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Abstract

Transition bias, an overabundance of transitions relative to transversions, has been widely

reported among studies of the rates and spectra of spontaneous mutations. However, dem-

onstrating the role of transition bias in adaptive evolution remains challenging. In particular,

it is unclear whether such biases direct the evolution of bacterial pathogens adapting to

treatment. We addressed this challenge by analyzing adaptive antibiotic-resistance muta-

tions in the major human pathogen Mycobacterium tuberculosis (MTB). We found strong

evidence for transition bias in two independently curated data sets comprising 152 and

208 antibiotic-resistance mutations. This was true at the level of mutational paths (distinct

adaptive DNA sequence changes) and events (individual instances of the adaptive DNA

sequence changes) and across different genes and gene promoters conferring resistance

to a diversity of antibiotics. It was also true for mutations that do not code for amino acid

changes (in gene promoters and the 16S ribosomal RNA gene rrs) and for mutations that

are synonymous to each other and are therefore likely to have similar fitness effects, sug-

gesting that transition bias can be caused by a bias in mutation supply. These results point

to a central role for transition bias in determining which mutations drive adaptive antibiotic

resistance evolution in a key pathogen.

Introduction

Mutation creates genetic variation and therefore influences evolution. Mutation is not an

entirely random process but rather exhibits biases toward particular DNA sequence changes.

For example, a bias toward transitions (purine-to-purine or pyrimidine-to-pyrimidine

changes), relative to transversions (purine-to-pyrimidine or pyrimidine-to-purine changes),

has been widely reported among experimental studies of the rates and spectra of spontaneous

mutations, including those employing reporter constructs [1–4], and also studies of mutations
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spreading under relaxed selection, such as mutation accumulation experiments [5–13], com-

parisons of orthologous sequences at putatively neutral sites [14–17], and analyses of single-

nucleotide polymorphisms within species [18]. Mutation biases also play an important role in

models of neutral evolution [19,20], such as models of the evolution of intron density [21] and

the genetic code [22].

Demonstrating the role of transition bias in adaptive evolution remains challenging, with

most existing evidence derived from individual case studies [23–27]. Stoltzfus and McCandlish

recently reported the first systematic study of transition bias in putatively adaptive evolution,

using multiple criteria to identify adaptive mutations observed in experiments or nature,

including their repeated occurrence in different lineages [28]. Their meta-analysis provides

compeling evidence that transition bias influences adaptive evolution, with transitions

observed in at least 2-fold excess of the null expectation that they occur once for every two

transversions. Due in part to the difficulty of identifying definitively adaptive mutations, it

remains unclear whether this bias applies in other adaptively evolving organisms. In particular,

we do not yet know whether transition bias plays a role in populations of bacterial pathogens

evolving in nature, such as those evolving resistance to antibiotics via chromosomal mutation.

Identifying transition bias in such scenarios would improve both our basic understanding of

how resistance evolves and our ability to predict the relative likelihoods of alternative muta-

tional pathways to resistance. For example, if pathogen populations fix the first resistance

mutation that appears (“first-come-first-served”) [29], then a mutation supply biased toward

particular types of mutations will influence which genetic changes drive adaptation. Alterna-

tively, if many beneficial mutations are available to selection and pathogens fix those with

the highest selective advantage (“pick-the-winner”), a bias in mutation supply would have a

weaker impact on which genetic changes drive adaptation.

An additional challenge in studying transition bias among adaptive mutations is determin-

ing whether an overabundance of transitions is due to a bias in mutation supply (i.e., muta-

tion-based transition bias) or to a greater selective advantage conferred by transitions relative

to transversions (i.e., selection-based transition bias). For example, mutation-based transition

bias may be caused by the spontaneous deamination of cytosines to thymines [30], causing

transitions to occur more frequently than transversions, whereas selection-based transition

bias may be caused by differential fitness effects at either the nucleotide- or amino acid–level.

At the nucleotide level, traits that are dependent upon DNA geometry, such as transcription

factor binding [31], are less likely to be disrupted by transition mutations than transversion

mutations [32]. The reason is that purines and pyrimidines differ in size, and transition muta-

tions are therefore less likely to cause conformational changes to the DNA double helix [32].

At the amino acid level, nonsynonymous transitions may confer a greater selective advantage

than nonsynonymous transversions because they are more likely to conserve the biochemical

properties of amino acids [33]. Discriminating between mutation-based and selection-based

transition bias has proven challenging to date [34,35].

Here, we study transition bias in the evolution of antibiotic resistance in Mycobacterium
tuberculosis (MTB), a major human pathogen for which antibiotic resistance evolution via

chromosomal mutation is a key obstacle to effective treatment [36]. Previous work suggests

that MTB exhibits genome-wide mutation-based transition bias, with analyses of mutations

spreading under relaxed selection [18,37] and during infection in cynomolgus macaques [38]

and humans [39], reporting transition bias in at least 2-fold excess of the null expectation that

one transition occurs for every two transversions. We aimed to determine whether such bias

influences adaptive evolution in MTB and, in particular, the evolution of antibiotic resistance

using two independently curated data sets of mutations (one of which we compiled for this

study) that are known to confer antibiotic resistance and are therefore definitively adaptive.

Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis
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Additionally, we tested whether transition bias could be explained by transitions and transver-

sions encoding amino acid changes with different average fitness effects by testing whether the

observed bias was reduced among two subsets of adaptive mutations for which we can exclude

this type of effect: 1) mutations located in gene promoters and in the 16S ribosomal RNA gene

rrs, which is not translated to protein and therefore should not be influenced by selection-

based bias caused by transitions encoding different amino acid changes than transversions,

and 2) mutations that are synonymous to each other and are therefore likely to have similar fit-

ness effects.

Our results reveal strong transition bias in the mutational paths to antibiotic resistance and

in the number of times each mutational path is used in the evolution of antibiotic resistance

across 22 genes or gene promoters that confer resistance to 11 antibiotics. We also observe

transition bias among adaptive mutations that do not code for amino acid changes and among

adaptive mutations that are synonymous to each other, consistent with the hypothesis that

transition bias is at least partly mutation based. We therefore demonstrate that transition bias

influences the evolution of antibiotic resistance in a key global pathogen.

Results

Antibiotic resistance mutations in MTB
We curated a data set of 152 unique point mutations that confer resistance to at least one of 11

different antibiotics and appeared in at least one of 9,351 publicly available MTB genomes

(Materials and methods). We refer to this as the Basel data set. We also analyzed an indepen-

dently curated data set of 208 unique point mutations that confer resistance to at least one of

eight antibiotics and appeared in at least one of 5,310 MTB genomes [40] (Materials and meth-

ods). We refer to this as the Manson data set. The Basel and Manson data sets have 64 point

mutations in common and together include resistance mutations for 11 antibiotics.

Transition bias among mutations in both data sets

Following Stoltzfus and McCandlish [28], we separately studied transition bias in mutational

paths and in mutational events (Fig 1). A mutational path is any single mutation in one of our

data sets, such as the C> G transversion that causes the S315T amino acid change in the sole

MTB catalase KatG to confer resistance to isoniazid [41]. We studied the Basel and Manson

data sets separately, such that the 64 mutational paths that occur in both data sets were counted

separately for each data set. Each mutational path may be used any number of times during

adaptation of MTB strains to antibiotics, e.g., in different patients or in different geographic

regions. Each independent occurrence is a mutational event. Multiple observations of the

same mutational path in either of our data sets (the same mutation appearing on multiple

MTB genomes) could result from independent mutational events, or from a single mutational

event, the descendents of which are sampled multiple times. We accounted for this by calculat-

ing the number of mutational events (independent occurrences of each mutational path) for

the Basel data set using a parsimony-based analysis of mutational gains and losses at all nodes

in the reconstructed phylogeny of the 9,351 MTB genomes (Materials and methods; Fig 1).

The Manson data set also contained estimates of the number of mutational events, derived

using similar methods (Materials and methods). In total, the Basel and Manson data sets com-

prised 2,775 and 2,671 events, respectively.

We studied transition bias by calculating the transition:transversion ratio in each data set,

separately for mutational paths and events. We calculated 95% binomial confidence intervals

on this ratio and an empirical P value that describes the probability of observing a transition:

transversion ratio greater than the observed ratio, given a null model (Materials and methods).

Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis
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As our default null model, we chose the most conservative among several alternative models

described by Stoltzfus and McCandlish [28], which assumes that all nucleotide mutations are

equally likely, and there is no difference between the average fitness effects of transitions and

transversions. This null model gives a transition:transversion ratio of 0.5 because for any given

nucleotide, there is one possible transition and two possible transversions. In some analyses at

the level of mutational events, we adjusted the default null model, assuming instead a transi-

tion:transversion ratio equal to that observed at the level of mutational paths (accounting for

the influence of path-level bias on event-level bias) and/or conserving the observed distribu-

tion of events per path (accounting for overrepresentation of individual paths).

We observed transition bias among mutational paths and mutational events for both the

Basel and Manson data sets (Fig 2). This bias was more pronounced among mutational events

than mutational paths, in that the observed transition:transversion ratio at the event level was

more than 3.4 times the null expectation that one transition occurs for every two transversions

in both data sets (empirical P value < 10−6) and more than 1.4 times the null expectation at the

path level (empirical P value < 0.004).

To determine whether the bias in mutational events goes beyond what we would expect

given the observed bias in mutational paths, we performed three additional tests (Material

and methods). First, we considered a revised null model that assumes the transition:transver-

sion ratio among events equals the observed ratio among mutational paths (e.g., 0.95 in the

Basel data set rather than 0.5 in the original null model). Under this null model, the probabil-

ity of observing the transition:transversion ratios for mutational events was less than 10−6 for

both the Basel and Manson data sets, indicating that the event-level bias is not explained by

the path-level bias alone. In the second, more stringent test, we considered a null model that

conserves the number of events observed for each path but randomly reassigns each path to

be a transition or transversion with a probability determined by the transition:transversion

ratio of 0.5 (Materials and methods). That is, this model assumes the observed variation in

the number of events per path (which causes the stronger transition bias at the level of events

Fig 1. Schematic illustration of mutational paths and events. Four mutational paths that each confer resistance to

isoniazid are shown as symbols (see legend at bottom) to the right of a hypothetical phylogenetic tree for 21 MTB
strains. Full symbols represent derived genotypes, whereas empty symbols represent ancestral genotypes. The full

symbols on the tree represent the reconstruction of the mutational history of the sample. The well-known S315T

mutation in katG, encoded by a C>G transversion, is found in eight strains and, in this hypothetical reconstruction,

has evolved independently five times. Thus, there are five events for this one mutational path. MTB, M. tuberculosis.

https://doi.org/10.1371/journal.pbio.3000265.g001
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compared to paths in our data sets) is independent of whether each path is a transition or a

transversion. This is important because the observed transition bias among events could

potentially be explained by a small number of paths that happen to be transitions recurring

with high frequency (“jackpot mutations”), which could result from mutation-based biases,

such as mutational hotspots, or from selection-based biases, such as mutations that confer

higher resistance levels or have lower pleiotropic effects. Under this null model, the probabil-

ity of observing the transition:transversion ratios for mutational events was 0.003 in the

Basel data set and 0.001 in the Manson data set. Thus, jackpot mutations did not account for

the increased event-level transition bias relative to the expectation that one transition occurs

for every two transversions. In the third, most stringent test, we considered a null model that

conserves the number of events observed for each path but randomly reassigns each path to

be a transition or transversion with a probability determined by the transition:transversion

ratio observed at the level of paths (Materials and methods). Under this null model, the prob-

ability of observing the transition:transversion ratios for mutational events is 0.09 in the

Fig 2. Transition bias in mutational paths and mutational events in the Basel and Manson data sets. Symbols

represent transition:transverion ratios (Basel paths: 74:78, empirical P value = 7.1 × 10−5; Manson paths: 88:120,

empirical P value = 4.2 × 10−3; Basel events: 1,755:1,020, empirical P value< 10−6; Manson events: 1,771:900, empirical

P value< 10−6). Error bars represent 95% binomial confidence intervals. The dashed horizontal line shows the null

expectation of the transition:transversion ratio, assuming our default null model that one transition occurs for every

two transversions and that all mutations are independent. For additional null models used at the level of events, see the

main text. The data visualized in this and all subsequent figures are presented in numerical form in S1 Data.

https://doi.org/10.1371/journal.pbio.3000265.g002
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Basel data set and 0.01 in the Manson data set. In summary, transition bias in mutational

events tended to exceed what we would expect given the observed bias among paths,

although in the Basel data set this excess was partly explained by a small number of jackpot

mutations, with five mutational paths accounting for 52% of the events (S1 Fig). For exam-

ple, the transition causing S450L in rpoB that confers resistance to rifampicin was repre-

sented by 272 events (16%), whereas the median number of transition events per mutational

path was four (0.2%).

To determine which types of nucleotide changes explained the observed transition bias, we

calculated the relative rates of all six possible nucleotide pair mutations, accounting for GC

content [18], which is relatively high in MTB compared to other bacteria (Materials and meth-

ods). For mutational paths, the rate of A/T> G/C transitions exceeded the rate of any other

nucleotide pair mutation (Fig 3A and 3B). The same was true of mutational events (Fig 3C and

3D), for which the rates of both forms of transitions (G/C > A/T and A/T> G/C) were at least

1.5 times that of all forms of transversions.

We next compared the relative rates of each type of mutation in our antibiotic-resistance

data set to those observed for all mutations (not just resistance mutations) in the same 9,351

MTB genomes. These data comprise 325,714 mutational events along 305,316 paths, with a

transition:transversion ratio of 1.91 (95% binomial confidence interval: [1.90, 1.93]; empirical

P value< 10−6 for all null models). This is consistent with the event-level transition:transver-

sion ratios observed in the Basel and Manson data sets. However, at the level of individual

types of mutations, G/C> A/T transitions occurred more frequently than A/T> G/C

transitions (accounting for GC content; S2A Fig), in contrast to our resistance data sets but

Fig 3. Relative rates of the six nucleotide pair mutations for mutational paths and events in the Basel and Manson

data sets. Transitions are indicated with bold text. Rates adjusted for GC content (Materials and methods).

https://doi.org/10.1371/journal.pbio.3000265.g003
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consistent with a previous study of genome-wide mutations spreading under relaxed selection

in several other bacteria, including MTB [18]. To better understand this potential discrepancy,

we resampled the genome-wide mutational events 105 times, each time with a sample size

equivalent to that of the Basel data set and controlling for the distribution of events per path

(S2B Fig; Materials and methods). We found the event-level relative rates of individual muta-

tions in these resampled, genome-wide data sets were statistically indistinguishable from those

in the Basel data set (S3 Fig). This indicates that the transition bias we observed among antibi-

otic-resistance mutations is consistent with the underlying genome-wide bias and that the dif-

ferent rates of individual nucleotide pair mutations can be explained by sample size and the

distribution of events per mutational path. Note, we did not compare the Basel and genome-

wide data sets directly at the level of mutational paths because the number of times each path

is sampled (number of events per path) is very different in the two data sets (in the genome-

wide data set, 96% of paths are sampled only once; in the Basel data set, we average many

events per path; S2B Fig). This is expected to influence the observed path-level rates of different

types of mutations [28]. Specifically, when most observed paths are represented by one event

only (as in the genome-wide data set), the transition:transversion ratio of paths and events is

very similar and may be influenced by mutation-based transition bias. When individual paths

are represented by many events (as in the Basel data set), the transition:transversion ratio

among events is expected to approach the adaptive mutation rate, and transitions will be over-

represented if there is mutation-based transition bias. However, because such samples are

likely to capture a greater fraction of all possible paths (in this case, possible paths to antibiotic

resistance), the transition:transversion ratio of observed paths will tend toward the ratio for all

possible unique adaptive mutations, which we expect to approximate 0.5 even when there is

mutation-based transition bias [28]. This is supported by rarefaction analysis of how the path-

level relative rates change depending on the total number of mutational events sampled (S4

Fig). As we discuss below, this also helps to explain our observation of stronger transition bias

at the level of events compared to paths.

Transition bias varies among types of antibiotic resistance

Because the influence of transition bias might depend on the mechanism of antibiotic resis-

tance, we next tested for transition bias separately for different antibiotics. This reduced the

number of mutational paths and events that could be analyzed in each test, so we first deter-

mined the antibiotics for which we had sufficient statistical power to ensure that an observed

lack of transition bias was not due to reduced sample size (Materials and methods). This analy-

sis revealed that at the level of mutational paths, our data sets were too small to test for transi-

tion bias of the strength observed in the entire data set for any individual antibiotic (S5A and

S5B Fig). This is because at least 44 (Basel) and 118 (Manson) mutational paths would be

required to provide sufficient statistical power, and the maximum number of paths per antibi-

otic was 30 (for streptomycin) in the Basel data set and 51 (for rifampicin) in the Manson data

set (S6A and S6B Fig). In contrast, we were able to test for transition bias in the mutational

events associated with resistance to individual antibiotics because only 14 and 12 events were

required to provide sufficient statistical power in the Basel and Manson data sets (S5C and

S5D Fig). For this analysis, we considered mutations that simultaneously conferred resistance

to multiple antibiotics in separate categories. For example, some mutations in the gene Rv1484

(inhA) and its promoter confer resistance to both isonazid and ethionamide (five and six

mutations, respectively, in the Basel and Manson data sets). To avoid counting such mutations

multiple times, we analyzed them separately and did not include them together with mutations

that conferred resistance only to isonazid or ethionamide. All but two individual antibiotics

Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis
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and two categories of multiple antibiotics, all from the Basel data set, had more than one muta-

tional path with enough events to test for transition bias (S6C and S6D Fig).

With one exception, we observed transition bias in the number of mutational events associ-

ated with the evolution of resistance to all individual antibiotics, indicated by transition:trans-

version ratios ranging from 1.59 for pyrazinamide to 41.6 for kanamycin (i.e., from more than

3-fold to more than 80-fold excess of the null expectation that a single transition occurs for

every two transversions; Table 1). The exception was isoniazid, which was dominated by a sin-

gle C> G transversion (S315T in katG; S1 Fig), representing 409 of the 472 events associated

with isoniazid resistance in the Basel data set (or 671 events if we include mutations in inhA
associated with resistance to both isoniazid and ethionamide) and 321 of the 389 events associ-

ated with isoniazid resistance in the Manson data set (or 545 if we include inhA). Such over-

representation of individual paths (jackpot mutations) could potentially also explain the

observed transition bias for resistance to the other antibiotics. To test this, we revised the null

model, randomly reassigning each path to be a transition or a transversion, with a probability

of one transition for every two transversions but conserving the observed number of events for

each path [28] (Materials and methods). Most antibiotics still showed significant transition

bias under this null model (rifampicin and isoniazid + ethionamide in both data sets and pyra-

zinamide in Manson and kanamicin in Basel did not; Table 1), indicating that the transition

bias for individual antibiotics is not fully explained by jackpot mutations.

Next, we tested whether the observed bias among events for individual antibiotics also goes

beyond what we would expect if we account for both jackpot mutations (by conserving the

observed number of events per path as in the last analysis) and also for the observed transition:

transversion ratio among paths for each antibiotic (by reassigning paths as transitions or trans-

versions with a probability determined by the observed ratio at the path level, as above for

events across the entire data set). Only ethambutol in both data sets and ofloxacin in the Man-

son data set showed significant deviation from this null model (Table 1). In summary, the

strong transition bias for individual antibiotics was in some but not all cases explained by

either path-level bias or by particular paths recurring with high frequency.

Table 1. Summary of transition bias in mutational events per antibiotic in the Basel and Manson data sets. Rows are ordered by decreasing number of events in the

Basel data set. Dashes indicate antibiotics for which there are no mutational events in the respective data set. Mutations that confer resistance to multiple antibiotics are

reported separately and were not counted among the events conferring resistance to individual antibiotics. P values indicating deviation from the default null model and

three revised null models (1: the default null model, 2: accounting for path-level bias, 3: accounting for jackpot mutations, and 4: accounting for both path-level bias and

jackpot mutations; see main text). Significance (P< 0.05) is indicated for each test by the number of the corresponding null model (e.g., 1, 2 indicates statistical significance

for null models 1 and 2).

Basel data set Manson data set

Antibiotic Ti Tv Ti:Tv 95% CI P Ti Tv Ti:Tv 95% CI P
RIF 365 223 1.64 (1.38, 1.94) 1, 2 494 209 2.36 (2.01, 2.80) 1, 2

EMB 390 154 2.53 (2.10, 3.07) 1, 2, 3, 4 342 131 2.61 (2.13, 3.22) 1, 2, 3, 4

INH 42 430 0.10 (0.07, 0.13) ns 54 335 0.16 (0.12, 0.22) ns

SM 285 71 4.01 (3.08, 5.28) 1, 2, 3 254 72 3.53 (2.71, 4.65) 1, 2, 3

INH, ETH 231 31 7.45 (5.11, 11.22) 1, 2 137 18 7.61 (4.64, 13.23) 1, 2

FQ 166 57 2.91 (2.14, 4.01) 1, 2, 3 - - - - -

PZA 67 28 2.39 (1.52, 3.86) 1, 2, 3 46 29 1.59 (0.98, 2.61) 1, 2

KAN 52 9 5.78 (2.82, 13.34) 1, 2 208 5 41.6 (17.54, 129.46) 1, 2, 3

ETH 7 10 0.70 (0.23, 2.04) ns 16 10 1.60 (0.68, 3.95) 1, 3

OFX - - - - - 220 91 2.42 (1.89, 3.12) 1, 2, 3, 4

Abbreviations: AK, amikacin; CAP, capreomycin; EMB, ethambutol; ETH, ethionamide; FQ, floroquinolones; INH, isoniazid; KAN, kanamycin; ns, not significant;

OFX, ofloxacine; PZA, pyrazinamide; RIF, rifampicin; SM, streptomycin; Ti, number of transitions; Ti:Tv, transition:transversion ratio; Tv, number of transversions.

https://doi.org/10.1371/journal.pbio.3000265.t001
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Transition bias independent of changes in amino acid sequence

The above results suggest transition bias influences the evolution of antibiotic resistance in

MTB. However, it remains unclear whether this bias is mutation based or selection based. To

disentangle these potential sources of transition bias, we used two different approaches. First,

if the observed bias were caused by transitions and transversions encoding amino acid changes

with different average fitness effects, we would not expect the bias to extend to mutations that

do not encode amino acid changes. We tested this by examining mutations in gene promoters

and the 16S ribosomal RNA gene rrs. There were 23 such mutations in the Basel data set and

25 in the Manson data set (12 occur in both data sets). Because this did not provide enough

statistical power to perform the analysis at the level of paths, we only considered events here.

We found an excess of transitions. Specifically, in the Basel data set, there were 603 events

comprising 525 transitions and 78 transversions (transition:transversion ratio 6.73; 95% bino-

mial confidence interval: [5.30, 8.65]; empirical P value < 10−6 for our default null model). In

the Manson data set, there were 520 events that comprised 421 transitions and 99 transver-

sions (transition:transversion ratio of 4.25; 95% binomial confidence interval: [3.41, 5.35];

empirical P value < 10−6 for our default null model). In both data sets, this transition bias was

not explained by jackpot mutations (tested using a revised null model assuming a transition or

transversion ratio of 0.5 but conserving the distribution of events per path: P = 0.0007 for Basel

and P = 0.008 for Manson). However, in both cases, we found weaker evidence of transition

bias when we also accounted for the observed transition:transversion bias among paths (tested

using a revised null model assuming the observed path-level transition:transversion ratio and

conserving the distribution of events per path: P = 0.18 for Basel and P = 0.03 for Manson).

Thus, we found transition bias among events that do not encode amino acid changes, and this

was driven at least partly by bias among the corresponding mutational paths. Note that muta-

tions in promoters or genes such as rrs may nevertheless have variable fitness effects despite

not encoding amino acid changes [32,42], and we discuss this further below.

Second, we considered cases in which different mutations caused the same resistance-con-

ferring amino acid change and were therefore synonymous to each other and expected to have

similar fitness effects. Specifically, we considered amino acid changes that can be caused by

both transition and transversion mutations at the same ancestral codon. For example, methio-

nine can mutate to isoleucine via the transition ATG> ATA or the transversions ATG > ATT

and ATG> ATC. In the standard genetic code, there are five such amino acid changes

(Table 2). These were rare or nonexistent in the Basel and Manson data sets (Table 2), except

the amino acid change methionine-to-isoleucine, which occurred in three mutational paths

and 137 events in the Basel data set and in four mutational paths and 135 events in the Manson

Table 2. Observed transitions and transversions in mutational events in the Basel and Manson data sets and in mutational paths in the TBDReaMDB data set

among amino acid changes that can be caused by both transition and transversion mutations to the same codon.

Amino acid change Ancestral codon Possible Ti:Tv Basel Ti:Tv Manson Ti:Tv TBDReamDB Ti:Tv

G! R GGA 1:1 0:0 0:0 0:1

G! R GGG 1:1 0:0 0:0 1:0

M! I ATG 1:2 88:49 96:39 6:5

F! L TTT 1:2 0:0 0:0 1:0

F! L TTC 1:2 0:0 0:0 1:6

W! R TGG 1:1 3:0 0:0 7:0

Stop! R TGA 1:1 0:0 0:0 0:0

Abbreviations: Ti, number of transitions; Ti:Tv, transition:transversion ratio; Tv, number of transversions.

https://doi.org/10.1371/journal.pbio.3000265.t002
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data set. In the Basel data set, the 137 events comprised 88 transitions and 49 transversions

(transition:transversion ratio of 1.80; 95% binomial confidence interval: [1.25, 2.60]; empirical

P value< 10−6 for the default null model). In the Manson data set, the 135 events comprised

96 transitions and 39 transversions (transition:transversion ratio of 2.46; 95% binomial confi-

dence interval: [1.68, 3.67]; empirical P value< 10−6 for the default null model). This shows

transitions were also overrepresented among events conferring resistance via the same amino

acid change (from methionine to isoleucine). These observations weigh against the selection-

based hypothesis that transition bias is driven by different average fitness effects of amino acid

changes caused by transitions and transversions. If this hypothesis were true, we would expect

the transition:transversion ratios to decrease when we removed possible differences in the fit-

ness effects of resulting amino acid changes. Instead, the transition:transversion ratios were

similar to those for all events, indicating that mutation-based transition bias is sufficient to

produce transition bias of the same strength as that observed in the Basel and Manson data

sets. Note that for these mutations, the observed transition:transversion ratio at the path level

is the same as in the default null model (0.5), and we could not account for jackpot mutations

due to the small number of paths.

Ideally, we would have a sufficient number of mutational paths or events to study transition

bias among mutations that are synonymous to each other for all of the amino acid changes in

Table 2. To this end, we analyzed an older data set, TBDReaMDB [43], that included a greater

number of resistance mutations but that was not compiled with the same strict inclusion crite-

ria as the Basel and Manson data sets. Across the 717 mutational paths from this data set that

we included (Materials and methods), we observed transition bias (transition:transversion

ratio of 0.86; 95% binomial confidence interval: [0.74, 1.00]; empirical P value< 10−6 for the

default null model). In this data set, there was also a sufficient number of the amino acid

changes shown in Table 2 to take an aggregated approach to calculating transition bias among

mutations that are synonymous to each other. Specifically, among all such mutational paths,

there were 16 transitions and 12 transversions (Table 2; transition:transversion ratio of 1.33;

empirical P value = 0.02). This was nearly twice the expected ratio of 0.67, derived from a null

model accounting for the number of transitions and transversions in these particular muta-

tional paths (Materials and methods).

Discussion

We found strong transition bias at multiple levels (mutational paths and events) and in multi-

ple independently curated data sets (Basel, Manson, and TBDReamDB) for resistance muta-

tions that confer a fitness benefit in the presence of antibiotics. By focusing part of our analysis

on mutations in gene promoters and the 16S ribosomal RNA gene rrs and on mutations that

are synonymous to each other, we overcame the difficulty of ruling out an overabundance of

transitions caused by transitions and transversions encoding amino acid changes with differ-

ent average fitness effects. Our data also revealed notable exceptions to the general trend

toward transition bias. In particular, the most common resistance mutation by far against iso-

niazid was a transversion. Our results have four key implications for antibiotic resistance evo-

lution and mutational biases.

First, quantifying the overabundance of transitions improves our ability to predict muta-

tional pathways to resistance. MTB often acquires multiple resistance mutations sequentially,

and some mutational trajectories are more common than others [44]. Our results suggest the

probability of following a given trajectory will be higher when it contains a greater fraction of

transitions than alternative trajectories encoding similar resistance phenotypes.
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Second, for at least part of our data, we excluded an important potential explanation for

transition bias, specifically that transitions encode amino acid changes with different average

fitness effects than transversions. We did this by showing that the bias extended to mutations

in gene promoters and the 16S ribosomal RNA gene rrs and to mutations that are synony-

mous to each other. The transition bias for these mutational events was similar or even

stronger compared to that for mutational events in the entire Basel and Manson data sets,

suggesting that it is not necessary to invoke selection-based transition bias to explain the

transition bias observed in these data sets. However, we cannot rule out variable fitness

effects that are not linked to amino acid changes, such as those observed for streptomycin-

resistance mutations in ribosomal genes [42] and synonymous resistance mutations in other

bacterial species [45]. If the level of selection-based transition bias for these mutations is sim-

ilar to that for mutations that cause amino acid changes, then this could also explain the sim-

ilar transition bias observed for these two classes of mutations. However, earlier analyses of

the effects of noncoding mutations on gene expression in reporter assays [32] and of the

effects of missense mutations on fitness in viruses and bacteria [35] found at most a marginal

difference in the effects caused by transitions relative to transversions. Therefore, while we

do not argue there is no role for biased fitness effects in general (in fact there is evidence of

this for viruses [34]), it is unlikely to be the sole cause of the overabundance of transitions we

observed, indicating that this is explained instead or in addition by a higher mutation supply

of transitions than transversions.

Third, if we accept that a biased mutation supply explains at least some of the observed bias

among resistance-conferring mutational paths and events, this is consistent with a role for

mutation-limited “first-come-first-served” dynamics [20,29] in resistance evolution in MTB
[36]. This is also consistent with the strict clonality, small within-host effective population size

upon infection and low mutation rate of MTB, such that infections expand slowly from a small

infectious dose that initially contains little genetic variation [36,46]. However, genomic evi-

dence shows that multiple resistant MTB genotypes can occur within the same patient [39,47],

which is less supportive of mutation-limited dynamics. The extent to which such genotypes

compete with each other depends on the spatial population structure, and if they are in differ-

ent lung sections, they may not compete directly [48]. Overall, this indicates resistance may

evolve via a process somewhere along a continuum between first-come-first-served and pick-

the-winner [20].

Fourth, MTB may be closer to one end of this continuum when challenged with some anti-

biotics than others. Specifically, a single transversion accounted for >70% of the mutational

events conferring isoniazid resistance, indicating a greatly reduced role for transition bias.

Instead, the high frequency of the S315T mutation in katG among isoniazid-resistant isolates

may reflect that it confers resistance to clinically relevant concentrations, particularly in com-

bination with inhA promoter mutations [49], without severely reducing catalytic function

[41]. MTB strains carrying this mutation, while not detected in in vitro mutant screens [50],

also appear more likely to transmit than strains with other isoniazid-resistance mutations

[51,52]. Therefore, this may represent a scenario in which the influence of mutation-based

transition bias is greatly reduced because of strong selection for an individual transversion. To

directly disentangle the contributions of mutational frequencies and fitness effects for isonia-

zid resistance would require experimental estimates of these parameters. However, interpret-

ing such data would be challenging because we know the most important isoniazid resistance

mutations do not spread in vitro as they do in vivo [50], including the katG S315T mutation

that was so prevalent here. Such discrepancies may reflect general in vivo versus in vitro differ-

ences, like the increased importance of oxidative damage in the lung environment for muta-

tion during infection [38]. Thus, although in vitro data captures some key aspects of resistance
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evolution in nature [53,54], a full understanding requires combining this with epidemiological

data [55] or genomic analysis of natural and clinical strains, as we have done here.

Our observation that transition bias is prevalent at the level of paths but even stronger at

the level of events is consistent with Stoltzfus and McCandlish’s (2017) observations for muta-

tions in parallel experimental or natural populations and is expected under mutation-based

transition bias when the sample size is large [28]. This is because in large samples, for which

each path is represented by many events, the event-level ratio will tend toward that of the adap-

tive mutation rate, but the path-level ratio will tend toward the ratio among all possible unique

adaptive mutations, which would approximate 0.5 even when there is mutation-based transi-

tion bias [28]. The observed ratio at the level of paths in our data sets, while weaker than at the

level of events, still exceeded 0.5. This could be because our data sets are incomplete samples of

the possible paths to resistance in MTB, and the likelihood of a given path featuring in our

data sets is higher if it occurs more frequently (i.e., mutation-based bias and intermediate sam-

ple size). Alternatively, our data sets may capture the vast majority of paths to resistance, but

due to selection-based bias, a greater fraction of them are transitions than transversions. The

former possibility is consistent with the lower path-level transition:transversion ratio in the

Manson data set, which has more paths than the Basel data set (S4 Fig). Additionally, we are

probably closest to knowing all possible mutational paths to resistance for rifampicin, which

had the most observed events in our data sets (S6 Fig) and has been used in fluctuation analy-

ses for resistant mutants [37]. For this antibiotic, the path-level transition:transversion ratio

approached 0.5 in the Basel and Manson data sets and in fluctuation analysis data for the most

permissive antibiotic concentration in a previous study [37] and was higher at the event level

in all cases (S1 Table).

Mutation bias comes in many forms [56]. In bacteria, these include deletion bias [57],

increased mutation rates in specific sequence contexts [58], in genes that are highly transcribed

[2], on the lagging strand [59], or farther from the origin of replication [60]. Direct studies of

the mutation spectrum in MTB are limited, so it is not currently possible to ascertain whether

these biases exist in MTB or how they might interact with transition bias to influence adaptive

evolution. We therefore cannot rule out the possibility that such interactions explain some of

the heterogeneity we observe in the number of mutational events per path. We note, however,

that the six jackpot mutations of the Basel data set show no bias toward or away from the ori-

gin of replication (the maximum possible distance from the origin of replication is 2.2 Mb,

and the distance of the mutations range from 0.16 Mb to 2.2 Mb); all are found in distinct

sequence contexts (nucleotide triplets), four are found on the leading strand, and the other

two are found on the lagging strand. Transcription level is also unlikely to explain the hetero-

geneity in the number of events per path, because each jackpot mutation occurs in a gene that

has alternative resistance-conferring mutational paths, and these tend to have far fewer events.

For example, rrs is among the most highly expressed genes in MTB. Its one jackpot mutation

has 145 events, whereas the other seven resistance-conferring mutational paths in this gene

have between one and 42 events (S4 Data).

Our finding that A/T> G/C transitions were the most common mutations in the Basel and

Manson data sets appears to contrast with earlier evidence that G/C > A/T transitions are the

most common type of mutation spreading under relaxed selection in multiple bacterial species,

including MTB [18]. Further evidence of a distinctive transition bias toward G/C in mycobac-

teria, and in particular an overabundance of A/T > G/C transitions, comes from a recent

mutation accumulation experiment with the related species Mycobacterium smegmatis [7].

Another earlier study testing for evidence that oxidative damage caused by antibiotics influ-

ences mutational biases also found that A/T> G/C transitions were the most common type of

mutation in an earlier version of the TBDReaMDB [61]. However, by resampling mutations
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observed in the MTB genomes we analyzed, irrespective of whether they conferred antibiotic

resistance, we found this discrepancy could be explained by the sample size of resistance muta-

tions compared to all mutations and the distribution of events per path in the Basel data set.

Thus, transition bias is pervasive across earlier studies and our data set.

In conclusion, our data support the hypothesis that a bias toward transitions plays a key

role in determining the genetic changes driving antibiotic resistance evolution in MTB.

Materials and methods

The Basel data set

We curated a list of mutations known to confer resistance to one or more of the following

drugs or drug classes: isoniazid, ethionamide, rifampicin, ethambutol, pyrazinamide, fluoro-

quinolones, and aminoglycosides. Starting from a previously published set of 120 mutations

[62], we first excluded mutations in rpsA and ahpC because these genes were unlikely to confer

resistance to pyrazinamide and isoniazid, respectively [63,64]. We then added gyrB to the list

of pertinent genes because some mutations in this gene have been shown to lead to fluoroquin-

olone resistance [65].

We included additional mutations if they met one or more of the following criteria: 1) they

have been shown, by virtue of allelic exchange, to confer resistance; 2) introduction of the

mutation into the enzyme of interest was investigated in vitro and shown to confer properties

consistent with drug resistance; 3) they were identified in laboratory-generated antibiotic-

resistant strains as the most likely candidate for resistance; or 4) there was a clear correlation

between the presence of the mutation and drug resistance as detected by phenotypic drug sus-

ceptibility testing of clinical strains. This resulted in a list of 196 mutations (S2 Data), of which

we found 152 in at least one of 9,351 publicly available MTB genomes (S3 Data), which we

obtained from Menardo and colleagues (2018) [66], including only genomes belonging to

MTB sensu stricto. These are the mutational paths in the Basel data set (S4 Data). The transi-

tion:transversion ratio for the 196 mutations is 0.90 (95% binomial confidence interval: [0.68,

1.21]; empirical P value = 0.000023 for our default null model), which is similar to the transi-

tion:transversion ratio for the 152 mutations that were also found in at least one of the MTB
strains (transition:transversion ratio = 0.95; 95% binomial confidence interval: [0.68, 1.32];

empirical P value = 0.000071 for our default null model).

We determined the mutational events by first calling single-nucleotide polymorphisms in

the 9,351 genomes and then using the polymorphisms to reconstruct the genomes’ phylogeny

and to infer mutational gains and losses throughout the phylogeny, as follows. We clipped

Illumina adaptors, trimmed low-quality reads using Trimmomatic v. 0.33 (SLIDINGWIN-

DOW:5:20) [67], and removed reads shorter than 20 base pairs. We merged overlapping

paired-end reads using SeqPrep v. 1.2 (overlap size = 15) and mapped the resulting reads to

the reconstructed ancestral sequence of the MTB complex [68] using the mem algorithm of

BWA v 0.7.13 [69]. We marked duplicated reads using the MarkDuplicates module of Picard

v. 2.9.1, performed local realignment of reads around indels using the RealignerTargetCreator

and IndelRealigner modules of GATK v. 3.4.0 [70], and excluded reads with an alignment

score lower than (0.93 × read_length)–(read_length × 4 × 0.07), which corresponds to more

than seven mismatches per 100 base pairs. We called single-nucleotide polymorphisms using

Samtools v. 1.2 mpileup [71] and VarScan v. 2.4.1 [72], with the following thresholds: mini-

mum mapping quality of 20, minimum base quality at a position of 20, minimum read depth

at a position of 7, minimum percentage of reads supporting the call 90%, and maximum strand

bias for a position 90%. Genomes were excluded if 1) they had an average coverage<20x, 2)

more than 50% of their single-nucleotide polymorphisms were excluded due to the strand bias
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filter, 3) more than 50% of their single-nucleotide polymorphisms had a percentage of reads

supporting the call between 10% and 90%, or 4) they contained single-nucleotide polymor-

phisms that belong to different MTB lineages because this indicates that a mix of genomes was

sequenced. Finally, we excluded all genomic positions with more than 10% missing data. This

resulted in a final data set of 300,583 polymorphic positions.

We inferred a phylogenetic tree based on the 300,583 single-nucleotide polymorphisms

with FastTree [73], using double digit precision and the options -nocat and -nosupport. We

extracted the bases at each of the 152 genomic positions in our list of resistance mutations

from the vcf file for the 9,351 genomes and assembled them in a multiple-sequence alignment.

To determine the number of mutational events per mutational path, we reconstructed the

nucleotide changes at the 152 genomic positions on the phylogenetic tree rooted with the

inferred ancestral sequence of the MTB complex [68]. To do this, we used two maximum par-

simony algorithms (ACCTRAN and DELTRAN) [74] implemented in PAUP� v. 4.0a [74],

giving equal weight to all characters and considering them as unordered; we considered for

further analyses only the events reconstructed by both algorithms.

The Manson data set

Manson and colleagues [40] compiled a list of polymorphisms associated with resistance to

eight antibiotics (S4 Table in [40]) and searched for these polymorphisms in 5,310 MTB
genomes. They found 392 of these polymorphisms in at least one genome (S5 Table in [40]).

We filtered these polymorphisms to only include point mutations, resulting in a data set of 208

mutational paths. Manson and colleagues [40] calculated the number of events per mutational

path by reconstructing the phylogeny of the 5,310 MTB genomes and using a parsimony-based

analysis to determine mutational gains and losses throughout the phylogeny. We used their

estimates of the number of events per mutational path, as they were reported in S5 Table of

[40].

The TBDReaMDB data set

TBDReaMDB is a data set of 1,178 mutational paths associated with resistance to at least one

of nine antibiotics. We filtered this data set to only include mutational paths that (1) are nonsy-

nonymous point mutations, with both the ancestral and derived codons reported (709 paths);

or (2) point mutations in promoters that are upstream of a gene’s transcription start site (eight

paths); and (3) are nonredundant, where we considered two mutational paths redundant if

they were the same mutational path and associated with the same gene ID, drug, and codon

position (or nucleotide position in the case of promoters). The filtered data set contains 717

mutational paths.

We used this data set, which includes a greater number of mutations than the Basel and

Manson data sets but with less strict inclusion criteria, to study transition bias among amino

acid changes that can be caused by mutational paths that are transitions or transversions

and that arise from the same codon (Table 2). For this purpose, we developed a null model

accounting for the number of transitions and transversions in the available mutational paths

that cause such amino acid changes. Specifically, for a given combination i of amino acid

change and ancestral codon, there are ni mutational paths that are transitions and pi muta-

tional paths that are transversions. In the TBDReaMDB data set, there are m = 6 such combi-

nations of amino acid changes and ancestral codons (top six rows of Table 2). The expected

probability of a transition under the null model is
Pm

i¼1
ni=
Pm

i¼1
ðni þ piÞ. For the m = 6

observed combinations of amino acid change and ancestral codon, this gives a null transition

probability of 6/15 = 0.4, which equates to a transition:transversion ratio of 0.67.
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Calculating confidence intervals for transition:transversion ratios

We calculated 95% binomial confidence intervals on the transition:transversion ratios of

mutational paths and events using the Matlab function binofit.m, which takes as input the

number of trials (i.e., the number of mutational paths or events) and the number of successes

(i.e., the number of the paths or events that are transitions). It provides as output an estimate

of the 95% confidence interval of the probability of success for the binomial distribution. The

probability of success is equivalent to the probability a mutational path or event is a transition.

We multiplied this probability for both the lower and upper bounds of the interval by the total

number of mutational paths or events to determine the lower and upper bounds on the num-

ber of transitions. We then performed the analogous calculation for transversions and used

these numbers to determine the lower and upper bounds of the 95% confidence interval for

the transition:transversion ratio.

Calculating empirical P values for transition:transversion ratios

To calculate an empirical P value for an observed transition:transversion ratio in a data set

containing x mutational paths or events, we randomly generated 106 data sets of x mutations

according to our default null model that transversions are twice as likely as transitions. Each of

the x mutations in each data set was chosen to be a transition with probability 1/3 or a trans-

version with probability 2/3 (when we analyzed mutations that are synonymous to each other

in the TBDReaMDB data set, we used probabilities of 0.4 and 0.6, and in revised null models

for some of the event-level analyses, we used probabilities equivalent to the observed path-level

transition:transversion ratio, described further below). We determined the transition:transver-

sion ratio for each of these data sets and then calculated the empirical P value as the fraction of

these ratios that were greater than the observed ratio.

To disentangle different sources of transition bias among mutational events, we considered

three revised null models. First, to determine whether event-level bias exceeded path-level

bias, we used the same default null model as above but assigned mutations as transitions or

transversions with a probability equivalent to the observed path-level transition:transversion

ratio (0.49 or 0.42 for all paths in the Basel and Manson data sets), instead of one transition for

every two transversions. Second, we controlled for “jackpot mutations” by conserving the dis-

tribution of mutational events per mutational path but randomly reassigning mutational paths

as either transitions or transversions according to a transition:transversion ratio of 0.5 [28].

We repeated this process 106 times as above to create a null distribution of the number of tran-

sition events, which we used to calculate an empirical P value. Third, we accounted for both

jackpot mutations and path-level bias, using a null model that conserved both the distribution

of events per path and the observed path-level transition:transversion ratio but randomly per-

muted the assignment of mutational paths as transitions or transversions (thus maintaining

the transition bias at the level of paths), again repeating the process 106 times to calculate an

empirical P value. The latter two tests are most likely to reject the null hypothesis when transi-

tion events are uniformly distributed among the corresponding mutational paths. They are

least likely to reject the null hypothesis when all transition events correspond to a single muta-

tional path (i.e., a single jackpot mutation).

Rarefaction analysis

We performed a rarefaction analysis to show how path-level transition bias depends upon the

number of sampled events. For both the Basel and Manson data sets separately, we randomly

sampled x mutational events and measured the transition bias in the resulting mutational

paths. We repeated this process 105 times for each of 50 logarithmically spaced values of x
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between 1 and the total number of events in the Basel and Manson data sets (2,755 and 2,671,

respectively). The results of this analysis are shown in S4 Fig.

Calculating the relative rates of the six nucleotide pair mutations

GC content may influence the number of mutational paths or mutational events in our data

sets. MTB has a high GC content: 65.6% genome-wide [75] and 64.4% in the 17 genes associ-

ated with resistance in the Basel and Manson data sets. Thus, we expected to see more muta-

tions from G/C or C/G than from A/T or T/A, simply because there are more Gs and Cs in the

genes associated with resistance in our data sets. To control for this effect in our calculation

of the relative rates of the six possible nucleotide pair mutations, we followed the method of

Hershberg and Petrov [18]. Specifically, we first determined the number of mutations of each

type we would expect under equal GC content by multiplying the number of mutations from

A/T to G/C, C/G, or T/A by 64.4/(100 − 64.4) (or by 65.6/[100 − 65.6] for the genome-wide

mutations). We then calculated the relative rates of the six nucleotide pair mutations by divid-

ing the number of each (unchanged for mutations from G/C) by the sum of all possible pairs

of mutations and multiplying by 100.

Comparing the event-level relative rates of the six nucleotide pair

mutations in the Basel data set to those observed genome-wide

In the Basel data set, the rate of G/C> A/T transitions was lower than the rate of A/T > G/C

transitions, whereas the opposite was true genome-wide (S2A Fig). We sought to determine if

this discrepancy could be explained by differences in sample size and in the distributions of

events per path (S2B Fig). To do so, we took a sampling approach. We randomly chose 152

mutational paths from the 305,316 paths of the genome-wide data set. We then randomly

assigned the number of events per path in the sample according to the distribution of events-

per-path in the Basel data set. We then calculated the event-level relative rates of the six nucleo-

tide pair mutations and repeated this process 105 times, yielding a distribution of the relative

rates (S3 Fig). For each relative rate, we calculated an empirical P value by determining the

fraction of random samples that had a relative rate that was greater than (or less than, depend-

ing on the test) the value observed in the Basel data set. For example, for the relative rate of G/

C> A/T, we determined the fraction of the 105 samples that had a relative rate that was less

than that observed in the Basel data set because in S2A Fig the height of the corresponding

white bar is lower than the height of the corresponding black bar. In contrast, for the relative

rate A/T> G/C, we determined the fraction of the 105 samples that had a relative rate that

was greater than that observed in the Basel data set because in S2A Fig the height of the corre-

sponding white bar is higher than the height of the corresponding black bar.

Calculating statistical power

The numbers of paths and events are much smaller for individual antibiotics than in the full

data sets, which may render our test of transition bias statistically underpowered for individual

antibiotics. To determine the minumum number of mutational paths or events required to

rule out the possibility that an observed lack of transition bias might be due to small sample

size, we downsampled our data sets as follows. For each of the Basel and Manson data sets sep-

arately, we randomly sampled x mutational paths or events from the data set without replace-

ment and calculated the fraction of these paths or events that were transitions (we calculate

this fraction, rather than the transition:transversion ratio, to avoid division by zero) and the

associated 95% binomial confidence interval. We repeated this 104 times for each value of x
and calculated the average fraction of transitions, the minimum of the lower 95% confidence
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intervals, and the maximum of the upper 95% confidence intervals. For mutational paths, we

varied x from 2 to the maximum number of mutational paths in each data set, and for muta-

tional events, we varied x from 2 to 800. We then determined the minimum value of x for

which the minimum of the 95% confidence intervals exceeded 1/3, which is the expected frac-

tion of transitions under the null model (corresponding to a transition:transversion ratio of

0.5). This is the minimum number of mutational paths or events required to exclude the possi-

bility that an observed lack of transition bias at a given value of x is due to small sample size,

given the transition bias in the full data set. For the Basel data set, this minimum number of

mutational paths was 44, and the minimum number of mutational events was 14. In the Man-

son data set, the minimum number of mutational paths was 118, and the minimum number of

mutational events was 12. No antibiotic was associated with more than these minimum num-

bers of mutational paths in either the Basel or Manson data sets (S6A and S6B Fig). However,

we had at least the minimum number of mutational events for all antibiotics and combinations

except for amikacin + capreomycin and mutations conferring resistance only to capreomycin

in the Basel data set (S6C and 6D Fig).

Supporting information

S1 Data. Summary data visualized in Figs 2 and 3 and S1–S6 Figs.

(XLSX)

S2 Data. One hundred ninety-six resistance-conferring mutations. For each mutation, this

data set includes the mutation’s genomic position, the amino acid change it causes (if any), the

antibiotic it confers resistance to, and supporting evidence that the mutation confers resis-

tance, including references to pertinent literature.

(XLSX)

S3 Data. 9,351 publicly available MTB genomes. For each genome, this data set includes the

EMBL biosample ID and accession number. MTB, Mycobacterium tuberculosis; EMBL, Euro-

pean Molecular Biology Laboratory.

(XLSX)

S4 Data. The Basel data set. For each of the 152 mutations, this data set includes the muta-

tion’s genomic position, the amino acid change it causes (if any), the antibiotic it confers resis-

tance to, the number of times it was found in the 9,351 MTB genomes, and the inferred

number of times it independently evolved (i.e., mutational events). MTB, Mycobacterium
tuberculosis.
(XLSX)

S1 Fig. The number of mutational paths associated with a given number of mutational

events that are (A, B) transitions or (C, D) transversions. Mutational paths associated with

more than 100 events are indicated with text.

(TIFF)

S2 Fig. Comparison of mutational events in the Basel data set with those observed genome

wide. (A) Relative rates of the six nucleotide pair mutations, for mutational events in the Basel

data set of antibiotic resistance mutations and genome-wide among 9,351 MTB strains. Transi-

tions are indicated with bold text. Rates adjusted for GC content (Materials and methods). (B)

Distribution of events per path in the Basel data set (open circles) and genome-wide (filled cir-

cles). MTB, Mycobacterium tuberculosis.
(TIFF)
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S3 Fig. The relative rates of each nucleotide pair mutation among events in the Basel data

set are not statistically significantly different from those observed genome wide, given the

distribution of events per path in the Basel data set. Bars show the distributions of the rela-

tive rates of each nucleotide pair mutation, observed across 105 random resamplings of the

genome-wide mutations, controlling for the number of events per path. In each resampling,

we chose 152 mutational paths at random from the 305,316 mutational paths in the genome-

wide data set and randomly assigned the number of events to each path according to the distri-

bution of events per path from the Basel data set. Vertical dashed lines indicate the relative

rates of each nucleotide pair mutation among events in the Basel data set (i.e., the height of the

white bars in S2A Fig).

(TIFF)

S4 Fig. Rarefaction analysis of the Basel and Manson data sets. Symbols represent the mean

fraction of paths that are transitions given a random sample of events, drawn with replacement

from the Basel and Manson data sets. Sampling was performed 105 times for each number of

sampled events (each position along the x-axis). Error bars indicate one standard deviation.

We show the fraction of sampled paths that are transitions, rather than the transition:transver-

sion ratio, to avoid division by zero when the number of sampled events is small. The upper

horizontal dashed lines show the fraction of events that are transitions in the entire Basel and

Manson data sets. The middle dashed lines show the fraction of paths that are transitions in

the entire Basel and Manson data sets. The lower dashed lines show a fraction of 1/3, which

corresponds to a transition:transversion ratio of 0.5.

(TIFF)

S5 Fig. The average fraction of transitions (open circles) with the minimum and maximum

of the lower and upper 95% binomial confidence intervals (dashed lines) relative to the

number of sampled paths or events from the Basel or Manson data sets (x-axis). Open cir-

cles and dashed lines are derived from 104 replications per number of sampled paths or events.

The horizontal line indicates the null expectation of a fraction of transitions equal to 1/3 (i.e.,

transition:transversion ratio = 0.5), and the vertical line indicates the minimum number of

mutational paths or events required for the minimum lower bound on the 95% confidence

interval to exceed 1/3.

(TIFF)

S6 Fig. The numbers of mutational paths and events that confer resistance to individual or

multiple antibiotics in the Basel and Manson data sets.

(TIFF)

S1 Table. Transition:transversion ratios at the path and event level for rifampicin resis-

tance. Data from fluctuation assays for rifampicin resistance at three drug concentrations in

two MTB strains (CDC-1551 and HN878) show stronger transition bias among events than

paths (data from S3 Table [37]). Similarly, in the Basel and Manson data sets, the event-level

transition:transversion ratios for rifampicin resistance mutations were 1.64 and 2.36, whereas

the path-level ratios were 0.54 and 0.60, respectively.

(DOCX)
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