3b). This occurs because, in negatively assortative graphs,

some initial placements result in an extended initial period in which the high fitness genotype

is unable to spread (compare Fig 3.6a,c,e, gray lines), but a larger proportion of takeover

times are comparatively more rapid than at high assortativity (compare the heights and

locations of the peaks of the distributions in Fig. 3.6b,d,f). None of the distributions in

Fig. 3.6b,d,f, are normal (p� 0.01, χ2 test).

In contrast, decreasing the scaling exponent (γ) of a scale-free interaction network in-

creases both the range and average of takeover times observed on a single graph instance, as

shown for a representative topology with N = 3600, 〈k〉 = 4, and r ∼ 0.2 in Fig. 3.7 (corre-

sponding to the data around the dashed lines in Fig. 3.3a-b). In this case, the distribution

of observed takeover times is shifted to the right and broadened as the scaling exponent

decreases, with the expected takeover time increasing from E[T ] = 29.5 (for γ ∼ 4.0) to

E[T ] = 43.2 (for γ ∼ 2.8), as shown in Figs. 3.7b,d,f,h. Once again, none of the distributions

of takeover times are normal (p� 0.01, χ2 test).

We now shift our attention to how our results scale with population size (N) and average
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Figure 3.6: Takeover dynamics in representative networks with N = 3600, 〈k〉 = 4, and
γ ∼ 2.8 for (a) r ∼ −0.2, (c) r ∼ 0, and (e) r ∼ 0.2 (corresponding to the dash-dot lines
in Fig. 3.3b). The gray curves denote takeover dynamics for a single experiment and the
dash-dot curves denote their averages. In (b), (d), and (f) we show frequency histograms
of observed takeover times (T ) for the data shown in (a), (c), and (e), respectively. The ∗
symbols are placed atop each bin as a visual aid.
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Figure 3.7: Takeover dynamics in representative networks with N = 3600, 〈k〉 = 4, and
r ∼ 0.2 for (a) γ ∼ 4.0, (c) γ ∼ 3.6, (e) γ ∼ 3.2, and (g) γ ∼ 2.8 (corresponding to the
dotted lines in Fig. 3.3b). The gray curves denote takeover dynamics for a single experiment
and the dashed curves denote their averages. In (b), (d), (f), and (h) we show frequency
histograms of observed takeover times (T ) for the data shown in (a), (c), (e), and (h),
respectively. The ∗ symbols are placed atop each bin as a visual aid.
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degree (〈k〉). Since expected takeover time is an ambiguous multifunction of the charac-

teristic path length, L cannot be used to describe takeover times (or selective pressure) in

populations evolving on scale-free topologies. We also found that the leading eigenvalue of

the network adjacency matrix is not a good indicator of takeover times in the general case.

For the scale-free graphs considered herein with 〈k〉 = 4, the expected takeover time E[T ]

was found to grow linearly in the leading eigenvalue of the adjacency matrix, for a given

population size (R2 > 0.86). However, this relationship was found to deteriorate as the

average degree was increased to 〈k〉 = 8 (R2 > 0.51). Further, both the slope and intercept

of the linear relationship between leading eigenvalue and expected takeover time were found

to differ between 〈k〉 = 4 and 〈k〉 = 8, with a combined R2 of only 0.02. In contrast, for

each population size N , we found that E[T ] increased exponentially in the average inverse

degree (µ−1) (with the goodness of fit R2 > 0.95 for each N considered in this study); note

that (µ−1) varies with both 〈k〉 and scaling exponent γ. Further, for both values of 〈k〉

considered, we found that the logarithm of the expected takeover time (log10(E[T ])) scaled

linearly with the logarithm of the population size (log10(N)) (the goodness of fit R2 = 0.70

for 〈k〉 = 4 and R2 = 0.87 for 〈k〉 = 8), with coefficients on log10(N) less than one, im-

plying that E[T ] grows sub-linearly in N . Consequently, we constructed a 2-dimensional

best-fit function (depicted in Fig. 3.8a), which accurately describes expected takeover time

according to the following relationship:

log10(E[T ]) = 0.80 + 0.11 log10(N) + 0.88µ−1 (3.12)

with R2 = 0.97 and a root mean squared error of only 1.32 between this plane and all of

the data points (i.e., for all scaling exponents γ, assortativities r, average degrees 〈k〉, and

population sizes N of the scale-free graphs considered herein). In Fig. 3.8b, the viewing

angle has been rotated to show the quality of the linear fit as a function of the average inverse

degree µ−1; note that the differences in expected takeover time at each given average degree

〈k〉 and population size (N) are due to the effects of different scaling exponents (γ), which

are captured by the average inverse degree (µ−1). In Fig. 3.8c the viewing angle has been
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rotated to show the quality of the linear fit as a function of log10(N).

Much of the heteroskedasticity in E[T ] as a function of µ−1, as evident in Fig. 3.8b, is

attributable to the effect of assortativity (r) on the variability in takeover times. Assorta-

tivity has a relatively small effect on the average takeover time E[T ], that is not modeled

by equation (3.12). However, assortativity does have a strong influence on the variability of

E[T ], particularly for scale-free graphs with low scaling exponents (e.g., compare the spread

of the data points in Fig. 3.3b at r ∼ 0.2 for γ ∼ 2.8 and γ ∼ 4.0). In Fig. 3.9a, we explic-

itly plot the standard deviations of average takeover times (σE[T ]) as a surface function of

r and γ, on the largest population size (N = 10, 000) with the smallest average degree (〈k〉

= 4), where this influence is most pronounced; i.e., these indicate the variabilities in the

mean takeover times between the 10 graph instances at each parameter combination (already

averaged over each of the N initial placements, which are already averaged over each of the

10 repetitions at each initial placement). The σE[T ] increases nonlinearly as assortativity

increases and scaling decreases and contributes to the variable spread of the data points

around the plane in Fig 3.8.

As previously noted, assortativity has the opposite effect on the variability in individual

takeover times due to different initial locations of the high fitness value in a single graph

instance (e.g., Fig. 3.6). This is explicitly shown in Fig. 3.9b, where we plot σT (i.e., the

standard deviations in individual takeover times T due to the N initial placements, which

are already averaged over the 10 repetitions at each initial placement, on each given graph

instance) as a surface function of r and γ, again on the largest population size (N = 10, 000)

with the smallest average degree (〈k〉 = 4), where this influence is most pronounced.

The same general relationships shown in Figs. 3.9a and 3.9b occur at lower population

sizes and higher average degree, but are less pronounced because the magnitude of the

variability in takeover times decreases with both of these parameters (Fig. 3.8). Note that

the scale of the y-axis is an order of magnitude lower for the variability in the mean takeover

times observed on the 10 different graph instances (Fig. 3.9a) than for the variability caused
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Figure 3.8: (a) Takeover time (E[T ]) as a function of the average inverse degree (µ−1) and
population size (N), for all scaling exponents (γ), assortativities (r), and average degrees
(〈k〉) considered in this study. The data presented in (a) is also shown in (b) and (c), but
from different viewing angles, in order to better elucidate the strength of the relationship
between (b) E[T ] and µ−1 and (c) E[T ] andN . Note that in (a) and (b), 〈k〉 = 4 corresponds
to m = 2 and 〈k〉 = 8 to m = 4. In (a)-(c), the plane represents the best fit to the data
(see text); open circles denote date points above this plane and filled squares denote data
below this plane. Note the logarithmic scaling of takeover time (E[T ]) and population size
(N) in each panel.
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Figure 3.9: (a) Standard deviation of expected takeover times (σE[T ]) due to differences
between the means on the 10 graph instances at each parameter combination, and (b)
Standard deviations of individual takeover times (σT ) on the same graph instances, due to
the N initial locations of the high fitness individual. In both (a) and (b), standard deviations
are shown as a surface function of assortativity (r) and scaling (γ) at N = 10, 000, 〈k〉 = 4.
Note that the scale of the vertical axis in (a) is an order of magnitude smaller than in (b).

by the N different initial placements (Fig. 3.9b) at each parameter setting.

3.4 Discussion

The results of this study demonstrate that in scale-free interaction networks with random-

ized edge sets, takeover time (E[T ]) under local uniform selection increases as either (i)

the assortativity r increases or (ii) the scaling exponent γ decreases, with these two topo-

logical properties interacting nonlinearly in their effect on takeover time (Fig. 3.3b). In

negatively assortative graphs (r < 0), nodes with high degree (a.k.a. “hubs”) are attached

to nodes with low degree, and vice versa (Fig. 3.2c). As such, placing the initial high

fitness genotype in a hub results in rapid saturation, because the neighbors of a hub have

few connections themselves and thus have a high probability of adopting the hub’s genetic

information quickly. In contrast, placing the initial high fitness genotype in a low degree

vertex that neighbors a hub can result in a severe retardation of the propagation of this

genetic information (Fig. 3.6a), because the hub has more neighbors to choose from. For

example, if the initial high fitness genotype is placed in a low degree neighbor of a hub with
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degree k, then it will take on average k generations for this hub to adopt this high fitness

information, under the local uniform selection method outlined in Section 3.2.3. While

this has the effect of increasing the variability in the takeover times observed on a single

graph instance (Fig. 3.6a), the extremely rapid saturation that occurs when the initial

high fitness genotype is placed in a highly connected node outweighs such occasional slow

takeover time events, and causes an overall decrease in E[T ] as r decreases (Fig. 3.3b). In

positively assortative graphs (r > 0), hubs are connected to hubs, and nodes of low degree

are connected to one another. For example, when 〈k〉 = 4, this causes the formation of long

sections of linear chains of nodes (Fig. 3.2b). In such topologies, placing the initial high

fitness genotype in a hub does not result in rapid saturation because its neighboring hubs

are reluctant to adopt the high fitness genetic information, as they too have many neighbors

to choose from. Further, no matter where the initial high fitness genotype is placed, this

genetic information must still travel through the long chains of low degree vertices, resulting

in the lack of correlation between the degree of the vertex of initial placement and takeover

time that was noted in (Payne and Eppstein, 2008).

Decreasing γ causes the interaction network to possess more highly connected vertices

(e.g., for N = 10, 000, kmax = 27 for γ ∼ 4.0 and kmax = 140 for γ ∼ 2.8, Fig. 3.1).

As previously discussed, in negatively assortative and uncorrelated topologies, such hubs

communicate advantageous genetic information rapidly once they have it (Giacobini et al.,

2005a; Payne and Eppstein, 2008), but their high connectivity makes them more resistant

to it in the first place. This causes an increase in both the average takeover time and

the variability in the takeover times observed on a single graph instance (Fig. 3.7). In

combination, high assortativity (r) and low scaling exponents (γ) interact nonlinearly to

increase takeover time (Fig. 3.3b).

Metrics based on pairwise shortest paths, such as characteristic path length (L), have

a strong governing influence on the rate of information flow in many topologies. For ex-

ample, expected takeover time (E[T ]) is positively correlated with L in regular population
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structures (Payne and Eppstein, 2007). However, the degree to which shortest path metrics

govern information flow is dependent upon both network heterogeneity (Payne and Epp-

stein, 2008) and whether or not the local update mechanism is a function of vertex degree.

Even if the update mechanism were independent of vertex degree, as in a Susceptible-

Infectious-Susceptible model with 100% infection rate, L would still not be sufficient to

describe the rate of spread in scale-free graphs, because the so-called “characteristic” path

length is not actually characteristic of static structure in these graphs (as shown in Figs.

3.4 and 3.5). An alternative shortest path metric, the average maximum shortest distance

from each vertex to any other vertex (i.e., the average eccentricity), will determine average

saturation times when the update mechanism is independent of vertex degree, whether the

graph is regular or not. However, when the updating mechanism is degree dependent and

the graph is heterogeneous, shortest path metrics are not sufficient to describe dynamics.

Our results show that it is possible to describe the logarithm of the expected takeover

time E[T ] using a planar function of (i) the inverse average degree (µ−1) and (ii) the log-

arithm of population size (log10(N)) (equation (3.12)). Since the probability with which a

vertex of degree k adopts the high fitness allele of a neighboring vertex is inversely propor-

tional to k (equation (3.9)), it makes intuitive sense that the expected takeover time is a

function of µ−1, which weights the inverse degrees of the vertices in a graph in proportion

to their occurrence (equation (3.3)) and thus captures the effects of both the average degree

and the scaling exponent. Further, our observation that the logarithm of takeover time

(log10(E[T ])) is linearly dependent on the logarithm of the population size (log10(N)) has

been noted in other studies of dynamical processes on scale-free graphs, including consensus

time (i.e., the number of steps required to reach a state of all 0’s or all 1’s) in the unbiased

Voter Model (Sood et al., 2008).

In (Sood et al., 2008), it was also shown that consensus times in the unbiased Voter

Model on Molloy-Reed scale-free topologies (Molloy and Reed, 1995) with a fixed average

degree were largely governed by the effective population size, defined as Neff = Nµ2
1/µ2.
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However, this metric did not account for much of the variability in expected takeover times

in our study. For the 〈k〉 = 4 data, R2 = 0.64 and for the 〈k〉 = 8 data, R2 = 0.72; however,

the slopes and intercepts for these rather weak associations were quite different from each

other, indicating a strong sensitivity of Neff to average degree, so the overall R2 was only

0.10. Although the two state Voter model (VM) used in (Sood et al., 2008) is similar in

many ways to the takeover time study presented here, there are several significant differ-

ences in these models that can account for the differences in behavior. In the biased VM,

state 0 is prescribed a fitness f = 1 and state 1 a fitness of f = r, with r > 1; in the unbiased

case, there is no preference for either state, i.e., there is no selection pressure. In the VM,

nodes are updated asynchronously, such that in each step a node i is chosen with proba-

bility inversely proportional to its fitness (in contrast to our implementation using locally

uniform selection with synchronous updates). In the VM, node i then imports the state of

a neighboring node j, irrespective of the fitness of node j (again, in contrast to our model

which uses a replace-if-better update policy). Thus, the results of this study complement

those presented in (Sood et al., 2008), and highlight the sensitivity of information flow to

the specific selection and update mechanisms. Future work will explore system responses to

additional update mechanisms, such as the heterogeneous threshold-based update policies

commonly used in models of binary decisions (Watts, 2002), in which the update rule of

any given individual is contingent upon both the individual’s particular response function

and the states of its neighboring individuals.

Although the effects of assortativity were not explicitly studied in (Sood et al., 2008),

the authors do comment that assortativity had a smaller secondary effect (relative to the

scaling exponent) on consensus times. In this study, we too found assortativity to have

a secondary effect on mean takeover times. For example, equation (3.12), which does not

account for the effects of assortativity, explains 97% of the variance in the logarithmically

transformed average takeover times. However, a closer examination of the data shows that,

while assortativity has little effect on either mean or variability of average takeover times
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at the higher scaling exponents, at low scaling exponents assortativity has a pronounced

effect on the variability in takeover times. Specifically, increasingly positive assortativities

increased the variability between experiments on different random graph instances (after

averaging over all initial placements on the same graph instance) (Fig. 3.9a), while increas-

ingly negative assortativities increased the variability between takeover times from different

initial placements on the same graph instances (Fig. 3.9b). These seemingly contradictory

findings can be explained as follows. At low scaling exponents (i.e., large hubs), the average

system dynamics are sensitive to the specific connectivity patterns found in different graph

instances with the same degree of positive assortativity, while the large number of very long

individual path lengths (Li) in these graphs means that they are relatively insensitive to

initial placement of the high fitness individual, since these long paths must always be tra-

versed. Conversely, at low scaling exponents with negative assortativity, all graph instances

tend to have alternating high and low degree nodes and in this sense the connectivity pat-

terns are relatively similar to each other, yet the takeover time is very sensitive to whether

the initial high fitness individual is placed in a high or low degree node, which respectively

cause very short or long delays before the onset of the sigmoidal saturation process (Fig.

3.6). Thus, assortativity does have an important role in influencing systems dynamics on

scale-free networks, especially if individual trajectories in specific systems are more relevant

than average expected behaviors over an entire class of systems.

One of our goals has been to discover if there are simple, and easily computable, metrics

of graph topology which govern the rate of spread of information in arbitrary networks.

Previously, we have focused on metrics based on all-pairs shortest direct paths, such as

characteristic path length, or a combination of the maximum and variance of the all-pairs

shortest path lengths (Payne and Eppstein, 2007). However, none of these have proven to

govern system dynamics in the general case (Payne and Eppstein, 2008). In this study, we

have also shown that neither the leading eigenvalue of the adjacency matrix nor the “effective

population size” (Neff ) metric are sufficient to predict takeover times in these heterogeneous
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graphs. However, we did find that most of the variability in the logarithm of average takeover

times in scale-free graphs with a wide range of scaling exponents, assortativities, number

of nodes, and average node degree, can be explained by a function of the average inverse

degree and the logarithm of the population size. Unfortunately, this relationship will not

generalize to the case of regular graphs, in which the average inverse degree is constant for a

given topology. For example, consider the contrasting cases of a lattice with Von Neumann

neighborhoods (〈k〉 = 4) and a regular random graph of the same average degree. According

to equation (3.12), the takeover times on these two topologies would be identical, while in

reality the saturation times on a regular random graph will be much more rapid than those

observed on the corresponding lattice with Von Neumann neighborhoods.

The results of this study demonstrate how the topological properties of randomized

scale-free interaction networks influence the flow of advantageous alleles, and thus impact

the selective pressures induced by such population structures. As previously mentioned, the

few studies (Gasparri et al., 2007; Giacobini et al., 2006; Kirley and Stewart, 2007a,b) that

have utilized scale-free population structures for computational optimization have reported

mixed results. However, to date all of the studies utilizing scale-free population structures

for evolutionary optimization have employed graphs generated using the AB (Barabàsi and

Albert, 1999) algorithm, which exhibit no assortativity (r ∼ 0) and have a scaling exponent

that asymptotically approaches γ = 3. Thus, it remains unclear whether or not, and to

what degree, the structural properties of the larger class of scale-free interaction networks

(with variable scaling exponents and assortativity) can be exploited to improve the search

performance of evolutionary algorithms, and how these topological characteristics relate to

various aspects of problem difficulty, such as multimodality, epistasis, and deception. Since

our results show that takeover times of individual experiments are highly sensitive to initial

placement of the high fitness individual, especially at low scaling exponents in disassortative

networks (Fig. 3.9b), we suspect that evolutionary algorithms on such networks would

require multiple restarts to assure reliable results. However, the question as to whether
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the heterogeneity of these networks can sometimes lead to higher fitness solutions than on

regular graphs remains to be seen. We have recently commenced further studies to try to

address these questions.

The population structures utilized in evolutionary computation are typically static.

That is, the interaction network is grown prior to the evolution of the population and it

remains fixed throughout the evolutionary process. However, recent work has demonstrated

that dynamic interaction network structures, both regular (Alba and Dorronsoro, 2005) and

irregular (Whitacre et al., 2008), can enhance the search capabilities of population-based

optimization algorithms. Specifically, Alba and Dorronsoro (2005) showed that the solu-

tion quality of genetic algorithms can be improved by dynamically altering the dimensions

of rectangular lattice population structures, and Whitacre et al. (2008) demonstrated that

self-organizing complex interaction networks improve diversity maintenance in steady-state,

asexual, mutation-limited populations. The results presented in this study demonstrate that

the selective pressures induced by scale-free interaction networks can be altered by chang-

ing the scaling exponent and/or assortativity, both of which can be achieved through edge

swaps. Thus, it may be possible to dynamically alter the selective pressure in scale-free in-

teraction networks, as an on-line means for controlling the exploration/exploitation tradeoff

in evolutionary optimization.

The selection operators commonly used in evolutionary optimization may differ from the

local uniform selection policy with replace-if-better updates employed in the bulk of this

study. However, experimentation with selection operators that are commonly employed in

evolutionary optimization on regular population structures, such as binary tournament se-

lection and linear ranking selection, produced qualitatively similar results to those observed

using local uniform selection.

For each graph instance considered in this study, care was taken to ensure that the edge

sets were thoroughly randomized. We expect that scale-free interaction networks with more

rigidly defined edge sets, such as the hierarchical and modular scale-free graphs considered
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in (Barabàsi et al., 2001; Ravasz et al., 2002), may induce qualitatively different selective

pressures than those reported on herein.

All of the experiments performed in this study were nonextinctive, such that high fit-

ness individuals could not revert back to low fitness. Thus, the formulation of takeover

time analysis considered herein implicitly assumed that once an advantageous mutation

arose, it spread relentlessly. In evolutionary optimization, and other relevant contexts such

as epidemiology, this is clearly a simplifying assumption; individuals with advantageous

mutations are often lost before they are chosen for reproduction and infectious individuals

often recover before they spread disease. Thus, population structure influences the spread

of genetic information by affecting (i) the probability with which an advantageous muta-

tion becomes established and, once established, (ii) the rate with which it spreads. While

this study investigated the latter influence of population structure, work is currently un-

derway to investigate how the structural characteristics of scale-free interaction networks

impact the former. As certain population structures are known to be promoters of the

spread of advantageous alleles and others are known to be suppressors (Lieberman et al.,

2001; Whigham and Dick, 2008), investigating the influence of the topological properties of

scale-free interaction networks on establishment probabilities will complement the results

presented in this study.

In summary, in this contribution we demonstrated why the so-called “characteristic path

length” of a graph is not, in fact, characteristic of system dynamics on scale-free graphs with

stochastic degree-dependent update mechanisms, because this metric does not account for

variability in node degree. We also showed that the eigenvalues of the connectivity matrix

and the effective population size (Neff ) are unable to account for observed variability in

takeover times. Rather, we found that the logarithms of average takeover times on scale-

free graphs, with a variety of scaling exponents, assortativities, and average degrees were

well-acounted for by a planar function of (i) the average inverse degree (which incorporates

the influence of scaling) and (ii) the logarithm of the population size, and that there is a
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strong nonlinear effect of assortativity on the variability of takeover times at low scaling

exponents. As the formulation of takeover time analysis considered herein serves as a

simplified measure of information flow in general, we believe that the results of this study

may provide insights into a variety of dynamical processes which may occur on scale-free

networks, such as epidemiological invasion, the dissemination of fads, ideas, and innovations,

and evolutionary optimization.

3.5 Glossary of Variables

• Ak: Attachment kernel - The attachment weight of a node of degree k, which is used
to determine the probability (Π(k)) that an incoming node will attach to a node of
degree k.

• E[T ]: Expected takeover time - Takeover time, averaged over all initial placements, on
a single graph instance.

• γ: Scaling parameter - The scaling exponent of a power-law degree distribution,
p(k) k−γ

• G: Graph - A graph G = (V,E), comprised of a vertex set (V ) and an edge set (E).
In this study, graph is used synonymously with population structure, topology, and
network.

• k: Vertex degree - The number of neighbors of a given node.

• 〈k〉: Average degree - The average number of neighbors per node, which is equivalent
to the first moment of the degree distribution (µ1).

• kmin: Minimum degree - The minimum number of neighbors possessed by a node in
a graph G.

• kmax: Maximum degree - The maximum number of neighbors possessed by a node in
a graph G.

• Λi(t): Vertex fitness - The fitness of a vertex i at time t

• Li: Average individual path length - Average shortest path between vertex i and all
other vertices in a graph G.

• L: Characteristic path length - Average all-pairs shortest distance between vertices.

• µ1: Average degree - The first moment of the degree distribution, which is equivalent
to the average degree (〈k〉).

• µ−1: Average inverse degree - The first inverse moment of the degree distribution.
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• N : Population size - The number of vertices in a graph G.

• Neff : Effective population size - Defined in (Sood et al., 2008) as Nµ2
1

µ2

• Nt: The proportion of high fitness nodes at time t.

• Π(ki): The probability that a newly introduced vertex attaches to an existing vertex
i of degree ki.

• p(k): Probability distribution function - The probability of finding a node of degree k.

• P (k): Complementary cumulative distribution function - The probability of finding a
node of degree greater than or equal to k.

• Psel: Selection probability - Probability of selecting a high fitness individual from a
mating neighborhood.

• r: Assortativity - Propensity of vertices of similar degree to attach to one another.

• σT : Standard deviation of the takeover times observed in each individual graph in-
stance (i.e., for each of the N initial placements of the high fitness individual, which
are already averaged over the 10 replicates of each initial placement).

• σE[T ]: Standard deviation of the expected takeover times across graph instances, for
a given combination of γ, r, and N .

• T : Takeover time - The takeover time observed in a single experiment.
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Barabàsi, A. L., E. Ravasz, and T. Vicsek (2001). Deterministic scale-free networks. Physica

A 299, 559–564.

Borrett, S. R., B. D. Fath, and B. C. Patten (2007). Functional integration of ecological

networks through pathway proliferation. Journal of Theoretical Biology 245, 98–111.

Bryden, K. M., D. Ashlock, S. Corns, and S. Wilson (2005). Graph based evolutionary

algorithms. IEEE Transactions on Evolutionary Computation 10 (5), 550–567.

Caldarelli, G., A. Capocci, P. De Los Rios, and M. A. Munoz (2002). Scale-free networks

from varying vertex intrinsic fitness. Physical Review Letters 89 (25), 258702.
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Chapter 4

Information Cascades on

Degree-Correlated Random

Networks

Abstract

We experimentally investigate a threshold model of contagion on degree-correlated random

networks. We show that the parameter range in which global information cascades oc-

cur generally expands as degree-degree correlations become increasingly positive. However,

under certain conditions, large-scale information cascades can paradoxically occur when

degree-degree correlations are sufficiently positive or negative, but not when correlations

are relatively small. We also show that the ability of high degree vertices to trigger large

cascades is strongly affected by degree-degree correlations. We find that in networks with

negative degree-degree correlations, high degree vertices trigger larger information cascades

than low degree vertices, on average, but in networks with positive degree-degree correla-

tions, the opposite result obtains. Lastly, we show that cyclical triggering motifs are present

in large finite random networks that enable cascades on denser networks than predicted an-
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alytically. Since real-world networks are both finite and exhibit degree-degree correlations,

these results may have relevance in understanding contagion in a variety of application

domains.

4.1 Introduction

In the past decade, analytical and computational models have been used extensively to study

how the structural characteristics of interaction topologies affect network-based dynamical

processes (Barrat et al., 2008). For example, power-law degree distributions have been

shown to lead to a vanishing epidemic threshold in the Susceptible-Infectious-Susceptible

(SIS) model of disease spread (Pastor-Satorras and Vespignani, 2001), decrease consensus

times in the unbiased Voter Model (Sood et al., 2008), and increase saturation times in

models of takeover dynamics (Payne and Eppstein, 2008). The update mechanisms in

such network-based models of information flow generally come in two basic flavors (Dodds

and Watts, 2004); in typical models of disease spread (Murray, 2002), the probability of

information spreading along a given edge is independent of the degree of the vertex to which

it leads, whereas in threshold models of binary decisions (Watts, 2002), a vertex will change

to a new state if a specified fraction of its neighboring vertices are in that state. In both

kinds of models, a small number or fraction of vertices are typically “seeded” with a novel

piece of information; when this information spreads throughout a significant portion of the

network, it is referred to as an information cascade, akin to processes in real-world systems,

such as propagating failures in power grids (Kinney et al., 2005; Sachtjen et al., 2000) or the

adoption of new ideas and fads in social networks (Schelling, 1973). The size and frequency

of such information cascades have been shown to be affected by various factors, including

the number of seed vertices (Gleeson and Cahalane, 2007); the degree of the vertices in

which these seeds are placed (Watts and Dodds, 2007); the details of the threshold function

(Watts, 2002; Watts and Dodds, 2007); edge directionality (Gleeson, 2008b); the presence

of long-range connections vs. local clustering (Centola et al., 2007); and other structural
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characteristics of the underlying interaction network, such as modularity (Galstyan and

Cohen, 2007; Watts and Dodds, 2007) and heterogeneity in the degree distribution (Watts,

2002; Watts and Dodds, 2007).

In the most commonly used network generating algorithms, such as those that produce

generalized random networks (Milo et al., 2003) or Albert-Barabási scale-free networks

(Barabàsi and Albert, 1999), there are no correlations between the degrees of neighboring

vertices (Newman, 2002). However, in an analysis of several real-world networks, Newman

found that social interaction networks are typically assortative (i.e., degrees of adjacent ver-

tices are positively correlated), while technological and biological networks are commonly

disassortative (i.e., degrees of adjacent vertices are negatively correlated) (Newman, 2002,

2003). Degree-degree correlations can have a significant impact on network-based dynam-

ical processes. In random networks with exponentially truncated power-law degree distri-

butions, a giant component percolates at lower average degree (thus facilitating the spread

of information) in assortative networks than in uncorrelated or disassortative networks,

whereas the maximum size of the giant component is larger in disassortative networks than

in uncorrelated and assortative networks (Newman, 2002). Further, with these same degree

distributions, the giant component of an assortative network is more robust to the random

removal of vertices than the giant component of uncorrelated or disassortative networks

(Newman, 2003). Positive degree-degree correlations have also been shown to significantly

alter the distribution of avalanche sizes in the Bak-Tang-Wiesenfeld sandpile model (Yin

et al., 2007), and when the prisoner’s dilemma is played on scale-free networks, the propor-

tion of cooperators at equilibrium is reduced in both assortative and disassortative networks,

relative to uncorrelated networks (Rong et al., 2007). In the context of the SIS model, the

introduction of degree-degree correlations has no effect on the null epidemic threshold ob-

served in infinitely large scale-free networks with infinite variance (Boguñá et al., 2003),

though investigations of large, but finite, scale-free networks have shown that epidemic out-

breaks spread more rapidly in assortative networks than in uncorrelated or disassortative
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networks (Kiss et al., 2008). Investigations of takeover times on connected scale-free net-

works have shown that the introduction of positive degree-degree correlations increases the

mean saturation time and decreases the variability between initial seed placements (Payne

and Eppstein, 2009). Despite these many advances, how degree-degree correlations affect

dynamics on complex networks is not yet completely understood.

Here, we focus on a threshold model of binary decisions, originally developed by Watts

for the uncorrelated generalized random network case (Watts, 2002). A key aspect of this

threshold model is that a single vertex may trigger a global cascade. In the context of

technological networks, such as power grids, these ‘triggers’ represent the system’s Achilles’

heel, whereas in social systems, they, at least theoretically, represent the prime targets

for marketing strategists to effectively advertise their product (Katz and Lazarsfeld, 1955;

Watts and Dodds, 2007). Using this model, we perform extensive numerical simulations of

information cascades starting from a single initial seed on large (N = 104) degree-correlated

random networks. Our investigations reveal several results regarding the relationships be-

tween degree-degree correlations and the frequency and size of large-scale information cas-

cades, the underlying structure of a network’s triggering component, and the ability of high

degree vertices to trigger cascades. Motivated by this study, we have elsewhere developed

analytic results concerning the frequency of global cascades on degree-correlated random

networks (Dodds and Payne, 2009), complementing the recent results of Gleeson (2008a),

who provided analytic results for cascade sizes. While our experimental findings are largely

in excellent agreement with analytic work, we show observed discrepancies to be due to the

presence of cyclical topological motifs.

4.2 Model

Vertices can be in one of two states, active (infected) or inactive (susceptible), and once

a vertex activates, it cannot deactivate (Watts, 2002). Every vertex is given an identical

threshold-based response function, where the probability (Π) that a vertex of degree k
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changes its state from inactive to active is a function of the fraction of its k neighbors that

are active. Specifically, if x denotes the number of active neighbors of a vertex of degree k,

and φ denotes the threshold of its response function, then

Π(x, k) =


1, if x

k ≥ φ

0, otherwise
(4.1)

Vertices are updated synchronously, though for the case of monotonically increasing re-

sponse functions, as considered herein, asynchronous updating yields equivalent results.

Vertices that activate in the presence of a single active neighbor are referred to as

vulnerable, and all other vertices are referred to as stable (Watts, 2002). Infinite random

networks have a zero probability of containing cycles; large-scale information cascades that

are triggered by a single vertex can therefore only occur in these strictly branching structures

if there exists a sufficiently large connected component of vulnerable vertices (Watts, 2002).

This is referred to as the vulnerable component, its size is denoted by Sv, given as a fraction

of the system size N , and the set of vertices it contains is denoted by Ωv. The frequency

of information cascades is almost completely dictated by Sv, since any initial placement

in Ωv will lead to a cascade of size at least Sv. However, stable vertices that are directly

adjacent to the vulnerable component can also trigger large-scale cascades, since an initial

seed placed in one of these vertices will ignite the vulnerable component. We will refer to

these vertices as peripheral and denote the set of peripheral vertices as Ωp, with size Sp.

The union of the vulnerable and peripheral components, Ωe = Ωv ∪ Ωp, makes up what is

referred to as the extended vulnerable component (Watts, 2002), the size of which we denote

as Se. In strictly branching networks, Se is exactly the number of vertices that can trigger

a large-scale information cascade, so this quantity is equivalent to the frequency with which

large-scale cascades occur if the initial seed is randomly chosen. Vertices outside of Ωe are

referred to as external, the set of which is denoted by Ωx.

We will define a global information cascade as any cascade that infects 1% or more

of the entire network. This arbitrary distinction (Watts, 2002) is reasonable because the
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distribution of cascade sizes is generally bimodal with sizes either well above or well below

1% (except near the onset of the percolating vulnerable component, where the cascade size

distribution obeys a power law (Watts, 2002)). Thus, the terms average global cascade size

(Sgc) and global cascade frequency (Fgc) will refer to global cascades only, omitting the lower

mode of the distribution. In contrast, average cascade size (Savg) will be used to mean the

average of all information cascades, combining both modes of the cascade size distribution.

All sizes are given as a proportion of the number of vertices N .

4.3 Methods

We consider undirected random networks of N vertices, with average degree z, and a Poisson

degree distribution pk = zke−z/k!. Random networks were generated by randomly placing

M = Nz/2 edges between pairs of vertices selected with uniform probability. Duplicate

edges were prohibited, resulting in an exact average degree z.

Following Newman (2002), we use ejk to denote the probability that a randomly chosen

edge connects vertices with degree j + 1 and k + 1. The quantity qk =
∑

j ejk is then the

probability that a randomly chosen edge followed in a random direction leads to a vertex

of degree k + 1. Degree-degree correlations are quantified by their assortativity r, which is

formally defined (Newman, 2002) as

r =
1
σ2
q

∑
j

∑
k

jk(ejk − qjqk) (4.2)

where σ2
q =

∑
k k

2qk − [
∑

k kqk]
2 is the variance of the distribution qk. A network is said to

be disassortative if r < 0, uncorrelated if r = 0, and assortative if r > 0.

We generate networks with a given assortativity, within some error tolerance, using the

following iterative shuffling routine. At each step, we first measure the assortativity of

the network using Eq. (4.2). Two edges 〈a, b〉 and 〈x, y〉 are then chosen at random with

uniform probability (such that a, b, x, y are all distinct). If the observed assortativity is less

than the desired assortativity, then we swap the edges such that the two vertices with the
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Figure 4.1: Observed frequency of global cascades, as a function of threshold φ and average
degree z, for (a) disassortative (r = −0.5), (b) uncorrelated (r = 0), and (c) assortative
(r = +0.5) random networks. The color bar corresponds to all panels. The asterisks denote
the numerical solutions to Eq. (4.3). The dashed vertical lines at φ = 0.18 correspond to
the three curves in Fig. 4.2.

larger degree are connected to one another and the two vertices with the smaller degree are

connected together. To instead incrementally decrease assortativity, we connect the two

vertices with the largest and smallest degree, and the two vertices of intermediate degree.

(If either of the new edges were already present, then we leave the network unchanged.)

Shuffling continues until the observed assortativity is within 0.01 of the desired assortativity.

This method exactly preserves the underlying degree distribution pk, since the degree of

each vertex remains unchanged after a swapping event.

We have recently shown (Dodds and Payne, 2009) that the condition for the onset of

global spreading, triggered by a single initial seed, is:

|A| = 0 where [A]j+1,k+1 = δjkqk − kbk+1ejk, (4.3)

and bk is the probability that a degree k vertex is vulnerable. Note that round-off errors in

the numerical solution of Eq. (4.3) can lead to multiple locations in which this equation is

satisfied; in the results shown herein, we used the extremal values of z where the determinant

of A was numerically equal to zero.
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Table 4.1: Ranges of assortativity considered in this study, as a function of average degree
z.

Average degree (z) Range of assortativity (r)
z < 1.0 −0.50 ≤ r ≤ +0.50

1.0 ≤ z < 2.0 −0.70 ≤ r ≤ +0.95
2.0 ≤ z < 3.0 −0.85 ≤ r ≤ +0.95
3.0 ≤ z < 5.0 −0.90 ≤ r ≤ +0.95

z ≥ 5.0 −0.95 ≤ r ≤ +0.95

4.4 Experimental Design

In all experiments, the number of vertices was held constant at N = 104. We considered

thresholds, φ, in the range [0.1, 0.35] in increments of 0.01. Unless otherwise specified, the

average degree z was varied from 1.0 to 20.0 in increments of 0.2. Assortativities ranged

from r = −0.95 to r = 0.95, depending on z, since the shuffling method presented in Section

4.3 suffers from some constraints. In particular, it is considerably more difficult to obtain

extremely negative assortativities than it is to obtain extremely positive assortativities, and

this effect is especially pronounced for low z (see Dodds and Payne (2009) for details). In

Table 4.1, we present the lower and upper bounds of the assortativities of the networks

generated for this study, as a function of z.

For each combination of z and r, 10 network instances were generated. For each combi-

nation of network instance and threshold φ, the initial seed was placed in each vertex, one

at a time, and an independent simulation was performed for each of the N = 104 initial

placements, resulting in almost 1013 simulations.

4.5 Results

We first investigate the influence of degree-degree correlations on the so-called ‘cascade

window’ (Watts, 2002), which delineates the region in which global cascades can occur, as

a function of the vertex threshold φ and average degree z. In order to concretely ascertain

the lower boundary of average degree z for which global cascades occur, we augmented

our experimental design with an additional set of experiments on random networks with
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0.2 ≤ z ≤ 1.0 (in increments of 0.05). In Fig. 4.1, we depict the frequency of global

cascades as a function of vertex threshold φ and average degree z in disassortative (Fig.

4.1a), uncorrelated (Fig. 4.1b), and assortative (Fig. 4.1c) random networks. Frequencies

were recorded as the proportion of all simulations that resulted in a global cascade, across

all initial placements on each of the 10 network instances, for each combination of φ and z.

The results of our simulations (Fig. 4.1, shaded contours) are in excellent agreement with

Eq. (4.3) (Fig. 4.1, asterisks), although this analytic solution occasionally under-predicts

the upper z-boundary of the cascade window; we find these discrepancies to be due to the

presence of cyclical triggering motifs that are not considered in the analytic treatment, and

we discus this issue later in the present section.

As shown in Fig. 4.1, the cascade window is clearly influenced by degree-degree corre-

lations. In general, increasing assortativity r expands the parameter range in which global

cascades are observed (compare the shaded regions in Fig. 4.1, as the panels are read from

left to right). Specifically, for φ ≤ 0.25, increasing r consistently decreases the minimum,

and increases the maximum, average degree z for which global cascades occur (compare

the heights of the shaded regions in Fig. 4.1, as the panels are read from left to right).

In uncorrelated networks, global cascades were never observed with φ > 0.25 (Fig. 4.1b).

However, at low average degree z, global cascades were observed for thresholds ranging from

0.25 < φ ≤ 0.33, for both disassortative networks (Fig. 4.1a) and assortative networks (Fig.

4.1c).

In Fig. 4.2, we present the percolation phase transition in more detail, depicting both

the observed frequencies of global cascades and the corresponding sizes of the extended

vulnerable component (Se), as a function of z. To be consistent with previous work (Watts,

2002; Watts and Dodds, 2007), these cascade simulations pertain to a threshold of φ = 0.18

(corresponding to the vertical dashed lines in Fig. 4.1). For each value of r at φ = 0.18,

we find excellent agreement between Se (Fig. 4.2, lines) and global cascade frequency (Fig.

4.2, symbols), as expected. Increasing r decreases the minimum z for which global cascades
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Figure 4.2: Observed statistics of global cascades as a function of average degree z for
φ = 0.18, on assortative (r = +0.5), uncorrelated (r = 0), and disassortative (r = −0.5)
random networks. Each data point is the frequency of global cascades observed on 10
network instances. The lines are the corresponding average sizes of the extended vulnerable
components (Se). The x-axis is scaled logarithmically.

are observed and increases the maximum observed frequency of global cascades (compare

the peaks of the three curves in Fig. 4.2). The range of z for which global cascades occur

also increases with increasing r, as seen previously in Fig. 4.1. Further, increasing r alters

the skew of the functional relationship between global cascade frequency and z (compare

the shape of the curve as assortativity increases from r = −0.5 to r = 0 to r = +0.5 in Fig.

4.2).

In Fig. 4.3, we depict the effects of average degree z and assortativity r on global

cascade frequency (Fgc, Fig. 4.3, left column) and global cascade size (Sgc, Fig. 4.3,

right column), for three vertex thresholds, φ = 0.20 (top row), φ = 0.25 (middle row),

and φ = 0.33 (bottom row). For φ ≤ 0.25 and r < 0, the maximum z for which any

global cascades occur is relatively insensitive to changes in r (note how the right-most

z-boundary of the shaded contours below the horizontal dashed lines in Fig. 4.3a,c are

nearly independent of r). However, for r > 0, the maximum average degree z for which

global cascades occur increases dramatically as r becomes increasingly positive (Fig. 4.3a,c,
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Figure 4.3: Frequency (Fgc, left column) and size (Sgc, right column) of global cascades,
as a function of average degree z and assortativity r, for three threshold values: φ = 0.2
(top row), φ = 0.25 (middle row), and φ = 0.33 (bottom row). The color bar corresponds
to all panels. The dashed horizontal lines in panels (a)-(d) are at r = 0, and the dashed
vertical lines in panels (e) and (f) correspond to the data presented in Fig. 4. We were
unable to obtain data in the hatched region (see Table 4.1).
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Figure 4.4: (a) Frequency (asterisks) and size (circles) of global cascades, as a function of
assortativity r, for z = 2.0 and φ = 0.33. The bars correspond to the sizes of the vulnerable
(Sv, black) and peripheral (Sp, white) subcomponents of Se. The dashed line is provided
as a guide for the eye.

data above horizontal dashed line, where the right-most z-boundary of the shaded contours

increase rapidly with r). Although the frequencies of global cascades near this upper-z

boundary are low, when global cascades do occur they consistently spread throughout the

entire network (as indicated by the black contours in Fig. 4.3b,d; e.g., for z = 9 and

r = +0.8, compare the low frequency in Fig. 4.3a to the large cascade size in Fig. 4.3b).

At high thresholds (φ > 0.25, Fig. 4.3, bottom row) and low z, the frequency and size of

global cascades becomes a bimodal function of r (Fig. 4.3e,f). In addition, the sizes of global

cascades near the upper-z boundary are significantly reduced relative to lower thresholds

(as shown by the lower grayscale contours in Fig. 4.3f as compared to Fig. 4.3b,d). Further

details of the bimodal response to r at z = 2 and φ = 0.33 (vertical lines in Figs. 4.3e,f)

are depicted in Fig. 4.4, where we also show the sizes of the vulnerable (Sv) and peripheral

(Sp) components. Note the sharp transition in global cascade size at |r| ∼ 0.5, and how the

global cascade size decreases as the frequency of global cascades increases for |r| → 1.

Although the two modes shown in Fig. 4.4 look similar, they are caused by distinctly
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Figure 4.5: Visualizations of random network properties with z = 2 and disassortaive
(r = −0.8, top row), uncorrelated (r = 0, middle row), and assortative (r = +0.8, bottom
row) degree-degree correlations. In (a,d,g), we visualize averages of the E matrices for all
10 network instances (N = 10, 000) used at each parameter combination. Shading (ranging
from white to black) of matrix entries in E correspond to the probabilities (ranging from
0 to 0.17) with which a randomly chosen edge connects vertices of degree j and k; entries
corresponding to vertices with k > 6 occur with very low frequency and so are not shown.
In (b,e,h), we depict the extended vulnerable component (Se) for φ = 0.33 for individual
random networks with N = 200 (for visual clarity). Peripheral vertices (k > 3) are denoted
as white squares; vertices in the vulnerable component are denoted as circles, and are colored
according to degree: white (k = 1), gray (k = 2), and black (k = 3). The corresponding
pie charts in (c,f,i) denote the proportions of degrees found in these extended vulnerable
components (b,e,h).
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different underlying topological properties. In disassortative networks (e.g., Fig. 4.5a,b,c),

the vulnerable component comprises edges between vertices of alternating high and low

degree. For example, the vulnerable component shown in Fig. 4.5b for z = 2 and φ = 0.33

comprises alternating vertices of degree k = 2 and k = 3, with only a few degree k = 1

vertices attached. This results from the inherent negative degree correlation, where k = 1

vertices frequently connect to stable vertices (k > 3, Fig. 4.5a), excluding them from the

vulnerable component. In contrast, for assortative networks (e.g., Fig. 4.5g,h,i), vertices

of similar degree are frequently connected in the vulnerable component. This is shown for

networks with z = 2 and φ = 0.33 in Fig. 4.5h, where there are clusters of vertices of k = 3

and chains of vertices with k = 2, most of which are terminated by k = 1 vertices. The

probability of stable (k > 3) vertices connecting to the core of k = 2 and k = 3 vertices

is higher in disassortative networks (Fig. 4.5a) than in assortative networks (Fig. 4.5g).

Consequently, the peripheral component of k > 3 vertices is larger in the disassortative

networks (Fig. 4.5c) than in the assortative networks (Fig. 4.5i). In uncorrelated networks,

vulnerable and stable vertices are likely to connect to one another (Fig. 4.5d), frustrating

the formation of a sizable extended vulnerable component (Fig. 4.5e), hence prohibiting

global cascades (Fig. 4.4).

In general, there is excellent agreement between the size of the extended vulnerable

component (Se = Sv + Sp) and the observed frequency of global cascades (compare the

height of the bars with the asterisks in Fig. 4.4). However, the observed frequency of global

cascades is slightly higher than can be explained by the size of the extended vulnerable

component Se in the region 0.5 . |r| . 0.7 (in Fig. 4.4, note how the asterisks are slightly

above the bars in these regions). Closer examination of individual experiments enabled

us to ascertain that these discrepancies were caused by triggering vertices which are not

themselves part of Ωe, but are ultimately connected to vertices in Ωe by certain cyclical

structural motifs, such as the motif illustrated in Fig. 4.6, for φ = 0.33 (such triggering

motifs were first noted by D. E. Whitney, private communication). In this illustration, the
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Figure 4.6: Illustration of a representative cyclical triggering motif (for φ = 0.33) in the
external component. Diamonds correspond to vertices in the external component (Ωx),
the square corresponds to a vertex in the peripheral component (Ωp), and the circle to a
vertex in the vulnerable component (Ωv). The initial seed is placed in the black diamond.
Spreading into Ωv is indicated by the black arrows.

vertex in which the initial seed was placed is colored black, and is not part of the extended

vulnerable component; neither are its two immediate neighbors (gray diamonds). However,

both of these neighbors are vulnerable (k = 2), and will therefore become immediately

infected. While the adjacent peripheral vertex (k = 4, white square) is stable, its threshold

will be exceeded as it now has two infected neighbors, and it will subsequently infect its

adjacent vulnerable vertex (k = 2, white circle), igniting the entire vulnerable component,

and possibly the entire network, giving rise to a global cascade that is triggered from outside

the extended vulnerable component Ωe. Such triggering components were found with the

highest frequency near the upper-z boundary of the cascade window, explaining the observed

discrepancy between our numerical and analytic results (Fig. 4.1).

As shown in Fig. 4.5, the probability with which a vertex of degree k is attached

to the vulnerable component (and consequently, the frequency with which it triggers a

global cascade) is highly influenced by degree-degree correlations. For an average degree

z sufficiently above the percolation threshold, global cascades typically topple the entire
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Figure 4.7: Average cascade size with φ = 0.18 as a function of average degree z, given that
the initial seed was placed in high-degree vertices (in the top 10% of the degree distribution,
squares) or in the remaining vertices in the bottom 90% of the degree distribution (asterisks),
for (a) disassortative (r = −0.8), (b) uncorrelated (r = 0), and (c) assortative (r = +0.8)
random networks. Note that in (a), we were not able to obtain data for z < 2 (Table 4.1).
Lines are provided as a guide for the eye.

network (Watts and Dodds, 2007) (Fig. 4.3). Taken together, these two observations imply

that the relationship between the degree of the vertex in which the initial seed is placed and

the average size of the cascade (Savg) it triggers is also heavily influenced by degree-degree

correlations. To illustrate this effect, we present in Fig. 4.7 the average cascade size for

φ = 0.18 as a function of average degree z for disassortative (Fig. 4.7a), uncorrelated (Fig.

4.7b), and assortative (Fig. 4.7c) random networks. We make the arbitrary distinction

between high-degree vertices (those in the top 10% of the degree distribution pk), and the

remaining vertices (those in the bottom 90% of the degree distribution pk) (Watts and

Dodds, 2007). In disassortative networks (Fig. 4.7a), the high-degree vertices consistently

trigger larger average cascades than do the remaining vertices. This observation stems from

the negative degree correlation in disassortative networks, where highly connected vertices

have a high probability of connecting to vulnerable vertices in the extended vulnerable

component (Ωe). In contrast, vertices with only a few connections are likely to connect

to stable vertices in the external component (Ωx). In uncorrelated random networks (Fig.

4.7b), high-degree vertices offer only a marginal increase in average cascade size over those

triggered by other vertices, as discussed in (Watts and Dodds, 2007). However, in assortative

networks (Fig. 4.7c), the ability of high-degree vertices to trigger large cascades decreases
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with increasing z, and in networks with z > 3 the vertices in the bottom 90% of the

degree distribution become dominant in triggering global cascades. This occurs because,

in networks with high z and strong positive degree-degree correlations, highly connected

stable vertices are likely to connect only with one another, forming stable clusters in Ωx.

In contrast, vulnerable vertices possess fewer connections and most often connect with one

another, forming a dense core of vulnerable vertices in Ωv, from which large cascades easily

arise.

4.6 Discussion

Information cascades on random networks are often characterized as ‘robust yet fragile’

(Watts, 2002). When the network is sufficiently dense (high average degree z), information

cascades occur relatively infrequently, but when they do occur, they often spread throughout

the entire network. We have shown that increasing assortativity in a random network can

exacerbate this effect, especially in networks whose degree-degree correlation is already

positive (Figs. 4.1, 4.3a-d). Thus, not only do cascades occur more frequently in assortative

networks, but they also typically cover a greater proportion of the network. While this may

be perceived as a blessing to marketing strategists, it is cause for concern regarding other

forms of social contagion, such as misinformation and disease. Conversely, the disassortative

degree-degree correlations of technological and biological networks (Newman, 2002) may

render these systems more resilient to small perturbations.

Increasing assortativity led to an earlier onset (i.e., at lower z) of a percolating extended

vulnerable component and an overall change in the shape of the functional relationship

between global cascade frequency and average degree (Fig. 4.2). This result is in line

with observations concerning the giant connected component in networks with heavy-tailed

degree distributions (Newman, 2002). However, in those networks, the maximum size of

the giant connected component was found to be larger in disassortative networks than

in uncorrelated or assortative networks (Newman, 2002). In contrast, our experiments
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on random networks with Poisson degree distributions demonstrate that the size of the

extended vulnerable component is largest when degree-degree correlations are assortative

(Fig. 4.2).

In uncorrelated random networks with Poisson degree distributions, it is known (Watts,

2002) that global cascades starting from a single initial seed do not occur when φ > 0.25 (Fig.

4.1b). However, for low average degree z, we observed global cascades for φ = 0.33 in both

disassortative (Fig. 4.1a) and assortative (Fig. 4.1c) networks. This resulted in a bimodal

response of cascade frequency to r (Figs. 4.3e and 4.4), as opposed to the unimodal response

observed with φ ≤ 0.25 (Fig. 4.3a,c). Another deviation from the behavior observed with

φ ≤ 0.25 is the resulting size of a global cascade (Fig. 4.3f), which was most often far

smaller than the size of the entire system. We note that these interesting phenomena in

both global cascade frequency and size are not immediately apparent from the analytical

treatments of this model (Dodds and Payne, 2009; Gleeson, 2008a), or from other models

of information spreading on degree-correlated networks (e.g., (Kiss et al., 2008)). While

this counterintuitive response of cascade frequency and size is interesting in its own right,

it is important to point out that bimodality only occurs for low average degree, which is a

special case for disassortative networks. For example, when z = 2 (Fig. 4.4), the observed

maximum degree in any network was only 10. This presents some anomalous constraints on

the negative degree correlations found in highly disassortative networks, as the vulnerable

degree 2 and 3 vertices have a high probability of connecting to one another (Fig. 4.5a),

whereas with higher z these vertices would be more likely to connect to higher degree stable

vertices. This can be clearly seen in Fig. 4.3e, where the peak in global cascade frequency

decays much more rapidly as z increases in the r < 0 peak than in the r > 0 peak.

Identifying which vertices will trigger large information cascades has long been of in-

terest, both in applications where the desire is to promote such cascades (as in marketing

(Katz and Lazarsfeld, 1955)) as well as in applications where the desire is to prevent such

cascades (as on the electrical power grid (Kinney et al., 2005) or in epidemiology (Kiss
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et al., 2008)). A common assumption among the social scientists and marketing strategists

is that the most connected individuals (so-called ‘influentials’) are the best candidates for

triggering a sizable information cascade (Katz and Lazarsfeld, 1955). Recent results in

uncorrelated random networks (Watts and Dodds, 2007) have demonstrated that cascades

resulting from seeding high-degree vertices (those in the top 10% of the degree distribution)

were actually not much larger than those emanating from vertices in the bottom 90% of the

degree distribution (this result is recreated in Fig. 4.7b). Here, we found that cascades are

possible in much denser networks that are positively assortative, and in these networks the

lower degree vertices are responsible for triggering the largest cascades (Fig. 4.7c), resulting

from an amalgamation of low-degree vulnerable vertices (a similar result was obtained in

Watts and Dodds (2007) for group-based networks). This result may be of direct relevance

to the social science and marketing communities, and may speak to the relative success

of viral marketing campaigns that leverage online social networking (Freeman and Chap-

man, 2008), such as the Obama campaign (Stelter, 2008; Tumulty, 2007). In contrast, in

disassortative networks the cascade window is restricted to sparser networks, and in these

networks we found that cascades resulting from seeding high-degree vertices does result in

much larger cascades (Fig. 4.7a). These results may indicate that targeted infection of high

degree vertices may be an effective strategy for disseminating information in networks with

negative degree-degree correlations, such as the internet.
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Chapter 5

Concluding Remarks

The results of this dissertation have advanced our understanding of how interaction topolo-

gies affect information flow in two simple classes of models. We have provided a general

method for approximating takeover dynamics in regular interaction topologies; quantified

the selective pressures induced by scale-free, degree-correlated interaction topologies; and

characterized the conditions in which global information cascades occur in degree-correlated

Poisson-distributed random interaction topologies.

This dissertation has laid the foundation for numerous directions of future research. In

the context of evolutionary computation, the degree to which scale-free population struc-

tures can be exploited to improve search performance remains an open question. However,

our results suggest that a systematic investigation of the influence of the structural prop-

erties of scale-free interaction topologies on the performance of evolutionary optimization

algorithms is warranted, and we have recently commenced research in this direction. Specif-

ically, we have investigated the performance of genetic algorithms on two benchmark opti-

mization problems: massively multimodal deceptive problems (Goldberg et al., 1992) and

NK landscapes (Kauffman, 1993). These preliminary experiments provide tentative evi-

dence that the search performance obtained using scale-free population structures improves

as the scaling exponent of the power-law degree distribution increases. Thus, decreased
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degree heterogeneity appears to improve evolutionary search. Assortativity was found to

have a smaller, secondary effect on solution quality, with performance generally improv-

ing with increasing assortativity. In both of the benchmark problems considered, higher

quality solutions were found, on average, using a simple two-dimensional lattice population

structure than with any scale-free interaction topology. However, the variability of the best

solutions found between independent experiments was dramatically higher with scale-free

population structures than with lattice-based population structures. For highly multimodal

or epistatic problems, which are known to be difficult for evolutionary algorithms, it may

be possible to capitalize on this variability by performing an ensemble of trials on numerous

graph instances and then taking the best solution from these independent runs. Further

experimentation is required to test this hypothesis.

Our results demonstrate that takeover times in scale-free interaction networks can be

simply described using a planar function of two topological properties. However, a mech-

anistic explanation of this result has yet to be developed. This, in addition to a rigorous

analytical model of takeover dynamics, would be a useful complement to our experimental

results. Recent analytical treatments of the Voter Model (Sood et al., 2008) may provide a

useful starting point.

In the context of threshold models of binary decisions with externalities, there are several

promising avenues of research. The first is to calculate the frequency with which cyclical

triggering motifs appear in finite networks, as a function of network size, connectivity,

assortativity, and vertex threshold. As analytical treatments of threshold-based spreading

models assume infinitely large, perfectly branching networks, such trigerring motifs are

not considered. However, real-world networks are by definition finite and are often degree-

correlated. Understanding the conditions in which triggering motifs appear and determining

their frequency may therefore aid in the proper application of threshold-models to a variety

of real-world domains.

Several other extensions involve simple changes to the model formulation. For example,
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information could possess an inherent quality; the size of the state space could be increased;

vertices could possess an incubation or refractory period; vertices could be forgetful, or in-

formation may incrementally degrade in each transferral, analogous to the well-known “tele-

phone game.” Another possible direction of future research is to investigate the influence

of degree-degree correlations on information cascades in scale-free networks. While Watts

(2002) found that the introduction of power-law degree distributions limited the conditions

in which global information cascades occured, it may be possible that the introduction

of degree-degree correlations changes this picture, as was the case for Poisson-distributed

random networks.

The interaction networks employed in models of real-world systems and evolutionary

algorithms are typically static. While this has provided a wealth of useful insight regarding

the relationship between network structure and dynamical processes, an obvious direction

of future research is to investigate the incorporation of dynamically changing interaction

networks. Recent results in this area are encouraging, with dynamic linking in evolutionary

models providing novel insights into the emergence of cooperation (Pacheco et al., 2008),

and adaptively changing population structures in evolutionary algorithms improving search

performance and diversity maintenance (Whitacre et al., 2008). As dynamic interaction

networks are a closer approximation to many real-world systems, their incorporation may

allow for the development of more realistic models of dynamical processes and for the design

of population-based optimization algorithms that more closey resemble the systems from

which they draw their inspiration.
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Centola, D., V. M. Egúıluz, and M. W. Macy (2007). Cascade dynamics of complex prop-

agation. Physica A 374, 449–456.

Chakraborty, U. K., L. Deb, and M. Chakraborty (1997). Analysis of selection algorithms:

a markov chain approach. Evolutionary Computation 4 (2), 133–167.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009). Power-law distributions in empirical

data. arXiv:0706.1062v1 .

138



Dodds, P. S. and J. L. Payne (2009). Analysis of a threshold-model of social contagion

on degree-correlated networks. Physical Review E . Submitted, preprint available at

arXiv:0903.0597v1.

Dodds, P. S. and D. J. Watts (2004). Universal behavior of a generalized model of contagion.

Physical Review Letters 92, 218701.

Eames, K. T. D. and M. J. Keeling (2002). Modeling dynamic and network heterogeneities

in the spread of sexually transmitted diseases. Proceedings of the National Academy of

the Sciences 99 (20), 13330–13335.

Ebel, H., L. Mielsch, and S. Bornholdt (2002). Scale-free topology of email networks.

Physical Review E 66, 035103.

Ellner, S. P. (2001). Pair approximations for lattice models with multiple interaction scales.

Journal of Theoretical Biology 210 (4), 435–447.

Eppstein, M. J. and J. Molofsky (2007). Invasiveness in plant communities with feedbacks.

Ecology Letters 10, 253–263.

Eppstein, M. J., J. L. Payne, and C. J. Goodnight (2009). Underdominance, multiscale in-

teractions, and self-organizing barriers to gene flow. Artificial Evolution and Applications.

Submitted.
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