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ABSTRACT 
One approach for determining the molecular structure of proteins 
is a technique called iso-morphous replacement, in which 
crystallographers dope protein crystals with heavy atoms, such as 
mercury or platinum.   By comparing measured amplitudes of 
diffracted x-rays through protein crystals with and without the 
heavy atoms, the locations of the heavy atoms can be estimated.  
Once the locations of the heavy atoms are known, the phases of 
the diffracted x-rays through the protein crystal can be estimated, 
which in turn enables the structure of the protein to be estimated.  
Unfortunately, the key step in this process is the estimation of the 
locations of the heavy atoms, and this is a multi-modal, non-linear 
inverse problem.  We report results of a pilot study that show that 
a 2-stage hybrid algorithm, using a stochastic genetic algorithm 
for stage 1 followed by a deterministic pattern search algorithm 
for stage 2, can successfully locate up to 5 heavy atoms in 
computer simulated crystals using noise free data.  We conclude 
that the method may be a viable approach for finding heavy atoms 
in protein crystals, and suggest ways in which the approach can be 
scaled up to larger problems. 

Categories and Subject Descriptors 
J.3 Computer Applications [Life and Medical Sciences]: biology  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Crystallography, crystallographic phasing, phase problem, 
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1. INTRODUCTION 
Our knowledge of molecular structures of proteins at atomic 
resolution comes largely from an imaging process known as x-ray 
crystallography [16],[17].  Using x-rays in much the same way as 
light is used in a conventional microscope, this method differs 
from ordinary microscopy in that there are no lenses for x-rays. 
Instead, the scattered (diffracted) x-rays from the specimen are 
measured, and the functionality of the lens is mimicked by the 
Fourier transform.  Unfortunately, an important property of the 
scattered x-rays, their individual phases, cannot be measured by 
any detector.  Only the intensities are measured, the inverse 
Fourier transform of which gives a 3D image (the Patterson map) 
representing the superposition of all the inter-atomic vectors of 
the molecule. The Patterson map can be thought of as the 
convolution of the molecular image with itself. For biologically-
interesting molecules like enzymes and other proteins comprised 
of several thousand atoms, the immense number of overlapping 
inter-atomic vectors precludes deconvolution of the Patterson 
map.    

To solve this problem, crystallographers often use an approach 
known as iso-morphous replacement [16],[17], in which they 
'dope' their protein specimens with heavy atoms like mercury and 
platinum, whose inter-atomic vectors are much stronger than the 
vectors arising from the much lighter atoms comprising proteins.  
Determining exactly where these heavy atoms bind to the protein 
is the first step in determining the protein's structure.  In brief, the 
heavy atoms perturb the intensities of the scattered rays in a way 
that allows the phases of the protein's contribution to the 
scattering to be determined relative to the phases of the heavy 
atoms' contribution.  The latter phases can be derived directly 
once the locations of the heavy atoms are known.  The difficulty 
of the entire imaging procedure often lies in locating the heavy 
atoms, a problem that has a multi-modal fitness landscape that is 
not linearly decomposable. Numerous computational algorithms 
have been developed which address this problem, some of which 
are reasonably successful [3],[6],[18],[19].  However, cases still 
arise in which these heavy-atom search programs fail.  

Buoyed by the recent successes of evolutionary algorithms 
applied to various crystallographic problems [1],[2],[9],[13], we 
decided to explore their application to the task of locating heavy 
atoms within crystals.   In particular, we investigated the use of a 
genetic algorithm (GA) for identifying one promising solution in 
the neighborhood of one of the many global optima (a non-
deterministic exploration phase), then subsequently refined the 



estimated solution with a local hill-climbing algorithm  (a 
deterministic exploitation phase). This back-to-back hybridization 
scheme differs from memetic approaches [14] that apply a local 
search to multiple individuals in the population in between 
generations of a GA. Similar tandem hybridization of global and 
local search algorithms have been shown to be successful in other 
difficult optimization problems [15],[20],[23]. For the local 
search algorithm, we selected a deterministic pattern search (PS) 
algorithm [10].  Unlike in [7],[8], where a PS is used in a hybrid 
algorithm to govern the mutation step size and direction of an 
evolutionary algorithm, herein we hybridize the GA and PS in a 
back-to-back manner, as suggested (but not implemented) by [21].   

In order to more accurately assess the effectiveness of our hybrid 
algorithm as a search technique capable of navigating the difficult 
multi-modal landscape of the heavy atom location problem, we 
performed a pilot study using noise-free computer-generated data 
that permitted us to use a fairly simple fitness function.  This is 
not intended to minimize the importance or difficulty of 
constructing a viable fitness function that is robust in the face of 
noisy crystallographic data. 

2. METHODS 
2.1 Creation of Synthetic Test Data 
Protein crystals comprise many repetitions of parallelepipids, 
called unit cells, arranged on a crystal lattice. Each unit cell 
contains extensive internal symmetry, and crystals are divided into 
230 space groups, defined by the type of symmetry that extends 
throughout the crystal. All atom locations in a crystal are uniquely 
defined by the locations of atoms in a smaller asymmetric unit 
(AU); applying symmetry operators for the crystal’s space group 
to the atoms in the AU generates all atom locations within the unit 
cell (e.g., see Table 1).  Coordinates in the unit cell are 
normalized to the range [0,1] in each of the 3 space dimensions.  
For any crystal, there are multiple equivalently valid options for 
locating the origin of the AU. 

Consider a crystal where the jth atom in the unit cell is located at 
position <xj,yj,zj>.  The complex structure factors Fhkl,, for each 
hkl reflection of x-rays, are calculated using a Fourier transform, 
as follows [16]: 
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Where h,k,l are the indices of the reflection planes in the x,y,z 
dimensions; a,b,c are the dimensions of the unit cell in angstroms; 
fj is the number of electrons in atom j; and Bj is the temperature 
factor that accounts for the effect of thermal vibration of the atom.  
For simplicity, equation (1) assumes right-rectangular unit cells, 
although this assumption is easily relaxed [16]. Equation (1) was 
implemented using a discrete Fourier transform.   

For the purposes of this study we computer-generated noise-free 
data from several randomly generated synthetic crystals in the 
space group P422.  Although the AU in P422 has coordinates in 
the range [0,0.5], our synthetic crystals had atom locations in the 
AU randomly generated within the range [0.15,0.35].  This 
restriction precludes the need for complicated wrap-around effects 
and weightings at the edges of the AU and therefore simplified the 
computations.  For each atom in the AU, atom locations in the 
unit cell were subsequently generated by the P422 symmetry 
operators (Table 1).  All simulated crystals in this pilot study were 
cubic with a=b=c=20 angstroms, and were sampled by 512 hkl 
reflections (8 reflection planes in each dimension), corresponding 
to a 2.5 angstrom sampling resolution, with uniform temperature 
factor Bj=10 angstoms2, ∀j.  In a real experiment, 
crystallographers estimate the amplitudes of structure factors due 
to heavy atoms alone by subtracting amplitudes of reflections 
from crystals containing protein atoms alone from those due to 
proteins doped with heavy atoms, thereby introducing additional 
noise into the heavy atom structure factor estimates.  Here, we 
modeled only heavy atoms (i.e., without protein background) with 
fj=40 angstoms2, ∀j, and subsequently computed the noise-free 
amplitudes of the structure factors due to the heavy atoms alone 
by taking the absolute value of the square of equation (1).  
Although we could have easily simulated a protein background, 
this would have made it impossible to separate the effects of noise 
in the fitness function from the effects of a poor search strategy. 

2.2 Fitness function 
Because only amplitudes, and not phases, of the structure factors 
can be measured using x-ray crystallographic techniques, equation 
(1) is not directly invertible.  Our goal was thus to solve the ill-
posed inverse problem of estimating <xj,yj,zj>, ∀j=1..H, given 

2
hklF , where H is the number of heavy atoms in the AU (assumed 

known).  We represented the unknowns in a potential solution 
with a real-valued vector of locations (loc) of length 3H as 
follows: 

1 1 1 2 2 2, , , , , ,..., , , (2)H H Hx y z x y z x y z=< >loc  

where xj,yj,zj are bounds-constrained to the range [0,0.5].    
By computing the inverse Fourier transform of the amplitudes of 
the structure factors (with 2

000 0.0F = ), one generates a 3D 

Patterson map (P), as follows [16]: 
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where V is the volume of the unit cell, and u,v,w are the indeces of 
the 3D Patterson map.  The resolution of the Patterson map is 

Table 1.  For each atom located at <x,y,z> in the 
AU, symmetry in the P422 space group results in 
the following 8 atoms in the unit cell. 
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determined by the sampling density of the reflection planes.  In 
these experiments, the Patterson maps were 8×8×8.  Equation (3) 
was implemented using a fast Fourier transform.  A high-level 
flowchart for computation of the Patterson maps is shown in 
Figure 1.  Patterson maps computed by (3) were further 
normalized by a) truncating all values more than 2 standard 
deviations from the mean, and b) dividing by the root mean 
square of all the map values.   

In order to determine the fitness of a potential solution, we 
compute the Pearson’s correlation coefficient (r) between the 
normalized Patterson map of the estimated solution and the 
normalized Patterson map generated from the “true” heavy atom 
locations, both computed as shown in Figure 1.  We define 
fitness(loc) = -r, and our search procedures attempt to minimize 
fitness. 

As previously discussed, the Patterson map reflects the inter-
atomic distances between all pairs of atoms in the unit cell. Since 
mirror-image solutions (known as different hands) will yield 
identical Patterson maps, and for each hand there are multiple 
possible origins for the AU, the mapping from the Patterson 
image to the constellation of heavy atoms is degenerate [16].  I.e., 
there are several distinct but equivalent constellations of heavy 
atom locations in the AU that will give rise to the same Patterson 
image.  This implies that the fitness landscape has multiple global 
optima.  For example, in space group P422 there are 8 global 
optima.  Furthermore, the problem is not linearly separable into 
locating individual atoms. Although locating one (of several) 
heavy atoms correctly in the AU will generate 8 self peaks that are 
correctly located in the Patterson map (due to the inter-atomic 
distances of the 8 symmetry-generated atoms in the unit cell), the 
vectors between these atoms and any other incorrectly-located 
atoms (or other correctly-located atoms in a different hand and /or 
origin) will give rise to cross peaks that are incorrectly located in 
the Patterson map. Computational experimentation showed that, 
for our synthetically generated crystals, an atom must be within 
about 2 angstroms of the true atom location for the solution to be 
able to hill-climb in the fitness landscape, even if all the other 
atoms have been correctly located.   

We implemented the fitness function in the Matlab programming 
language (V. 7.0) [12], making heavy use of Matlab’s vectorizing 

capabilities to achieve computational efficiency. Our experiments 
were run on a variety of microcomputers with different clock 
speeds.  The time to compute each fitness evaluation depends on a 
variety of factors, including the number of heavy atoms, the 
number of reflections, and the speed of the computer.  For 
reference, on a 2.2 GHz Pentium IV, for a 5 heavy atom problem 
with 512 reflections, our implementation of the fitness function 
required about 0.015 seconds.  In Section 3 we report the 
machine-independent number of fitness evaluations required for 
the various algorithms and problems. 

2.3 Search strategies 
To search this highly multimodal space, we investigated a two-
phase hybrid method we dubbed GAPS (Genetic Algorithm with 
Pattern Search). The first phase is explorative, employing a 
traditional GA to identify promising areas of the search space. The 
best solution found by the genetic algorithm (GA) is then refined 
using a pattern search (PS) method during a subsequent 
exploitative phase.  In order to ascertain the relative contributions 
of each of the two phases, we also performed paired experiments 
using the GA only and the PS only.  Each of these algorithms are 
described below. 

2.3.1 Genetic Algorithm 
We implemented a genetic algorithm (GA) by customizing the 
Matlab GADS toolbox V. 1.01 [12] to minimize the fitness 
function defined in Section 2.2.  GA parameters were determined 
by empirical tuning. We used tournament selection with 
tournaments of size 2 (tournaments of size 4 caused premature 
convergence).  Each generation, 80% of the population was 
subjected to uniform crossover (which was found to outperform 
single-point crossover) and the remaining 20% of the population 
was subjected to mutation using a bounds-constrained Gaussian 
mutation operator, drawn from a normal distribution with 
standard deviation of 0.5.  Variables that mutated to values 
outside the feasible range of [0, 0.5] were repaired by random 
reset to a uniformly generated value in the feasible range.  Elitism 
ensured that the single best individual survived each generation. 
Required population size was estimated as a function of the 
number of heavy atoms in the AU, by running the GA with 
various problem sizes and population sizes for 10 repetitions of 
one arbitrarily generated problem of each size, ranging from 1 to 5 
heavy atoms, and conservatively determining the minimum 
population size needed to successfully locate all the heavy atoms 
in each problem.  These tests resulted in population sizes of 100, 
300, 600, 1000, and 1500, to solve problems with 1, 2, 3, 4, and 5 
heavy atoms in the AU, respectively. 

Unfortunately, it is impossible to determine the hand and origin of 
a given atom in an estimated solution, so niching techniques, such 
as fitness sharing [5] or crowding [11], are not viable approaches 
for searching this multi-modal landscape (see Section 4 for more 
details). 

2.3.2 Pattern Search  
We implemented a bounds-constrained pattern search (PS) using 
the Matlab GADS toolbox V. 1.01 [12].  At iteration k, the PS 
algorithm samples the solution space in a regular pattern around a 
single current solution loc, in order to try to find a better solution 
by minimizing the fitness function described in Section 2.2.  We 
implemented a 6H-point orthogonal pattern with complete 
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locations (Equation 2)

Application of symmetry 
operators (Table 1)

Fourier Transform (Equation 1)

Inverse Fourier Transform 
without phases (Equation 3)

Patterson map

Vector of atom 
locations (Equation 2)

Application of symmetry 
operators (Table 1)

Fourier Transform (Equation 1)

Inverse Fourier Transform 
without phases (Equation 3)

Patterson map

Figure 1: Flowchart for creating a 
Patterson map given atom locations. 



∆1 = 1.0
k = 1
currentFitness = fitness(loc)
while ∆k ≥ 1e-6

bestFitness = currentFitness
betterFound = false
for i = 1, 2, …6*H

if odd(i) then dir = +1, else dir = -1, endif
index = ((i+1)/2)
newloc = loc
newloc(index) = max(min(newloc(index)+dir* ∆k,0.5),0)
trialFitness = fitness(newloc) 
if trialFitness  < bestFitness 

betterFound = true
bestFitness = trialFitness
bestLoc = newLoc

endif
endfor
if betterFound

loc = bestLoc
currentFitness = bestFitness
∆k+1 = 2∆k 

else
∆k+1 = ½ ∆k 

endif
k = k+1

endwhile

Figure 2: Pseudo code for PS algorithm, where variables in 
bold are vectors of the form defined by equation (2), and 

fitness is being minimized. 
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Figure 3: Flowchart for each trial replicate of the GA, PS,
and GAPS algorithms. 

                                                                                                                        
polling, as follows.  For each of the H heavy atoms in the 
estimate, the PS perturbs the atom by ±∆k, where ∆k is a real 
positive step size, along each of the 3 space dimensions.  

Specifically, ∀j=1..H, with current estimate <xj,yj,zj>, the PS 
independently samples <xj±∆k,yj,zj>, <xj,yj±∆k,zj>, and 
<xj,yj,zj±∆k>, keeping all other atom locations unchanged; if a trial 
step is infeasible, then the sample is simply projected back onto 
the boundaries of the feasible region.  If any of these 6H 
perturbations yields a solution with improved fitness, the PS 
updates the estimate to the best of the sampled solutions in the 
current iteration and the step size is then doubled for the next 
iteration; otherwise, the estimate remains unchanged and the step 
size is halved for the next iteration.  The dynamic nature of the 
step size helps the algorithm to escape local minima [10], much as 
increases in the “temperature” does in simulated annealing [22].  
We set the PS to terminate when ∆k<1e-6.  Pseudo code for the 
PS algorithm is shown in Figure 2.  

2.3.3 Genetic Algorithm with Pattern Search  
Our two-phase hybrid Genetic Algorithm with Pattern Search 
(GAPS) was implemented by simply taking the best solution 
output by the GA and feeding it into the PS algorithm. 

2.4 Experimental Design 
Experiments were designed to assess the performance of the GA, 
PS, and GAPS algorithms. Using the method outlined in Section 
2.1., we simulated data from a total of 55 random problems (11 
random problems for each of 1, 2, 3, 4, and 5 heavy atom 
problems, designated 1HA, 2HA, … 5HA, respectively).   We 
performed 20 repetitions of each problem for a total of 1100 runs 
for each of the three methods, using uniformly randomly 
initialized populations with population sizes described in Section 
2.3.1.  The random number generator was seeded with the 
repetition number, so that the GA, PS, and GAPS algorithms 
started each paired repetition with identical initial populations.  
For each of the repetitions, we thus followed the flowchart shown 
in Figure 3. 

2.5 Metrics for solution quality 
The final fitness of each estimate (i.e., the Patterson correlation 
coefficient r), is an indirect measure of solution quality.  
However, since in these synthetically generated problems we 
know the “true” locations of the heavy atoms, we also assessed 
our solutions by more direct measures, as follows.   

For each repetition of an experiment, we first computed the pair-
wise Euclidean distances between each true atom and each 
estimated atom, for each of the 8 possible hands and origins, and 
mapped each estimated HA to its closest true HA.  We then 
selected the hand and origin of the true solution for which the sum 
of the mapped distances was the least.  In a real application, the 
true number of heavy atoms may not be known with certainty. 
Consequently, in order to assess a) how many heavy atoms were 
located by our algorithms, and b) how close to the true atom 
locations the identified heavy atoms were,  we did not enforce a 
one-to-one mapping between true and estimated atoms. In some 
cases more than one estimated atom mapped to the same true 
atom, as illustrated in Figure 4 for a hypothetical 5HA estimate.  
For the selected hand and origin, we report the maximum distance 
between the estimated atoms and their closest true atoms and the 
number of true heavy atoms found (i.e., to which an estimated 
atom had mapped), as shown in Figure 4. 



For each method, we averaged the final Patterson correlation r, 
maximum distance, and number of HA found, across all 220 trials 
for each of the eleven 1HA, 2HA … 5HA problems.  Performance 

metrics were compared across paired replicates between the GA 
and GAPS, and the PS and GAPS, using a 2-tailed paired 
Student’s t-test.  For each algorithm, we also assessed the 
percentage of trials that found all the heavy atoms and report the 
average number of fitness function evaluations required.   

3. RESULTS 
GAPS found solutions with significantly higher Patterson 
correlations than either the GA or PS methods (p < 0.005), for all 
sizes of problems, as shown in Table 2.  Differences in the direct 
measures of solution quality are even more striking. The GAPS 
solutions exhibited less spatial deviation from true atom locations 
than those of the other two methods (p < 0.0005), for all problem 
sizes (Table 3).  For example, on the most difficult (5HA) 
problems, the maximum distance between true and estimated atom 
locations as determined by GAPS averaged 0.31 angstroms, while 
the GA alone averaged 0.82 angstroms and the PS alone averaged 
a poor 2.7 angstroms, on the same problems from identical initial 
populations (Table 3).   For all three methods, the maximum 
spatial deviation from the true solution tended to increase as a 
function of the number of HA (Table 3), but this dependence was 
much less pronounced with GAPS (Figure 5).  Linear regressions 
of maximum distance against the number of heavy atoms, revealed 

Table 2: Mean (µµµµ) and standard deviation (σσσσ) of the correlation (r) between estimated and true Patterson maps averaged over 20 
repetitions on each of 11 problem configurations, for a total of 220 runs per #HA. 
 

Patterson Correlation Coefficient, r 
GAPS GA PS 

 
 

#HA µµµµ σσσσ µµµµ σσσσ µµµµ σσσσ 
1 0.9999    4.55e-11  0.9989    8.30e-4 0.9918    3.11e-2 
2 0.9988    4.53e-3  0.9962   5.67e-3  0.9700   1.68e-2 
3 0.9990    4.31e-3  0.9950  4.45e-3  0.9767  1.15e-2 
4 0.9996    1.02e-3  0.9967  1.56e-3  0.9802  7.49e-3 
5 0.9993 1.13e-3  0.9962  1.72e-3  0.9894  4.75e-3 

 
Table 3: Mean (µµµµ) and standard deviation (σσσσ) of the maximum Euclidean distance between estimated and true atomic locations of the 
heavy atoms (HA) in the AU averaged over 20 repetitions on each of 11 problem configurations, for a total of 220 runs per #HA.  
 

Maximum Distance (Angstroms) 
GAPS GA PS 

 
 

#HA µµµµ σσσσ µµµµ σσσσ µµµµ σσσσ 
1 2.46e-5 2.76e-5  4.64e-2  1.24e-2  2.92e-1  8.92e-1 
2 9.92e-2 3.60e-1  2.44e-1  3.04e-1  1.76e+0  4.68e-1 
3 9.80e-2 3.72e-1  3.66e-1  2.36e-1  2.34e+0  4.72e-1 
4 1.20e-1 2.82e-1  5.20e-1  1.55e-1  2.78e+0  4.28e-1 
5 3.10e-1 3.28e-1  8.18e-1  2.14e-1  2.74e+0  3.48e-1 

 
Table 4: Mean number of HA’s correctly identified per replication and the percentage (%) of trials that correctly identified all HA’s 
averaged over 20 repetitions on each of 11 problem configurations, for a total of 220 runs per #HA. 
 

Average # HA’s found % of Trials correctly finding all HA’s  
#HA GAPS GA PS GAPS GA PS 

1 1.00 1.00 1.00 100.0 100.0 100.0 
2 2.00 1.99 1.95 100.0 99.5 95.0 
3 2.99 2.94 2.63 98.6 94.1 63.2 
4 3.97 3.87 3.20 96.8 87.3 39.1 
5 4.81 4.63 3.71 85.5 68.2 28.6 

Figure 4: Hypothetical 5HA estimate, with 4 
HA found and maximum distance indicated. 
For clarity, we illustrate this in 2D.   
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that the slope of the GAPS best fit line (R2=0.80) was 1/3 that of 
the GA best fit line (R2=0.97) and 1/9 that of the PS best fit line 
(R2=0.82), as shown in Figure 5. It should be noted that when an 
estimated HA is more than about 2 angstroms away from the 
closest true HA in our simulated crystals, the fitness function 

flattens out.  This is probably why the already very poor spatial 
resolution of the PS does not continue to degrade linearly as the 
number of heavy atoms increases  (Figure 5). 
For the simple 1HA problems, all methods were successful in 
finding the single heavy atom (Table 4).  However, as the number 
of HA increased, GAPS became increasingly more successful than 
either GA or PS at finding the HA, both in terms of the average 
number of HA found per trial as well as the percent of trials that 
were able to find all HA (Table 4, Figure 6).  The average number 
of HA found was significantly higher (p < 0.005) for GAPS in 
comparison to GA, for problems of 3 or more HA, or in 
comparison to PS, for problems of 2 or more HA, (Table 4, Figure 
6a).  For the most difficult problems tested (5HA), GAPS found 
4.8 HA on average, finding all 5 HA over 85% of the time (Table 
4).  Success rate in finding HA appears to decrease non-linearly in 
all the methods.  For problems with more than 2HA, the 
frequency with which the PS algorithm was able to find all the 
HA dropped dramatically (Figure 6b).  However, the rate of this 
performance drop is lower in GAPS than in GA (Table 4, Figure 
6b), indicating that the second stage PS in the hybrid algorithm 
was not only helping to improve spatial resolution, but was also 
helping to find additional HA. 
Factors affecting runtime are shown in Table 5.  The average 
number of generations required for the GA to converge (either 
alone or as stage 1 of GAPS) increased linearly (R2=0.99) with 
the number of HA in the problem, however the number of 
function evaluations increased quadratically for both GA and 
GAPS, reflecting our quadratic population sizing model.  The 
number of function evaluations for the PS also increased 
quadratically, whether applied to the best individual from the GA 
(i.e., in stage 2 of the GAPS) or whether applied to the best of the 
initial random population.   However, PS required 1-2 orders of 
magnitude fewer function evaluations than did the GA (since it 
was only optimizing a single individual).  For reference, GAPS 
required about 3.5 hours to solve a 5HA problem on a 2.2 GHz 
Pentium IV. 

4. DISCUSSION AND CONCLUSIONS 
The heavy atom location problem, used in crystallographic 
phasing for the determination of the molecular structure of 
proteins, is a multi-modal inverse problem.  The non-linearity of 

Table 5: Mean number of generations for GA 
convergence and mean number of function evaluations 
per replication, averaged over 20 repetitions on each of 
11 problem configurations, for a total of 220 runs per 
number of HA.   

# of Function Evaluations   
 
 

# 
HA 

 
# 

gens 
for 
GA 

 
 
 

GA 

 
 
 

GAPS 

PS -
stage 
2 of 

GAPS 

 
 

PS-
alone 

1 124 12,425 12,791    366 432 

2 216 64,825 66,877 2,052 1,853 

3 309 185,345 189,892 4,547 4,304 

4 457 457,022 465,497  8,475 8,703 

5 554 830,495 846,311 15,816 18,161 

 
Figure 5: Maximum Euclidean distance between estimated
and true atomic locations in the AU, averaged over 20
replications on each of 11 problem configurations, for a
total of 220 runs per number of HA.  Best fit lines are also
indicated. 

 
Figure 6: (a) Number of heavy atoms (HA), averaged over 
all replications and problems with a given number of HA. 
The solid line represents the ideal, where all heavy atoms 
are found in every run. (b) Percent (%) of trials that 
found all heavy atoms, determined over all replications 
and problems with a given number of HA. 



the problem increases rapidly with the number of heavy atoms.  In 
the P422 space group chosen here, there are eight global optima 
(“niches”), and crosses between individuals from different niches 
will yield low fitness solutions.  Unfortunately, explicit niching 
approaches, such as fitness sharing [5] and crowding [11], are not 
practical in this application domain, because of the difficulty in 
determining an appropriate similarity metric. This is because there 
is no practical way to determine the hand and origin of a potential 
solution, at least not until the solution nears convergence, and it is 
meaningless to measure Euclidean distances between atoms from 
different hands and origins. We considered using an island model, 
but preliminary experimentation with subpopulations connected in 
a ring topology did not prove effective for this problem [4].  
In addition, the problem is only very weakly decomposable into 
locating individual atoms, since significant epistatic interactions 
exist between the atoms in the solution.  This epistasis arises due 
to the cross peaks in the Patterson map.  To better understand this, 
consider the following.  Each heavy atom located in the AU, from 
one of the eight possible hands or origins, maps to eight heavy 
atoms in the unit cell, and therefore maps to 28 (8 choose 2) self-
peaks in the Patterson map.  However, suppose we are searching 
for two heavy atoms, and we have correctly located one heavy 
atom in one hand and origin and a second heavy atom in a 
different hand and origin.  Although there will be 56 (28+28) 
correct self-peaks in the Patterson map, there could be up to 64 
(8×8) incorrect cross-peaks, therefore resulting in poor correlation 
coefficient with the (potentially overlapping) peaks in the true 
Patterson map.  The number of self peaks increases linearly with 
the number of heavy atoms in the AU, but the number of cross 
peaks increases with the number of heavy atoms in the AU choose 
2. Thus, the epistatic component of the fitness function 
increasingly dominates the linear component as the number of 
heavy atoms in the AU of the true solution increases.   
The goal of this pilot study, which grew out of a class project [4], 
was to explore the potential for using a hybrid GA to search this 
difficult landscape.  Our results show that a 2-stage hybrid 
algorithm, using a stochastic genetic algorithm for stage 1 
followed by a deterministic pattern search algorithm for stage 2, 
can successfully locate up to 5 heavy atoms in small computer 
simulated crystals using noise free data.  The stage-1 GA 
identifies most of the heavy atoms.  Subsequent refinement of the 
best solution using a PS improves the spatial resolution of the 
estimate and also, in most cases, finds any remaining heavy atoms 
not found by the GA.  In contrast, PS alone, when applied to the 
best of a random population of solutions, is not capable of reliably 
finding more than one heavy atom.   
Several simplifications were introduced into this study.  For one 
thing, we assumed that the number of heavy atoms was known in 
advance.  Relaxing this assumption could be handled in a number 
of ways, including: a) simultaneously estimating a subset of the 
heavy atoms, determining their hand and origin, and then refining 
the estimate in the given hand and origin by adding in heavy 
atoms one at a time until an optimum number is found, b) using 
variable length chromosomes, or c) running different repetitions 
with different assumed numbers of heavy atoms and picking the 
best.   
Another simplification we employed was to use noise free data for 
amplitudes of structure factors due to heavy atoms alone.  In 
reality, such data can be quite noisy. One source of this noise is 

simply measurement error.  Another source of noise comes from 
the fact that these amplitudes cannot be directly measured, but are 
instead estimated by subtracting measured amplitudes due to 
protein crystals alone from measured amplitudes of protein 
crystals doped with heavy atoms, and the presence of the heavy 
atoms will slightly perturb the locations of the protein atoms.  
While noise free data permitted us to use a conceptually simple 
fitness function based on Patterson map correlation, other 
functions would likely be more effective with real data.  For 
example, correlation functions in reciprocal space (the transform 
of the Patterson map) have been used successfully [6],[18],[19] 
and are more generally applicable to lower symmetry space 
groups.  A maximum likelihood approach has been shown to be 
effective in helping to minimize the effects of noise [19], and this 
could be incorporated into a more sophisticated fitness function. 
We have also simplified the problem by limiting the number of 
heavy atoms, the size of the crystal, the range of locations for the 
true heavy atoms, and the number of reflections.  Relaxing these 
simplifications should be relatively straightforward, but will add 
significantly to the computational burden of the estimation 
process by increasing the size of the search space and slowing 
down computation of the fitness function (the runtime of which is 
a function of the number of reflections).  Appropriate handling of 
solutions near boundaries or symmetry elements [19] would also 
be necessary to make this program more realistic, but were not 
implemented here for the sake of computational simplicity.  
Generalizing the approach for other space groups is also 
conceptually straightforward, although the code will be 
complicated by certain details such as variable bounds on the AUs 
in some space groups.  Additionally, the number of global optima 
will vary for different space groups, with possible implications on 
required population sizes. 
One way to potentially significantly reduce the computational 
requirements of the search would be to seed the initial population 
with likely candidate locations for heavy atoms, as in [6].  Likely 
candidates could be determined by doing a one-time evaluation of 
a set of finite possible atoms locations (e.g., discrete points on a 
regular grid imposed on the AU), by searching for the self-peaks 
of these potential locations in the Patterson map.  A 
recombination-based GA could then be used to find promising 
subsets of these potential locations, with subsequent PS to refine 
the spatial resolution of the estimated atoms. 
In summary, our results indicate that a hybrid 2-stage genetic 
algorithm with subsequent pattern search may be a viable 
approach for locating heavy atoms in a consistent hand and origin, 
for crystallographic phasing using iso-morphous replacement.  
Further research along these lines is warranted. 
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