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Abstract

Mutation is a biased stochastic process, with some types of mutations occurring more fre-

quently than others. Previous work has used synthetic genotype-phenotype landscapes to

study how such mutation bias affects adaptive evolution. Here, we consider 746 empirical

genotype-phenotype landscapes, each of which describes the binding affinity of target

DNA sequences to a transcription factor, to study the influence of mutation bias on adap-

tive evolution of increased binding affinity. By using empirical genotype-phenotype land-

scapes, we need to make only few assumptions about landscape topography and about

the DNA sequences that each landscape contains. The latter is particularly important

because the set of sequences that a landscape contains determines the types of muta-

tions that can occur along a mutational path to an adaptive peak. That is, landscapes can

exhibit a composition bias—a statistical enrichment of a particular type of mutation relative

to a null expectation, throughout an entire landscape or along particular mutational paths

—that is independent of any bias in the mutation process. Our results reveal the way in

which composition bias interacts with biases in the mutation process under different popu-

lation genetic conditions, and how such interaction impacts fundamental properties of

adaptive evolution, such as its predictability, as well as the evolution of genetic diversity

and mutational robustness.

Author summary

Mutation is often depicted as a random process due its unpredictable nature. However,

such randomness does not imply uniformly distributed outcomes, because some DNA

sequence changes happen more frequently than others. Mutation bias can be an orienting

factor in adaptive evolution, influencing the mutational trajectories populations follow

toward higher-fitness genotypes. Because these trajectories are typically just a small subset

of all possible mutational trajectories, they can exhibit composition bias—an enrichment

of a particular kind of DNA sequence change, such as transition or transversion muta-

tions. Here, we use empirical data from eukaryotic transcriptional regulation to study

how mutation bias and composition bias interact to influence adaptive evolution.
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Introduction

Mutation exhibits many forms of bias, both in genomic location and toward particular DNA

sequence changes [1]. For instance, a bias toward transitions (mutations that change a purine

to a purine, or a pyrimidine to a pyrimidine), relative to transversions (mutations that change

a purine to a pyrimidine, or vice versa; Fig 1a), has been widely observed in studies of mutation

spectra, such as those based on reversion assays [2, 3], mutation accumulation experiments

[4–6], sequence comparisons of closely related species [7–10], and analyses of putatively neu-

tral polymorphisms in natural populations [11]. Because mutation provides the raw material

of evolution, mutation bias may influence adaptive evolutionary change [12–14]. Indeed, tran-

sition bias has influenced the adaptive evolution of phenotypes as different as antibiotic resis-

tance in Mycobacterium tuberculosis [15] and increased hemoglobin-oxygen affinity in high-

altitude birds [16].

Adaptive evolution is often conceptualized as a hill-climbing process in a genotype-pheno-

type landscape, in which each location or coordinate corresponds to a genotype in an abstract

genotype space, and the elevation of each location corresponds to fitness or some related quan-

titative phenotype [17, 18]. The topography of a genotype-phenotype landscape influences a

wide range of evolutionary phenomena [19–21], including the evolution of genetic diversity,

mutational robustness, and evolvability, as well as the predictability of the evolutionary process

itself [19]. It also influences landscape navigability—the ability of an evolving population to

reach the global adaptive peak via DNA mutation and natural selection [22]. Smooth, single-

peaked landscapes are highly navigable, whereas rugged landscapes are not, because evolving

populations can become trapped on local peaks [23], which frustrates further adaptive change

[19, 21, 24].

Previous work has studied the interplay of mutation bias and landscape topography, and its

influence on adaptive evolution, using synthetic genotype-phenotype landscapes [25, 26].

These studies have revealed that in single-peaked landscapes, mutation bias does not influence

navigability, although it can influence the adaptive trajectory to the global peak, such that the

average composition of the sequences in the trajectory reflects the sequence bias of the muta-

tion process [26]. In this sense, mutation bias can be thought of as an “orienting factor” in evo-

lution [25], which may affect predictability by making some mutational trajectories more

likely than others. For example, in a simple two-locus model with two adaptive peaks of differ-

ent heights, mutation bias increases the probability with which an evolving population con-

verges on the suboptimal, but mutationally-favored peak [25]. Mutation bias is therefore

capable of influencing the navigability of rugged landscapes. The extent to which it does, how-

ever, depends upon population genetic conditions [25]. Specifically, when the mutation supply

is low, the first adaptive mutation to reach a substantial frequency is likely to go to fixation

(“first-come-first-served”), and a bias in mutation supply will therefore influence which

genetic changes drive adaptation. In contrast, when the mutation supply is high, the fittest

adaptive mutation is likely to go to fixation (“pick-the-winner”), and a bias in mutation supply

will have less of an effect on adaptation.

The study of genotype-phenotype landscapes is currently being transformed by methodo-

logical advances, including those in genome editing and in massively parallel assays such as

deep mutational scanning [15, 20, 24, 27]. These facilitate the assignment of phenotypes to a

large number of genotypes, and thus allow for the construction of empirical genotype-pheno-

type landscapes directly from experimental data. Examples include the “splicing-in” of exons

[28], the binding preferences and enzymatic activities of macromolecules [29–32], the gene

expression patterns of regulatory circuits [33], and the carbon utilization profiles of metabolic

pathways [34]. In nearly all of these examples, the genotype-phenotype landscape is necessarily

PLOS COMPUTATIONAL BIOLOGY Mutation bias interacts with composition bias to influence adaptive evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008296 September 28, 2020 2 / 26

landscape files and commented code are publicly

available at https://github.com/alejvcano/

PLoSCompBio2020.

Funding: J.L.P. acknowledges support from Swiss

National Science Foundation (Grant No.

PP00P3_170604) http://www.snf.ch/en/Pages/

default.aspx. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008296
https://github.com/alejvcano/PLoSCompBio2020
https://github.com/alejvcano/PLoSCompBio2020
http://www.snf.ch/en/Pages/default.aspx
http://www.snf.ch/en/Pages/default.aspx


incomplete, representing only a small fraction of a much larger landscape, which cannot be

constructed in its entirety due to the hyper-astronomical size of the corresponding genotype

space [18]. Complete landscapes—those in which a phenotype is assigned to all possible geno-

types—can only be constructed for systems with sufficiently small genotype spaces.

Transcription factor-DNA interactions are one such system [22, 35–37]. Transcription fac-

tors are regulatory proteins that bind DNA to induce or inhibit gene expression [38]. The

DNA sequences they bind are typically short (6-12nt) [39], which makes it possible to exhaus-

tively characterize transcription factor binding preferences and thus to construct complete

genotype-phenotype landscapes of transcription factor binding affinities [22]. In such land-

scapes, genotypes are short DNA sequences (transcription factor binding sites), and the phe-

notype of a sequence is its relative binding affinity for a transcription factor. Understanding

how DNA mutations affect transcription factor binding affinity is important because such

Fig 1. Genotype-phenotype landscapes of transcription factor binding affinities and their composition bias. (a) Transitions are mutations from a

purine to a purine, or from a pyrimidine to a pyrimidine. Transversions are mutations from a purine to a pyrimidine, or vice versa. (b) The dominant

genotype network for the yeast transcription factor Sum1. Each node corresponds to a DNA sequence that binds Sum1 with an E-score>0.35. Node size is

proportional to number of connections (bigger = more) and color to binding affinity (darker = higher). Two nodes are connected by an edge if their

corresponding sequences differ by a single point mutation (e.g., see inset), either a transition (blue edges) or a transversion (green edges). (c) Schematic

representation of a genotype-phenotype landscape, and an accessible mutational path to the global peak involving four transversions and one transition.

https://doi.org/10.1371/journal.pcbi.1008296.g001
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mutations are commonly implicated in disease [40, 41], as well as in evolutionary adaptations

and innovations [42, 43]. Previous work on these landscapes has revealed that they are highly

navigable [22]. They tend to contain few adaptive peaks, which comprise binding sites that are

both mutationally robust and accessible, meaning that it is typically possible to reach these

peaks via a series of mutations that only move “uphill.” These peaks often comprise multiple

sequences, which facilitates the evolution of genetic diversity in high-affinity binding sites [22,

36]. Additionally, these landscapes often interface and overlap with one another, which has

implications for the evolvability of transcription factor binding sites [35, 36].

There are two features that differentiate these landscapes from other empirical landscapes.

First, they are complete. They comprise a measure of relative binding affinity for all possible

DNA sequences of length eight. Second, data are available for many such landscapes, which

facilitates statistical analyses of how landscape properties influence adaptive evolution. More-

over, in contrast to synthetic landscapes, these empirical landscapes make very few assump-

tions about topography and about the DNA sequences each landscape contains. The latter is

particularly important in the context of mutation bias, because the set of sequences a landscape

contains determines the kinds of mutations that are present in adaptive mutational trajecto-

ries. For example, the TATA-binding protein binds sequences enriched for thymines and ade-

nines, which means that most of the mutations present in this protein’s genotype-phenotype

landscape are transversions (A> T or T > A). Such composition bias—an enrichment of a

particular type of mutation relative to a null expectation, throughout an entire landscape or

along particular mutational paths—likely interacts with mutation bias to influence various

aspects of adaptive evolution, such as landscape navigability, enhancing it when mutation is

biased toward transversions, and hindering it when mutation is biased toward transitions.

However, to our knowledge, the interaction between mutation bias and composition bias, and

its influence on adaptive evolution, has not been studied, neither in the context of synthetic

nor empirical genotype-phenotype landscapes.

Here, we study this interaction and its influence on adaptive evolution using 746 empirical

genotype-phenotype landscapes of transcription factor binding affinities, under the assump-

tion of selection for increased binding affinity (although selection does not always act to

increase binding affinity [44, 45]). We find that when the mutation supply is low, mutation

bias can increase or decrease landscape navigability as well as the predictability of evolution,

depending upon whether mutation bias is aligned with composition bias in the adaptive trajec-

tories to the global peak (i.e., both forms of bias are toward the same type of mutation—transi-

tions or transversions). When the mutation supply is high, mutation bias does not influence

navigability, as expected on theoretical grounds [25], but it can influence how a population is

distributed throughout the landscape, which has implications for the evolution of genetic

diversity, mutational robustness, and evolvability. Taken together, our results show that muta-

tion bias and composition bias interact to influence adaptive evolution under a broad range of

population genetic conditions.

Results

Genotype-phenotype landscapes exhibit composition bias in accessible

mutational paths

We used protein-binding microarray data [46, 47] to construct empirical genotype-phenotype

landscapes of transcription factor binding affinities for 746 transcription factors from 129

eukaryotic species, representing 48 distinct DNA binding domain structural classes (Methods;

S1 Table). For each transcription factor, these data include an enrichment score (E-score)—a

proxy for relative binding affinity—for all possible 32, 896 DNA sequences of length eight. We
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constructed one landscape per transcription factor, using only those DNA sequences that spe-

cifically bound the transcription factor, as indicated by an E-score exceeding 0.35 [22, 35, 36].

We represented each landscape as a genotype network, in which nodes are transcription factor

binding sites and edges connect nodes if their corresponding sequences differ by a single point

mutation (Fig 1b) [35]. For some transcription factors (� 37%), the genotype network frag-

mented into several disconnected components. When this occurred, we only considered the

largest component, which always comprised more than 100 bound sequences. We refer to this

as the dominant genotype network. We discarded non-dominant components because they

usually comprised few sequences and rarely met our size requirement of 100 sequences. (S1

Fig). Each dominant genotype network formed the substrate of a genotype-phenotype land-

scape, whose surface was defined by the relative affinities (E-scores) of the network’s constitu-

ent binding sites [22]. We accounted for noise in the protein binding microarray data using a

noise threshold δ, which allowed us to determine whether two DNA sequences differed in

their binding affinity [22] (Methods). We refer to a mutation as accessible if it increases bind-

ing affinity more than δ, and we refer to a series of accessible mutations as an accessible muta-

tional path (Fig 1c).

We developed a measure of composition bias on the unit interval, which we applied to

entire landscapes and to accessible mutational paths (Methods). It is based on the null expecta-

tion that one transition occurs per every two transversions. When this measure equals 0.5,

there is no composition bias. Values below 0.5 imply a composition bias toward transversions,

whereas values above 0.5 imply a composition bias toward transitions. Fig 2a shows the distri-

bution of composition bias across all 746 landscapes. When considering all mutations in a

landscape, we observed variation in composition bias ranging from 0.19 to 0.75, but as a

whole, this distribution did not differ from our null expectation of one transition per every

two transversions (black distribution in Fig 2a, one-sample t test, t745 = −0.4310, p = 0.66). In

Fig 2. Accessible mutational paths exhibit composition bias toward transversions. (a) The black bars show the distribution of composition bias across

entire landscapes. The white bars show the distribution of composition bias across accessible mutational paths to the global peak, starting from the 10% of

binding sites with the lowest affinities in each landscape. Gray indicates the overlap in the distributions. Data pertain to all 746 landscapes. (b) Composition

bias of accessible mutational paths, with landscapes grouped by DNA binding domain structural class. Numbers in parentheses indicate the number of

transcription factors per class in our dataset.

https://doi.org/10.1371/journal.pcbi.1008296.g002
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contrast, when we considered accessible mutational paths to the global peak, we found signifi-

cant composition bias toward transversions (white distribution in Fig 2a, one-sample t test,

t745 = −14.3941, p< 10−40). This bias was sometimes extreme. For example, for 68 transcrip-

tion factors, fewer than 1 in 7 mutations on an accessible mutational path were transitions,

more than a three-fold decrease relative to our null expectation. Such composition bias varied

among transcription factors from different DNA binding domain structural classes (Fig 2b).

For example, AT hook transcription factors had a strong bias toward transversions, because

their binding sites are enriched for adenine and thymine bases, and thus have a very low GC

content. At the opposite extreme were transcription factors with a basic helix-loop-helix

domain (bHLH), which had a bias toward transitions, because the sequences they bind are

more neutral in terms of GC content (average GC content = 0.61). Landscapes with either

many high or many low GC content sequences were more likely to exhibit composition bias

toward transversion mutations (S2 Fig). Overall, we observed more extreme bias toward trans-

versions than toward transitions in accessible mutational paths (Fig 2a), a bias that became

even more pronounced as we increased the noise parameter δ (S3 Fig). This is because trans-

versions tend to cause larger changes in binding affinity [48], and thus have larger regulatory

effects [49]—a phenomenon we observed mainly near the global peak (S4 Fig). Because these

distributions deviate so strongly from our null expectation, we focus on the composition bias

of accessible mutational paths in all subsequent analyses, and we refer to this simply as compo-

sition bias for brevity.

To test the sensitivity of these observations to our use of E-score as a proxy for relative bind-

ing affinity, we considered an alternative proxy—the median signal intensity Z-score—which

is available for 713 of the 746 transcription factors in our dataset. We found a strong correla-

tion between the composition bias calculated from the two scores (Pearson’s correlation coeffi-

cient r = 0.7212, p< 10−10) (S5 Fig), and although composition bias often varied quantitatively

among the two scores, it did not often vary qualitatively. That is, it was uncommon for land-

scapes to switch from exhibiting a composition bias toward transversions to a composition

bias toward transitions, or vice versa. There were only 83 transcription factors (12%) for which

such switching occurred, and of these roughly half (� 48%) exhibited little to no composition

bias when using E-scores (in the range (0.45, 0.55)). We therefore used E-scores for the rest of

our analyses. In addition, we tested the sensitivity of our results to an alternative, less conserva-

tive definition of an accessible mutational path, which included any mutational steps that did

not decrease binding affinity beyond some threshold (δ—our noise parameter). S6 Fig shows

that this alternative definition of accessibility results in composition biases that are highly simi-

lar to those observed under our initial more conservative definition, which we therefore use

for the rest of our analyses, unless otherwise noted.

Mutation bias interacts with composition bias to influence landscape

navigability

We first explored how mutation bias and composition bias interact to influence adaptive evo-

lution when the mutation supply is low and selection is strong. Under these population genetic

conditions, only one mutation is present in the population at any time [50], which makes the

process amenable to modeling as a random walk in genotype space (Methods). In this frame-

work, each time step corresponds to the number of generations needed for a mutation to go to

fixation, and the fixation probability of a mutant is proportional to its binding affinity and to

the likelihood of that particular type of mutation occurring. The latter was determined by a

mutation bias parameter α, which is defined similarly to our measure of composition bias

(Methods). Specifically, when α = 0.5 there is no bias in mutation supply, values of α below 0.5
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mean that the mutation supply is biased toward transversions, whereas values above 0.5 mean

that the mutation supply is biased toward transitions.

As a measure of landscape navigability, we calculated the probability of reaching the global

peak (Methods). Fig 3 shows how mutation bias and composition bias interact to influence

landscape navigability. We found that mutation bias could either enhance or diminish land-

scape navigability, relative to an unbiased mutation supply, depending upon whether the bias

in mutation supply aligned with the composition bias of the accessible mutational paths in the

landscape (i.e., the two forms of bias were toward the same kind of mutations—transitions or

transversions). This effect is clearly seen when comparing the value of mutation bias that maxi-

mizes the probability of reaching the global peak across the five panels of Fig 3 (dashed vertical

lines), which group landscapes according to their composition bias. S7 Fig shows the correla-

tion between the mutation bias that maximizes Ppeak and composition bias, measured using

two different definitions of accessible mutational paths. Landscapes with extreme composition

bias exhibited increased sensitivity to mutation bias, relative to landscapes without composi-

tion bias. For example, for landscapes with a strong composition bias toward transversions

(Fig 3a), the probability of reaching the global peak increased from 0.12 with a strong mutation

bias toward transitions to 0.31 with a strong mutation bias toward transversions—a 2.6-fold

increase. In contrast, for landscapes without composition bias (Fig 3c), only a 1.7-fold increase

in the probability of reaching the global peak was obtained by varying the bias in mutation

supply.

Overall, landscapes with strong composition bias were more navigable than those with

intermediate or no bias, in that they had higher probabilities of reaching the global peak. We

reasoned this is because landscapes with strong composition bias tend to contain fewer bind-

ing sites than those with intermediate or no bias (S8 Fig), and the probability of evolving to a

landscape’s global peak decreases with the number of binding sites in the landscape (as shown

in S9 Fig for an unbiased mutation supply). In addition, our finding that navigability will be

enhanced when mutation bias and composition bias are aligned and diminished otherwise is

Fig 3. Mutation bias interacts with composition bias to influence landscape navigability. The probability Ppeak of reaching the global peak is shown for

19 different values of the mutation bias parameter α. The solid vertical lines indicate no bias in mutation supply (α = 0.5) and the dashed vertical lines

indicate the value of α that maximizes Ppeak. Landscapes are grouped based on their composition bias and the distribution of composition bias per panel is

shown on top of each panel. The number of landscapes per panel is indicated is the bottom left corner.

https://doi.org/10.1371/journal.pcbi.1008296.g003
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insensitive to whether selection acts to increase or decrease binding affinity (S10 Fig). This is

important because low-affinity binding sites often drive gene expression, for example in devel-

opmental enhancers [44, 45].

Mutation bias interacts with composition bias to influence the

predictability of evolution

When the mutation supply is low, a bias in mutation supply can influence an evolving popula-

tion’s adaptive trajectory through a genotype-phenotype landscape, making some mutational

paths more likely than others [25, 26]. Mutation bias may therefore influence the predictability

of evolution. We next explored how mutation bias interacts with composition bias to influence

the predictability of evolution, quantifying predictability using a measure of path entropy [51]

(Methods). This measure takes on low values when an evolving population tends to take few

mutational paths to the global peak, each with high probability. It takes on high values when

an evolving population tends to take many mutational paths to the global peak, each with low

probability. It is therefore inversely related to the predictability of evolution. S11 Fig shows the

relationship between path entropy and the mutation bias parameter α for 50 randomly chosen

landscapes.

As expected, we found that mutation bias is considerably more likely to increase the

predictability of evolution than to decrease it, in line with the notion of mutation bias as an

orienting factor in evolution [25]. Across all landscapes, there was at least one mutation bias

value that decreased path entropy relative to when there was no mutation bias (Fig 4a), and

on average 73% of mutation bias values decreased path entropy relative to when there was

no mutation bias (S12 Fig). Moreover, a mutation bias toward transitions minimized path

entropy more often than one toward transversions (Fig 4a). Mutation bias therefore readily

increases the predictability of evolution. Fig 4b shows how the misalignment between muta-

tion bias and composition bias usually leads to the minimization of path entropy, thus

increasing predictability. For landscapes with little to no composition bias, a strong mutation

bias toward transitions was more likely to minimize path entropy than a strong mutation

bias toward transversions. This is because in landscapes with no composition bias there are

twice as many transversions than transitions, so a mutation bias toward transitions repre-

sents a greater evolutionary constraint in such cases. To determine the extent to which

entropy changes in response to mutation bias, we calculated the ratio of the entropy

observed in the absence of mutation bias to the minimum entropy caused by mutation bias

(entropyno bias/entropymin), for each landscape. Path entropy decreased by an average of

approximately 2-fold and 3-fold in the most extreme mutation biases toward transversions

and transitions, respectively (Fig 4c).

Perhaps counter-intuitively, we found that mutation bias can also decrease the predictabil-

ity of evolution. For 693 landscapes (93%), there was at least one mutation bias value that

increased path entropy relative to when there was no mutation bias (Fig 4d), and on average

across all 746 landscapes, 27% of mutation bias values increased path entropy relative to when

there was no mutation bias (S12 Fig). To explore this further, we determined the mutation bias

parameter α that maximized path entropy for each landscape. Fig 4d shows the distribution of

this parameter, which varied across the full range of α values considered. We hypothesized

that the value of α that maximizes path entropy will be positively correlated with composition

bias, such that path entropy will be maximized when these biases are aligned. Fig 4e reveals

this positive correlation, which is statistically significant, but weak in explanatory power

(Spearman’s rank correlation coefficient ρ = 0.13, p< 10−4). The reason is that our measure of

composition bias does not capture how mutations are distributed across accessible mutational
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paths, which strongly influences the value of α that maximizes path entropy (S13 Fig). In addi-

tion, Fig 4f shows the relative change in entropy (entropymax/entropyno bias) in relation to the

mutation bias parameter α that maximized path entropy. It reveals that path entropy increased

by up to 7-fold, and that the largest increases were associated with the most extreme biases in

mutation supply, either toward transitions or toward transversions. In these cases, evolution

became less predictable because an evolving population could traverse a greater diversity of

accessible mutational paths. In sum, these analyses reveal that mutation bias and composition

bias interact to influence the predictability of evolution, in most cases increasing predictability,

but in many others decreasing it. Thus, whether mutation bias acts as an orienting or disper-

sive factor in evolution depends upon the prevalence and type of composition bias in the

landscape.

Mutation bias influences the distribution of polymorphic populations in

genotype-phenotype landscapes

We next explored how mutation bias influences adaptive evolution when the mutation supply

is high and selection is strong. Under these population genetic conditions, multiple mutations

Fig 4. Mutation bias interacts with composition bias to impact the predictability of evolution. (a) Distribution of the mutation bias parameter α that

minimizes path entropy for each landscape. (b) Mutation bias parameter that minimizes path entropy, shown in relation to composition bias. (c) Relative

entropy change (entropyno bias/entropymin), shown in relation to the mutation bias parameter α that minimizes path entropy. (d) Distribution of the

mutation bias parameter α that maximizes path entropy for each landscape. (e) Mutation bias parameter that maximizes path entropy, shown in relation to

composition bias. (f) Relative entropy change (entropymax/entropyno bias), shown in relation to the mutation bias parameter α that maximizes path entropy.

Data in all panels pertain to all 746 landscapes.

https://doi.org/10.1371/journal.pcbi.1008296.g004
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coexist in the population and compete for fixation. Because this process is challenging to

model analytically, we used computer simulations of a Wright-Fisher model of evolutionary

dynamics (Methods). As in our previous analyses, we used the probability of reaching the

global peak as a measure of landscape navigability. We found that mutation bias has no effect

on navigability in this “pick-the-winner” regime (S14 Fig), as expected on theoretical grounds

[25]. However, we reasoned that mutation bias may still influence other properties of an evolv-

ing population, specifically those that depend upon the population’s distribution in the land-

scape. To explore this possibility, we used a measure called an overlap coefficient, which

quantifies the similarity of two populations as the proportion of individuals that are common

to both (Methods). This coefficient takes on its minimum value of 0 when there are no individ-

uals in common between two populations; it takes on its maximum value of 1 when both pop-

ulations are identical, having the same individuals in the same proportions. We applied this

measure to pairs of populations after they had evolved for 1000 generations, reaching steady

state (S15 Fig). As a baseline for comparison, we first calculated the overlap coefficient for

pairs of replicate populations. That is, pairs of populations with identical initial conditions, but

with different random number generator seeds (Fig 5a). This allowed us to assess how different

we expect two evolved populations to be at steady state, due solely to the stochastic nature of

the evolutionary simulations. For replicate populations, the overlap coefficient ranged from

0.912 to 1, with a median of 0.976 and a 75th percentile of 0.817 (Fig 5b). This indicates that

while the stochastic nature of the evolutionary simulation can cause large changes in a poly-

morphic population’s distribution in a landscape, it usually does not. Replicate populations

tend to converge on highly similar distributions. In contrast, when we calculated the overlap

coefficient for pairs of evolved populations with identical initial conditions (including identical

random number generator seeds), but different values of the mutation bias parameter, we

observed far less overlap (two-sample Kolmogorov-Smirnov test, D = 0.2695, p< 10−31). Spe-

cifically, the overlap coefficient ranged from 0.692 to 1, with a median of 0.908 and a 75th per-

centile of 0.274 (Fig 5b). This indicates that mutation bias often has a strong influence on an

evolved population’s distribution in a genotype-phenotype landscape. The strength of this

influence depends upon how different the mutation bias values are in the populations being

compared (Fig 5c), with larger differences corresponding to larger changes in population dis-

tribution, a trend that also holds for infinitely large populations (S16 Fig).

Mutation bias and composition bias interact to influence the evolution of

genetic diversity and mutational robustness in polymorphic populations

We next asked how mutation bias interacts with composition bias to influence the evolution

of genetic diversity. We reasoned that when mutation bias is aligned with composition bias,

evolving populations will be less constrained in their exploration of the landscape and will

therefore accumulate greater genetic diversity. To explore this possibility, we measured the

genetic diversity of populations at steady state using Shannon’s diversity index (Methods).

This measure takes on its maximum value of 1 when the population comprises all possible

individuals in equal proportions. For DNA sequences, this means that all four bases are equally

likely to appear at all positions in the sequence. The measure takes on its minimum value of 0

when the population comprises N copies of just a single individual. Fig 6a–6e shows that muta-

tion bias can either increase or decrease genetic diversity, relative to an unbiased mutation

supply, and depending on whether mutation bias aligns with composition bias. This effect was

most pronounced in landscapes with strong composition bias, either toward transversions (Fig

6a) or transitions (Fig 6e), and when the mutation supply was high. For example, in landscapes

with a strong composition bias toward transversions (Fig 6a), a bias in mutation supply could
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change genetic diversity 1.9-fold when Nμ = 50, but had almost no effect when Nμ = 5. In these

cases, genetic diversity could reach levels higher than those observed on landscapes with little

to no bias (Fig 6c). Calculating genetic diversity using nucleotide diversity π results in similar

patterns (S17 Fig). Specifically, diversity increases when mutation bias aligns with composition

bias and decreases otherwise. To further illustrate how mutation bias and composition bias

interact to influence population diversity, we show in S18 Fig the allele frequency spectra of

populations evolved on two different landscapes, which we chose as illustrative examples

because of their strong composition bias toward transversions (S18a Fig) and toward transi-

tions (S18b Fig). As expected, the allele frequency spectra reflect the sequence bias of the muta-

tion process, with more transition polymorphisms present when mutation is biased toward

transitions and more transversion polymorphisms present when mutation is biased toward

transversions. These examples also illustrate two different ways in which the interaction

between mutation bias and composition bias influence the frequency of mutations in the pop-

ulation. In S18a Fig, polymorphisms are present, but they are rare, and the sequence that

evolves to the highest frequency is the same as in the absence of mutation bias. In contrast, in

S18b Fig some transition polymorphisms come to dominate the population, such that the

Fig 5. Evolving polymorphic populations are more sensitive to changes in mutation bias than to the stochastic nature of the evolutionary

simulations. (a) Schematic figure of our experimental design. For each landscape and combination of population size and mutation rate (Nμ), we

considered 10 replicates for each of 10 different initial conditions and 19 values of the mutation bias parameter α. Importantly, we used the replicate

number to seed the random number generator of each evolutionary simulation, facilitating the comparison of variation across replicates versus across the

mutation bias parameter α. For example, the matrix elements indicated in gray contain the information necessary to compare the effects of the mutation

bias parameter with the stochasticity of the evolutionary simulations, for one initial condition. (b) Overlap coefficient for pairs of evolved populations that

differ in random number generator seed (“Replicates”) or in mutation bias parameter (“Mutation bias”). Notches indicate medians, whiskers indicate the

25th and 75th percentiles, and cross symbols indicate outliers. (c) Overlap coefficient for pairs of evolved populations, shown in relation to the difference in

their mutation bias parameters.

https://doi.org/10.1371/journal.pcbi.1008296.g005
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sequence that evolves to the highest frequency is not the same as in the absence of mutation

bias.

We then explored the potential consequences of these changes in genetic diversity. First, we

characterized how mutation bias and composition bias interact to influence the mutational

robustness of binding sites in evolved populations at steady state. We quantified the mutational

robustness of an individual binding site as the fraction of all possible mutations to that site that

created another site that was also part of the landscape [35, 37]. The mutational robustness of a

population of binding sites was then simply calculated as the average mutational robustness of

its constituent sites. Fig 6f–6j shows that mutation bias can increase or decrease the mutational

robustness of an evolved population, relative to an unbiased mutation supply, especially in

landscapes with strong composition bias, either toward transversions (Fig 6f) or transitions

(Fig 6j). In contrast, for landscapes with little to no composition bias (Fig 6h), only the most

extreme values of mutation bias influenced mutational robustness. For landscapes with strong

composition bias, the changes in mutational robustness caused by mutation bias mirrored the

changes observed for genetic diversity (compare Fig 6a and 6e to Fig 6f anf 6j). In these land-

scapes, therefore, a decrease in genetic diversity was associated with a decrease in mutational

robustness. Moreover, we observed that populations evolving on landscapes with composition

Fig 6. Mutation bias interacts with composition bias to influence the evolution of genetic diversity and mutational robustness. (a-e) The average

genetic diversity and (f-j) mutational robustness of evolved populations at steady state is shown for 19 different values of the mutation bias parameter α,

and for each of three different values of mutation supply Nμ (see legend). The solid vertical lines indicate no bias in mutation supply (α = 0.5). Landscapes

are grouped based on their composition bias and the distribution of composition bias per panel is shown on top of each panel as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1008296.g006
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bias tended to be less mutationally robust at steady state. The reason is that landscapes with

composition bias tended to comprise genotypes with fewer mutational neighbors, relative to

landscapes without composition bias (S19 Fig). When mutation bias aligned with composition

bias, those genotypes with more mutational neighbors were more likely to evolve, because the

mutation bias oriented the population toward those genotypes.

Mutation bias influences the evolvability of polymorphic populations

Because mutational robustness is a cause of evolvability [21, 52, 53], we explored whether

mutation bias and composition bias interact to influence evolvability—defined in this context

as the ability of mutation to bring forth new binding phenotypes (Methods) [35]. To test this,

we calculated the average number of transcription factors that bind the one-mutant neighbors

of any individual in the population at steady state, and computed the difference between these

averages for populations with a strong mutation bias toward transversions (α = 0.05), relative

to an unbiased mutation supply (α = 0.5), as well as toward transitions (α = 0.95), relative to an

unbiased mutation supply. S20 Fig shows how a bias in mutation supply affected the evolvabil-

ity of polymorphic populations for 128 transcription factors from Arabidopsis thaliana and

128 transcription factors from Mus musculus, the two species with the most transcription fac-

tors in our dataset. In approximately 70% of the landscapes, mutation bias had no influence on

evolvability. However, in the remaining 30% of landscapes, mutation bias could increase or

decrease the number of transcription factors accessible via point mutation. In A. thaliana, this

ranged from plus or minus 6 transcription factors (� 5%), whereas in M. musculus this ranged

from plus 12 to minus 7 transcription factors (between� 5% and� 9%). These observations

suggest that mutation bias is capable of orienting evolving populations both toward and away

from more evolvable regions of genotype-phenotype landscapes. However, this effect is appar-

ently independent of composition bias. This may seem counterintuitive at first glance, because

the interaction between mutation bias and composition bias influences both genetic diversity

and mutational robustness, two properties that facilitate evolvability [53]. However, the global

peaks of the landscapes considered here are sufficiently narrow that any increase of diversity

or robustness within them is not sufficient to cause a change in the number of phenotypes

accessible via mutation. Said differently, the fraction of sequence space covered by these peaks

is too small to facilitate mutational access to the landscapes of other transcription factors. We

speculate that in landscapes with broader, mesa-like peaks, mutation bias and composition

bias could interact to influence evolvability.

Discussion

The mapping of genotype to phenotype influences how mutation brings forth phenotypic vari-

ation [54]. Biases in this map can therefore influence evolution [55]. For example, so-called

phenotypic bias—that most phenotypes are realized by few genotypes, but a few phenotypes

are realized by many genotypes—can cause a phenomenon known as the “arrival of the fre-

quent”, wherein phenotypes evolve not because they are the most fit, but rather because they

are the most common [56, 57]. Moreover, phenotypes can exhibit a bias in their mutational

connectivity to other phenotypes, such that phenotype-changing mutations are more likely

to lead to common phenotypes than to uncommon phenotypes, thus reducing the ability of

mutation to bring forth phenotypic variation [58].

Here, we used empirical genotype-phenotype landscapes of transcription factor binding

affinities to study a different form of bias, namely composition bias. This describes the preva-

lence of a particular kind of mutation in a landscape, or in a subset of mutational paths in a

landscape, relative to a null expectation. The kind of mutation we considered was a transition
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mutation, and we measured its prevalence relative to the null expectation that one transition

occurs for every two transversions. We found that composition bias is common among acces-

sible mutational paths to a landscape’s global adaptive peak, and that for a large diversity of

transcription factor families, this bias is toward transversions. We showed that such composi-

tion bias can interact with mutation bias to influence the navigability of genotype-phenotype

landscapes and the predictability of evolution, as well as the evolution of genetic diversity and

mutational robustness.

Such interaction was most pronounced in landscapes with strong composition bias, and

when the bias in mutation supply was either aligned or in opposition with composition bias.

Estimates of base-substitution mutation spectra are available for at least five of the species stud-

ied here [59]: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis
thaliana, and Saccharomyces cerevisiae. Transforming the reported transition:transversion

ratios to our mutation bias parameter α results in values that range from roughly the null

expectation of one transition per two transversions (α = 0.47 for C. elegans) to a strong bias

toward transitions (0.83 in Arabidopsis thaliana—a 4.8-fold increase over the null expecta-

tion). Our results therefore suggest that biologically-realistic values of mutation bias can influ-

ence the evolution of transcription factor binding sites, specifically for transcription factors

whose genotype-phenotype landscapes exhibit composition bias, either toward transitions or

transversions.

Ideally, we could detect the influence of such an interaction on the evolution of transcrip-

tion factor binding sites in vivo. Previous work used single nucleotide polymorphism and func-

tional genomics data to show how the topology and topography of a genotype-phenotype

landscape influences the evolution of binding site diversity in A. thaliana and S. cerevisiae [22,

36]. For example, transcription factors with broad global peaks were found to exhibit more

diversity in their high-affinity binding sites than transcription factors with narrow global

peaks [22]. It would be desirable to use such data to study how mutation bias and composition

bias interact to influence the evolution of transcription factor binding sites in vivo. For exam-

ple, one could ask whether the binding sites of transcription factors with a strong composition

bias toward transversions exhibit less diversity in genomic regions prone to transition muta-

tions than in other genomic regions, as our results suggest they would. However, such an anal-

ysis is complicated because one would need to identify functional binding sites for the same

transcription factor in genomic regions that differ in mutation bias, but not in mutation rate.

While some regulatory regions are more prone to transition mutations than others, such as

CpG-rich promoters, which are susceptible to C> T transitions due to the spontaneous deam-

ination of 5-methylcytosines, these regions also exhibit elevated mutation rates [60].

It may be possible to overcome this challenge with experiments. For example, a single low-

affinity binding site for an activating transcription factor could be used to seed two separate

populations of binding sites, where the two populations differ in their mutation bias. This

could be achieved by introducing mutations with error-prone PCR, using enzymes that differ

in their mutation spectra, but have similar mutation rates. The mutated binding sites could

then be cloned into plasmids upstream of a reporter gene, such as yellow fluorescence protein,

transformed into bacterial cells, and exposed to selection for increased fluorescence using

flow-activated cell sorting. This process of mutation and selection could then be repeated for

several rounds, cloning the mutated binding sites back into the ancestral plasmid backbone

and transforming the plasmids into fresh bacterial cells before each round of selection to

ensure that increased fluorescence is driven by mutations in the binding site, rather than by

mutations in the protein or elsewhere in the bacterial genome. By comparing replicate experi-

ments for different binding site seeds and for transcription factors that vary in their composi-

tion bias, it may be possible to determine if and how mutation bias and composition bias
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interact to influence the in vivo evolution of increased affinity in transcription factor binding

sites.

Our analysis makes two key assumptions, the caveats of which are worth highlighting. The

first is our assumption of selection for increased binding affinity. Low-affinity binding sites are

also commonly employed to regulate gene expression, particularly for the auto-regulation of

high-copy number transcription factors in bacteria [61] and during the development of multi-

cellular organisms [44, 45, 62]. The second assumption is that of a linear relationship between

the selective advantage conferred by a mutation and the change in binding affinity that the

mutation causes. In reality, this relationship is likely non-linear, site-specific, and dependent

upon local transcription factor concentrations. Relaxing these two assumptions will transform

the topographies of the landscapes studied here, and will alter the composition biases of their

accessible mutational paths. Such transformations are therefore likely to affect landscape navi-

gability. However, we do not anticipate they will affect the way in which mutation bias and

composition bias interact to influence landscape navigability. Regardless of the particular

topographical properties of the landscape under investigation, navigability will be enhanced

when mutation bias and composition bias are aligned, and diminished otherwise.

While we focused our study on transcription factor-DNA interactions, composition bias is

likely to exist in other genotype-phenotype landscapes as well. For example, many RNA bind-

ing proteins target sequences enriched for guanine and uracil [63], and their binding affinity

landscapes will therefore exhibit a composition bias toward transversions. Additionally, com-

position bias is not limited to genotype-phenotype landscapes of intermolecular interactions

as studied here, but it may also be present in the landscapes of some macromolecules. Finally,

other forms of composition bias and mutation bias may interact to influence adaptive evolu-

tion, including GC:AT bias and deletion bias. The mutation bias signatures of various cancers

[64], which influence the de novo evolution of transcription factor binding sites [65], may also

interact with composition bias to influence landscape navigability. As the scope and scale of

genome editing and deep mutational scanning studies continues to expand, we will gain a bet-

ter understanding of the prevalence of composition bias in empirical genotype-phenotype

landscapes and its potential to interact with mutation bias in shaping adaptive mutational

trajectories.

Materials and methods

Data

We constructed genotype-phenotype landscapes using data from protein binding microarrays,

which we downloaded from the UniPROBE [46] and CIS-BP [47] databases. These data

include proxies for the relative binding affinity of a transcription factor to all possible (48

− 44)/2 + 44 = 32,896 eight-nucleotide, double-stranded DNA sequences (transcription factor

binding sites). These proxies include an enrichment score (E-score), which for each sequence

is a function of the fluorescence intensities of a subset of probes that contain the sequence

and a subset of probes that do not contain that sequence [66], and a Z-score, which for each

sequence is the difference between the logarithm of the median fluorescence intensities of a

subset of probes that contain the sequence and the logarithm of the median fluorescence inten-

sities of all probes, reported in units of standard deviation. We considered a sequence as specif-

ically bound by a transcription factor if its E-score exceeded 0.35, following previous work [22,

35, 37, 67]. We included a landscape in our dataset if its dominant genotype network com-

prised at least 100 bound sequences. According to these criteria, our dataset included 746 tran-

scription factors, representing 129 eukaryotic species, and 48 DNA-binding domain structural

classes. Details are provided in S1 Table.
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Constructing and analyzing genotype-phenotype landscapes

For each transcription factor, we used the Genonets Server [68] to construct a genotype-phe-

notype landscape from the set of sequences that specifically bound the factor (i.e., with an E-

score > 0.35). We represented each such sequence as a node in a genotype network, and con-

nected nodes with edges if their corresponding sequences differed in a single point mutation.

Note that we did not consider indels in our definition of a mutation, like we did in our previ-

ous work [22, 35–37]. The reason is that we were interested in understanding the influence of

a form of composition bias defined by point mutations (transitions vs. transversions), and we

were concerned that the inclusion of indel-based edges would confound our analyses. For

genotype networks that were fragmented into multiple components, we only considered the

largest component, which we call the dominant genotype network.

Each dominant genotype network served as the substrate of a genotype-phenotype land-

scape, the surface of which was defined by relative binding affinity. For our main analyses, this

was captured by the E-score, whereas for some of our sensitivity analyses, this was captured by

the Z-score. We studied accessible mutational paths to the global peaks of these landscapes. An

accessible mutational path comprises edges that each confer an increase in binding affinity

greater than the noise threshold parameter δ [22]. For each transcription factor, we calculated

δ as the residual standard error of a linear regression between the affinity values of all bound

sequences from the two replicate protein binding microarrays [22]. Thus, each transcription

factor had its own δ, which reflects the noise in the replicated measurements for that particular

transcription factor.

Mutation bias and composition bias

We report both mutation bias and composition bias relative to the null expectation that one

transition occurs for every two transversions. Letting Ti and Tv represent mutation rates of

transitions and transversions, respectively, we define mutation bias as

a ¼
Ti

Tiþ Tv=2
: ð1Þ

A mutation bias of α = 0.5 corresponds to the null expectation of one transition per two trans-

versions. Values below 0.5 mean there are more transversions than expected under the null,

whereas values above 0.5 mean there are more transitions than expected under the null.

Composition bias was measured in the same way, except with Ti and Tv representing the

number of transitions and transversions in a landscape, or in an accessible mutational path to

the global peak of a landscape.

Origin-fixation model of evolutionary dynamics

We used an origin-fixation model to study evolutionary dynamics when the mutation supply

is low (Nμ<< 1). This was implemented using Markov chains, a memoryless process that

gives the jumping probability from one genotype i to another genotype j using the matrix

Pi;j ¼
�i;j fi;j

P
8k�i;k fi;k

ð2Þ

where fi,j is the relative difference in binding affinity b

fi;j ¼

( bj=bi � 1 if bj > bi

0 otherwise:
ð3Þ
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and

�i;j ¼

(
a if edge ði; jÞ is a transition

ð1 � aÞ if edge ði; jÞ is a transversion:
ð4Þ

Then in general, the probability of going from any state to another state in a Markov chain

given by the matrix P (Eq (2)) after t steps is

ðPtÞi;j: ð5Þ

Wright-Fisher model of evolutionary dynamics

We carried out simulations of a Wright-Fisher model to study evolutionary dynamics when

the mutation supply is high (Nμ> 1). Each simulation was initialized with a monomorphic

population comprising N copies of the same sequence, chosen from the bottom 10% of bind-

ing affinity values in the landscape. In each generation t, N sequences were chosen from the

population at generation t − 1 with replacement and with a probability that was linearly pro-

portional to binding affinity. Mutations were introduced to these sequences at a rate μ per

sequence per generation with a mutation bias α. For each of the 746 landscapes, we performed

15 replicate simulations for each initial condition, using 19 linearly spaced mutation bias val-

ues between 0.05 and 0.95, and 3 mutation supply values (Nμ 2 {5, 20, 50}). Each simulation

ran for 1000 generations, which was sufficient to ensure that the population had reached steady

state.

Landscape navigability

As a measure of landscape navigability, we calculated the probability of reaching the global

peak, starting from the 10% of sequences in the dominant genotype network with the lowest

binding affinity. For low mutation supply, this was calculated as the average probability of

going from the initial sequences to the global peak using Eq (5) after t = 1000 steps. For high

mutation supply, this was calculated as the fraction of simulations per landscape in which at

least 50% of the population reached the global peak.

Path entropy

PathMAN (Path Matrix Algorithm for Networks), is a publicly available Python script that effi-

ciently calculates path statistics of a given Markov process [51]. We employed PathMAN to

calculate the Shannon’s entropy of the path distribution, which accounts for the predictability

of the process. Low entropy means that few paths with large probability dominate the process,

while large entropy means that several low-probability paths contribute. We calculated the

path entropy for 19 different values of the mutation bias parameter within the range

[0.05,0.95], in order to find the mutation bias parameters αmin and αmax that minimize and

maximize the path entropy for each landscape.

Overlap coefficient

The overlap coefficient between two different polymorphic populations A and B was calculated

as

OA;B ¼
jCj

minðjAj; jBjÞ
; ð6Þ
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where A and B are multisets—sets that permit multiple instances of an element. The cardinal-

ity of such multisets is defined as

jAj ¼
X

x2A

maðxÞ and jBj ¼
X

x2B

mBðxÞ; ð7Þ

where the number of occurrences of the element x in the multiset is indicated by the multiplic-

ity function m(x).

Then C is the multiset defined as C = A \ B, with multiplicity function

mCðxÞ ¼ minðmAðxÞ;mBðxÞÞ 8x 2 A [ B: ð8Þ

For example, if A = {1, 1, 2, 2, 2, 3} and B = {1, 2, 2, 4}, then C = {1, 2, 2} and the overlap coeffi-

cient is OA,B = 0.75.

Quasispecies dynamics of infinite populations

Since the matrix in Eq (2) is non-negative and connected, the Perron-Frobenius theorem for

non-negative matrices applies [69]. Hence, the steady-state distribution of an infinite size pop-

ulation on a genotype network is determined by the eigenvector associated to the largest eigen-

value of the matrix in Eq (2). Per each landscape, the eigenvectors were computed numerically

for 19 different values of mutation bias parameter α within the range [0.05,0.95].

Genetic diversity

We measured the diversity of a population as the average Shannon’s diversity over all geno-

types, normalized by the maximum diversity per landscape log2(n):

H ¼
�
P

ipi log 2 pi

log 2ðnÞ
ð9Þ

where n is the number of sequences in the landscape, pi is the fraction of the steady-state popu-

lation that is at sequence i.

Evolvability

We quantified the evolvability of a transcription factor’s binding sites as follows. First, we

determined the set of binding sites that have evolved at steady state in our Wright-Fisher simu-

lations. Then we enumerated the set of DNA sequences that differed by one mutation from

any of these binding sites, but were not themselves part of the focal transcription factor’s land-

scape. Finally, we determined the fraction of transcription factors in our dataset that these

one-mutant neighbors bound. This fraction was our measure of evolvability.

Supporting information

S1 Fig. Non-dominant genotype network components usually comprise few sequences.

Histogram of non-dominant component sizes. In total, 46% are singletons and 97% are not

large enough to satisfy our inclusion criterion of containing 100 sequences.

(TIF)

S2 Fig. Composition bias is most pronounced in landscapes with low or high GC content.

The composition bias in entire landscapes, and in accessible mutational paths connecting the

10% of binding sites with the lowest affinity to the global peak, is shown in relation to the aver-

age GC content of the sequences in the landscape. Data pertain to all 746 landscapes. Notches

indicate medians, whiskers indicate the 25th and 75th percentiles, and cross symbols indicate
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outliers. The horizontal line indicates no composition bias (0.5).

(TIF)

S3 Fig. Composition bias becomes more pronounced as the noise threshold parameter δ
increases. For each landscape and for five different values of the noise threshold δ, we calculated

the composition bias along the accessible mutational paths connecting the 10% of binding sites

with the lowest affinity to the global peak. Data pertain to all 746 landscapes. Black dots indicate

medians, whiskers indicate the 25th and 75th percentiles, and cross symbols indicate outliers.

(TIF)

S4 Fig. Transversions cause larger changes in binding affinity than transitions, but only

near the global peak. The % increase in binding affinity conferred by transition and transver-

sion mutations along accessible mutational paths is shown in relation to the mutational dis-

tance of a binding site to the global peak. For each binding site in each accessible path at each

mutational distance d, we calculated the increase in affinity as the percentage change at muta-

tional distance d − 1 along the path, relative to the affinity of the binding site at distance d.

Notches indicate medians, whiskers indicate the 25th and 75th percentiles, and cross symbols

indicate outliers. Mutational distances 1 and 2 exhibit statistically significant differences in the

increase in binding affinity conferred by transitions and transversions (Bonferroni corrected

two-sample t test, q< 10−3 and q< 0.05, respectively).

(TIF)

S5 Fig. Constructing genotype-phenotype landscapes with E-scores or Z-scores results in

highly similar composition biases among accessible mutational paths. Pearson’s correlation

coefficient r = 0.7212, p< 10−10. Data pertain to all 746 landscapes. The shaded gray regions

highlight the 83 landscapes that switch from exhibiting a composition bias toward transver-

sions to a composition bias toward transitions (or vice versa).

(TIF)

S6 Fig. Quantifying composition bias using an alternative accessibility criteria results in

very similar composition biases. Data pertain to all 746 landscapes, Pearson’s correlation

coefficient(r = 0.8541, p< 10−12). The shaded gray regions highlight the 77 landscapes that

switch from exhibiting a composition bias toward transversions to a composition bias toward

transitions (or vice versa).

(TIF)

S7 Fig. The mutation bias that maximizes Ppeak correlates strongly with composition bias,

measured using two definitions of accessible mutational paths. In (a), each step in an acces-

sible mutational path increases binding affinity by at least δ. In (b), each step in an accessible

mutational path does not decrease binding affinity more than δ. Data pertain to all 746 land-

scapes, each of which has its own noise threshold δ.

(TIF)

S8 Fig. Landscapes with strong composition bias comprise fewer binding sites than land-

scapes with little or no composition bias. The number of binding sites per landscape is

shown in relation to composition bias. Landscapes are grouped as in Fig 3. Data pertain to all

746 landscapes. Black dots indicate medians, whiskers indicate the 25th and 75th percentiles,

and cross symbols indicate outliers.

(TIF)

S9 Fig. Smaller landscapes are more navigable. Landscapes are grouped based on the number

of binding sites they comprise, with the average number of binding sites per landscape per
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group ranging from 165.07 to 1037.60 in five linearly spaced increments. The probability of

evolving to the global peak in the absence of mutation bias (α = 0.5) is shown in relation to

landscape size. Data pertain to all 746 landscapes. Black dots indicate medians, whiskers indi-

cate the 25th and 75th percentiles, and cross symbols indicate outliers.

(TIF)

S10 Fig. Mutation bias interacts with composition bias to influence landscape navigability,

regardless of whether selection favors low or high affinity binding sites. The probability

Ppeak of reaching the global peak is shown for 19 different values of the mutation bias parame-

ter α. The solid vertical lines indicate no bias in mutation supply (α = 0.5) and the dashed verti-

cal lines indicate the value of α that maximizes Ppeak. Landscapes are grouped based on their

composition bias and the distribution of composition bias per panel is shown on top of each

panel. The number of landscapes per panel is indicated is the bottom left corner. Fitness is a

function of binding affinity (E-score) using the Gaussian function exp(−((E − Eopt)/σ)2), where

E is the E-score of a binding site, Eopt is the optimal E-score, and σ is the variance parameter.

Here, Eopt = 0.35 (the lowest E-score in our landscapes) and σ = 0.1.

(TIF)

S11 Fig. Path entropy as a function of mutation bias. Data pertain to 50 randomly chosen

landscapes for 19 different values of the mutation bias parameter α.

(TIF)

S12 Fig. Mutation bias typically increases, but sometimes decreases, the predictability of

evolution. Shown are the percentage of mutation bias values α that increase or decrease path

entropy (which is inversely related to the predictability of evolution), relative to when there is

no mutation bias (α = 0.5). Data pertain to all 19 values of the mutation bias parameter α on

each of the 746 landscapes. Black dots indicate medians, whiskers indicate the 25th and 75th

percentiles, and cross symbols indicate outliers.

(TIF)

S13 Fig. Composition bias is a weak predictor of the mutation bias α that maximizes path

entropy. Nodes represent sequences in a landscape, and directed edges represent accessible

mutations between sequences. Edge colors represent mutation type and node colors represent

binding affinity (darker = higher). This landscape exhibits a strong composition bias toward

transitions. Path entropy is therefore minimized by a strong mutation bias toward transver-

sions, because an evolving population will utilize only one of the three accessible mutational

paths. Conversely, one might expect path entropy to be maximized by a strong mutation bias

toward transitions. However, this is not the case, because an evolving population will only uti-

lize two of the three accessible mutational paths. The mutation bias that maximizes path

entropy is actually the one that makes the three first-step mutations equiprobable. In more

complex scenarios, with more and longer paths that include a greater diversity of binding

affinities and more heterogeneous distributions of mutation types, a single summary statistic

like composition bias is unlikely to accurately predict the value of mutation bias that maxi-

mizes path entropy.

(TIF)

S14 Fig. Mutation bias has little to no effect on landscape navigability when the mutation

supply is high. The probability Ppeak of reaching the global peak is shown for 19 different val-

ues of the mutation bias parameter α. This probability is calculated as the proportion of simu-

lations in which at least half of the population evolves to the global peak. The solid vertical

lines indicate no bias in mutation supply (α = 0.5). Landscapes are grouped based on their
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composition bias and the distribution of composition bias per panel is shown on top of each

panel as in Fig 3.

(TIF)

S15 Fig. Simulations of the Wright-Fisher model typically reach steady state within 1,000

generations. (a) The average Shannon’s diversity is shown in relation to the number of gener-

ations. After 827 generations, more than 99.9% of the 4, 252, 200 simulations reached steady

state diversity levels within a tolerance of 0.01% of the final diversity level. The black line

shows the average across all simulations. (b) The fraction of simulations that have reached

steady state diversity levels is shown in relation to generation number.

(TIF)

S16 Fig. Mutation bias influences the distribution of infinite populations on a genotype-

phenotype landscape. We characterized the steady state distribution of infinite populations as

the eigenvector that corresponds to the largest eigenvalue of the matrix P (Methods). For any

pair of such populations, we measured their overlap as the Euclidean distance between these

eigenvectors—the shorter the distance, the higher the overlap. This panel shows this distance

for pairs of populations in relation to the difference in their mutation bias parameters.

(TIF)

S17 Fig. Mutation bias interacts with composition bias to influence the evolution of nucle-

otide diversity π. (a-e) The final average nucleotide diversity of evolved populations at steady

state is shown for 19 different values of the mutation bias parameter α, and for each of three

different values of mutation supply Nμ (see legend). The solid vertical lines indicate no bias in

mutation supply (α = 0.5). Landscapes are grouped based on their composition bias and the

distribution of composition bias per panel is shown on top of each panel, as in Fig 3.

(TIF)

S18 Fig. Mutation bias and composition bias interact to influence allele frequency spectra.

The bars correspond to polymorphisms in the population at steady state, relative to the

sequence that evolved to the highest frequency in the absence of mutation bias. Bar colors cor-

respond to three different values of the mutation bias parameter α: green for transversions

(α = 0.05), white for no bias (α = 0.5) and blue for transitions (α = 0.95). The panels corre-

spond to two Mus musculus landscapes (a) Arid5a (composition bias toward transversions)

and (b) Gm397 (composition bias toward transitions).

(TIF)

S19 Fig. Genotypes in landscapes with strong composition bias are less robust than geno-

types in landscapes without composition bias. The y-axis shows the average mutational

robustness of all genotypes in each landscape. The x-axis shows the composition bias. Land-

scapes are grouped as in Fig 3. Data pertain to all 746 landscapes. Black dots indicate medians,

whiskers indicate the 25th and 75th percentiles, and cross symbols indicate outliers.

(TIF)

S20 Fig. Mutation bias influences the evolvability of polymorphic populations. The y-axis

shows the difference in evolvability, which is calculated as the difference between the evolvabil-

ity of a population at steady state when there is no mutation bias and when there is a strong

bias toward transversions (α = 0.05) or transitions (α = 0.95). Data pertain to 128 transcription

factors from (a,b) Arabidopsis thaliana, and (c,d) 128 transcription factors from Mus muscu-
lus. Landscapes are grouped according to their composition bias as in previous figures. Param-

eters: N = 104, Nμ = 50. As an example, for a given transcription factor, a 10% change in

evolvability under strong transition bias could mean that the one-mutant neighbors of the
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sequences evolved at steady state bind 11 transcription factors, whereas without mutation bias,

the one-mutant neighbors of the sequences evolved at steady state bind 10 transcription fac-

tors.

(TIF)

S1 Table. Information about the 746 transcription factors and their genotype-phenotype

landscapes.
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