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disease spread, in order to provide a concrete example of 
their application. In the SIS model, a population of N 
individuals is compartmentalized into two discrete states: 
susceptible (S ) and infected (I ). A susceptible individual 
does not have the disease but is vulnerable to it, whereas 
an infected individual has the disease and the potential 
to pass it on. 

In the original formulation of this model, which is 
commonly referred to as a mass-action model, individu-
als are assumed to come in contact with one another ran-
domly, at rate ! individuals per unit time. Letting [S ] 
and [I ] denote the number of susceptible and infected 
individuals in the population, the dynamics of disease 
spread (  d[I ]

 ___ 
dt

  ) can be simply described with the following 
differential equation

   d[I ] ____ 
dt

   ! !   [S ] ___ 
N

  [I ] " g[I ]. (1)

The rate of change in the number of infected individuals 
refl ects a balance between infection and recovery events. 
[I ] increases at rate !  [S ] ___ 

N
  [I ], because each of the [I ] in-

fected individuals come into contact with ! individuals 
per unit time, of which   [S ]

 ___ N   are susceptible. [I ] decreases 
at rate g[I ], as infected individuals recover and return to 
the susceptible state. The ratio between the contact rate 
! and the recovery rate g is known as the basic reproduc-
tive ratio R0 ! !/g, which determines whether or not a 
disease will spread throughout a population. Specifi cally, 
if R0 # 1 the contagion will spread because each infected 
individual transmits the disease to, on average, more than 
one susceptible individual.

PAIR APPROXIMATIONS

The assumption that individuals encounter one another 
at random is an oversimplifi cation of the interaction pat-
terns of natural systems; individuals typically encounter 
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Pair approximations are analytical techniques for estimat-
ing the dynamics and equilibrium properties of network-
based models. As the name implies, pair approximations 
capture the dynamics of the states of neighboring pairs 
of vertices in a network, as opposed to the dynamics of 
individual vertex states. These methods have been suc-
cessfully applied to a variety of network-based ecological 
and evolutionary models, ranging from the evolution of 
cooperation to the spread of infectious disease.

MODELING INTERACTIONS

Many ecological processes occur on spatial scales that 
are much smaller than the entire geographic range of a 
population. To model such local interactions, popula-
tions are often represented as networks, where vertices 
denote individuals and edges denote their interactions. 
Finding exact analytical solutions to models of dynamical 
processes on networks is often exceedingly diffi cult. Pair 
approximations are commonly used to overcome these 
diffi culties. Instead of providing an exact solution, these 
methods use differential equations to approximate the 
rates of change in the states of connected pairs of vertices, 
allowing for an estimation of the model’s dynamics and 
equilibrium properties.

THE SIS MODEL OF DISEASE SPREAD

Pair approximations will be presented in the context of the 
classical Susceptible–Infected–Susceptible (SIS) model of 

P
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To estimate the dynamics of disease spread, we need 
to monitor the coupled dynamics of four quantities: [SS ], 
[SI ], [IS ], and [II ]. However, we can exploit both symme-
try ([SI ] ! [IS ]) and redundancy ([II ]  !  Nk " [SS ] " 
2[SI ]) so that we only have to monitor the rate of change 
in [SI ] and [SS ]. The quantity [SI ] can change in fi ve ways:
It can increase if

 (i) one of the vertices in an II pair reverts back to the 
susceptible state (II  ⇒ SI ), which occurs at rate g, or

 (ii) one of the vertices in an SS pair contracts the 
disease from an infected individual outside the pair 
(SS ⇒ SI  ), which occurs at rate ".

It can decrease if

 (iii) an infected vertex in an SI pair reverts back to the 
susceptible state (SI  ⇒ SS ), which occurs at rate g,

 (iv) an infected vertex in an SI pair transmits the disease 
to the susceptible vertex (SI  ⇒ II ), which occurs at 
rate ", or

 (v) a susceptible individual in an SI  pair contracts the 
disease from an infected individual outside the pair 
(SI ⇒ II ), which occurs at rate ".

Conditions (ii) and (v) both require information about a 
vertex state outside of the SI pair. Specifi cally, condition
(ii) can only occur if an SS pair is part of an SSI triplet, and 
condition (v) can only occur if an SI pair is part of an ISI triplet.

Thus, the rates of change in the number of pairs depend 
upon the numbers of confi gurations larger than pairs, and 
this information is not available. These higher-order quan-
tities are approximated by assuming that the vertices at the 
opposing ends of a triplet are independent of one another 
(i.e., triplets form linear chains, not triangles). Under this 
assumption, [SSI ] can be approximated as

   [SSI  ] !   (k " 1) [SS ][SI  ]  ______________  
ΣX ∈S, I [SX ]

   !   (k " 1) _______ 
k
     [SS ][SI  ] ________ 

[S]
  , (2)

where the last equality is valid because the number of sin-
gles (e.g., [S ]) can always be recovered from the number 
of pairs,
 [S ] !   1 __ 

k
    ∑ 
X ∈S,I

  
 
  [SX  ] . (3)

The approximation of higher-level quantities from their 
lower-level counterparts is referred to as “closing” the 
 system, and the name “pair approximation” comes from 
the fact that this system is closed at the level of pairs.

Using Equations 2 and 3 and the transition rules
(i)–(v), we can now describe the rate of change in [SI ] as

  d[SI  ] _____ 
dt

   ! g [II  ] $ "[SSI  ] " g [SI  ] " "[SI  ] " "[ISI  ] . (4)
(i) (ii )

(iii) (iv) (v)

only a small fraction of the total population in their life-
time, and these interactions are usually not random. Such 
structured interactions are often captured using networks, 
where individuals are represented as vertices and inter-
individual interactions are represented as edges (Fig. 1). 
When a disease spreads throughout such a structured 
population, its dynamics deviate from those provided by 
Equation 1, because the assumption of random interac-
tion is violated. The probability of an individual con-
tracting the disease depends on whether or not any of its 
neighbors in the network are infected. Thus, correlations 
exist between the states of connected pairs of vertices.

Pair approximations use differential equations to ex-
plicitly track these correlations. They were fi rst applied to 
epidemiological models by Matt Keeling (1999), and we 
will use his approach and notation. Consider a population 
structured on a network where every vertex has k edges, 
and disease transmissibility across an edge is given by " ! 
!/k. Let [SI ] denote the number of pairs of connected ver-
tices where one vertex is susceptible and the other is in-
fected (the terms [SS ] and [II ] are similarly defi ned, but are 
counted twice; i.e., these quantities are always even), and 
let [SSI ] denote any connected three-vertex confi guration 
(referred to as a triplet) where the fi rst two vertices are sus-
ceptible and the last is infected ([ISI ] is similarly defi ned).

A

B

FIGURE 1 Two examples of commonly used interaction networks. 
(A) Lattice interaction network where each vertex is connected to its 
nearest neighbors. (B) Random interaction network, with the same 
average number of edges per vertex as in (A). For illustration, only 
a small portion (N ! 25) of the entire network is depicted. Dangling 
edges denote connections to vertices that are not shown.

9780520269651_Ch_P_1.indd   5329780520269651_Ch_P_1.indd   532 1/28/12   3:11 PM1/28/12   3:11 PM



PA I R  A P P R OX I M AT I O N S    533

from the violation of one principal assumption of the 
closure method used in the pair approximation: that the 
underlying contact network is perfectly branching (i.e., 
possesses no loops, as in Fig. 1B). In that case, it is accurate 
to assume that the distant ends of triplets are completely 
independent of one another, as is done in Equation 2.
However, in the lattice network considered herein (Fig. 1A),
loops abound, and they  considerably impact the rate of 
disease spread.

The accuracy of the pair approximation in predicting 
the pre-equilibrium dynamics of disease outbreaks can be 
improved considerably by taking into account some of 
the topological features of the network. For example, the 
proportion of triplets that form closed triangles can be 
incorporated into the closure method (Eq. 2), or the ratio 
of the local neighborhood size to the underlying lattice 
size can be used to parameterize the differential equations 
that describe the rate of disease spread (Eqs. 4 and 5). 
Accuracy can also be improved by explicitly tracking the 
dynamics of higher-order motifs, such as triplets. How-
ever, the required number of differential equations grows 
exponentially with the size of the motifs being tracked, 
which is why the system is usually closed at the level of 
pairs.

AREAS OF APPLICATION

The pair approximation is a versatile technique that has 
been applied to many network-based models of ecologi-
cal and evolutionary processes. For example, it has been 
used to derive explicit conditions for species invasions 
in viscous populations, particularly in the context of 
vegetation dynamics. The pair approximation has also 
been used to derive simple rules for the evolution of co-
operative behavior in social dilemmas and to estimate 
the equilibrium proportion of cooperators in various 
evolutionary games. As discussed in this entry, the pair

Similarly, we can describe the rate of change in [SS] as

   d [SS ] ______ 
dt 

   ! 2g [SI  ] " 2"[SSI  ], (5)

where the fi rst term on the right-hand side of the equa-
tion captures the infected individuals in SI pairs reverting 
back to susceptibility, and the second term captures SS 
pairs changing to SI pairs due to their involvement in SSI 
triplets. These quantities are doubled to ensure that [SS] 
is counted twice, which is required by Equation 3.

COMPARING THEORY AND DATA

In Figure 2, we depict the dynamics and equilibrium 
conditions of disease spread estimated by the mass-action 
model (Eq. 1) and the pair approximation (Eqs. 4 and 5), 
and as observed through direct simulation on a square 
lattice with nearest-neighbor interactions (Fig. 1A). As 
expected, the mass-action model consistently overpre-
dicts the rate of disease spread, relative to the simulations 
(Fig. 2A). The pair approximation offers considerable 
improvement, estimating a slower rate of spread than the 
mass-action model, though not quite as slow as that ob-
served through simulation.

The dynamics estimated by the pair approximation 
are therefore not completely accurate. However, the equi-
librium outbreak size is generally well captured, and for 
low R0, the pair approximation provides a more accurate 
estimation of equilibrium outbreak size than the mass-
action model (Fig. 2B).

DISCUSSION

By tracking the correlations between the states of connected 
vertices, pair approximations provide a more accurate de-
scription of the dynamics and equilibrium conditions of 
disease spread through structured populations than the 
mass-action model. The discrepancies observed between 
the pair approximation and the  simulation data result 

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Time

E
pi

de
m

ic
 s

iz
e 

([
I]/

N
)

 R
0
 = 9

 R
0
 = 2

A
 

 

MA
PA
Sim

0 1 2 3 4 5 6 7 8 9 10 11 12
R

0

B

FIGURE 2 (A) Dynamics and (B) equilibrium size of epidemic outbreaks as estimated by the mass-action model (MA, Eq. 1), the pair approximation 
(PA, Eqs. 4 and 5), and as observed via direct simulation (Sim) on a 10 % 10 square lattice with nearest-neighbor interactions (k ! 4). Simulation 
results correspond to 1000 independent replications for each value of the reproductive ratio R0 ! !/g. In (A), the x-axis is logarithmically scaled.
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PDE, may be analyzed to explain adaptations and coad-
aptations. PDEs in science, and in ecology in particular, 
are often mathematical expressions of conservation laws 
(such as the law of conservation of mass) and are there-
fore based on a sound conceptual foundation. Modeling 
a single population in isolation will generally lead to a 
single PDE, while models of interacting populations or 
the interaction of a population with an abiotic resource 
will lead to systems of coupled PDEs.

SCOPE OF PDE MODELS

A PDE model is not appropriate unless the independent 
variables are continuous. Time is essentially continuous, 
but an insect population with nonoverlapping generations 
is often modeled in discrete time, and although space is 
essentially continuous, a population in a patchy habitat 
may be modeled as occupying discrete space. Insects pass 
through discrete stages in their life history, in a model 
of a disease the host population is often divided into a 
fi nite number of classes, and the simplest  population-
genetic models consider a fi nite number of genotypes. 
Such populations cannot be described using PDEs in the 
time, space, or structure variables, respectively.

A PDE model is also inappropriate if the dependent 
variables are not continuous functions of the indepen dent 
variables, or at least if they may not be approximated as 
continuous functions. For example, phosphate uptake by 
phytoplankton in the ocean depends on the phosphate 
concentration u, which varies as a function of space
x ! (x, y, z) and time t. Concentration may be defi ned 
as amount of substance per unit volume. The concen-
tration of phosphate in a volume of water containing a 
point x is therefore defi ned, but its concentration at the 
point x is not. We circumvent this problem by using a 
continuum approximation: we consider the concentra-
tion of phosphate at a point to be its concentration in a 
volume containing the point where the volume is small 
compared to the phytoplankton, but large enough that 
the discrete nature of phosphate ions does not have to 
be taken into account. This separation in spatial scales is 
crucial to the approximation. We may defi ne the popula-
tion density of the phytoplankton similarly, either as the 
number of individual phytoplankton or as the biomass of 
phytoplankton per unit volume of water, but it may be 
that the nature of phytoplankton as discrete organisms 
plays an essential role in determining the behavior under 
investigation. If this is so, a PDE model is inappropriate 
and an individual-based model is required.

In this article we shall consider PDE models for bio-
logical populations and abiotic resources distributed in 

 approximation has also been applied to epidemiology, 
capturing the rate of disease spread and the fi nal epi-
demic size in structured populations.
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PARTIAL DIFFERENTIAL 
EQUATIONS
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There are extensive applications of partial differential 
equations (PDEs) in ecology, covering all the main as-
pects of the science. Questions about the distribution and 
abundance of organisms may involve PDEs for the popu-
lation density of various species depending on time and 
space, for example, in a process of ecological succession. 
Questions about the movement of materials and energy 
through living communities may involve PDEs for the 
concentration of particular chemicals, again depending 
on time and space. The age structure of a population 
may change over time according to a PDE, and it may 
be crucial in considering life processes. The genotypic 
structure of a population or of a community, which may 
with time move through some trait space according to a 
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