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H I G H L I G H T S
� We study how topology affects the robustness and evolvability of GRNs.

� We examine the effects of varying assortativity in models of GRNs.
� As assortativity increases, robustness increases and evolvability decreases.
� Increased assortativity reduces attractor sizes, which leads to higher robustness.
� Increased assortativity reduces out-component sizes, which causes lower evolvability.
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Gene regulatory networks (GRNs) represent the interactions between genes and gene products, which
drive the gene expression patterns that produce cellular phenotypes. GRNs display a number of
characteristics that are beneficial for the development and evolution of organisms. For example, they
are often robust to genetic perturbation, such as mutations in regulatory regions or loss of gene function.
Simultaneously, GRNs are often evolvable as these genetic perturbations are occasionally exploited to
innovate novel regulatory programs. Several topological properties, such as degree distribution, are
known to influence the robustness and evolvability of GRNs. Assortativity, which measures the
propensity of nodes of similar connectivity to connect to one another, is a separate topological property
that has recently been shown to influence the robustness of GRNs to point mutations in cis-regulatory
regions. However, it remains to be seen how assortativity may influence the robustness and evolvability
of GRNs to other forms of genetic perturbation, such as gene birth via duplication or de novo origination.
Here, we employ a computational model of genetic regulation to investigate whether the assortativity of
a GRN influences its robustness and evolvability upon gene birth. We find that the robustness of a GRN
generally increases with increasing assortativity, while its evolvability generally decreases. However, the
rate of change in robustness outpaces that of evolvability, resulting in an increased proportion of
assortative GRNs that are simultaneously robust and evolvable. By providing a mechanistic explanation
for these observations, this work extends our understanding of how the assortativity of a GRN influences
its robustness and evolvability upon gene birth.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Gene expression determines cellular phenotype. The regulation
of gene expression in turn governs the ability of a cell to respond
to a new environment (Gasch et al., 2000; Causton et al., 2001) or
differentiate along a particular lineage (Davidson et al., 2002;
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Huang et al., 2005). Understanding gene regulation at molecular
resolution and how it results in stable, measurable phenotypes is
one of the major ongoing challenges in evolutionary and devel-
opmental biology (Davidson, 2006).

The entirety of a cell's regulatory interactions can be concep-
tualized as a gene regulatory network (GRN), where genes are
represented as nodes and regulatory interactions as edges. The
gene expression patterns that produce cellular phenotypes are
dictated by the dynamics of the GRN. Both experimental and
theoretical studies have shown that GRNs possess certain attri-
butes that contribute to the growth and perpetuation of organ-
isms. For instance, GRNs can often maintain their function in the
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Fig. 1. A Boolean network example. (A) This Boolean network is composed of
3 nodes and 4 directed edges. Each node possesses a look-up table with the signal-
integration logic that determines the dynamics of the Boolean network by defining
the expression state of the node at time t+1 as a function of the states of its inputs
at time t. For example, the signal-integration logic for node b shows how each
possible combination of expression states saðtÞ and scðtÞ of the inputs at time t
dictate the expression state sbðt þ 1Þ. (B) Starting with initial states at t¼0, the
states are updated according to the signal-integration logic until they repeat,
forming an attractor (shaded region), which is analogous to a phenotype. In this
example, the attractor length is two. For visual clarity, the size of the network
depicted here is much smaller than those used in this study.
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face of genetic perturbation, a property known as robustness
(Wagner, 2005). Illustrative examples include gene knockout in
the yeast Saccharomyces cerevisiae (Jeong et al., 2001) and GRN
rewiring in the bacterium Escherichia coli (Isalan et al., 2008); in
both cases, genetic perturbations often fail to alter a growth
phenotype. Theoretical models of GRNs have not only recapitu-
lated this robustness (Wagner, 1994; Aldana et al., 2007), but have
shown that robustness itself is an evolvable property (Ciliberti
et al., 2007b).

Experimental (Guet et al., 2002; Hunziker et al., 2010) and
theoretical studies (Aldana et al., 2007; Ciliberti et al., 2007a) have
also shown that GRNs can respond to mutation by innovating
phenotypes, and are therefore intrinsically evolvable (Wagner,
2011). For example, a diverse set of phenotypic responses to
environmental conditions, akin to Boolean logic gates, was obtained
by rewiring synthetic 3-gene regulatory circuits in E. coli (Guet et al.,
2002). Adaptive evolution necessitates the innovation of such
phenotypes, and the ability to generate new regulatory programs
therefore confers a selective advantage (Levine and Tjian, 2003).
And, like robustness, this ability has itself been shown to be an
evolvable property in GRNs (Crombach and Hogeweg, 2008).

Extant GRNs are a product of mutation and selection, and a major
mutational force that drives their evolution is the addition of new
genes. New genes are often introduced via gene duplication (Ohno,
1970; Zhang, 2003; Conant and Wolfe, 2008), and the subsequent
regulatory and biochemical divergence of the duplicate is thought to
impact the growth and evolution of GRNs (Babu and Teichmann,
2003; Teichmann and Babu, 2004). New genes are also introduced
via de novo origination (Tautz and Domazet-Losŏ, 2011), which is
now considered to be more important than previously appreciated
(Carvunis et al., 2012). In either case, the introduction of a new gene
is a perturbation that is most often detrimental (Lynch and Conery,
2000) and only rarely beneficial to the organism (Carvunis et al.,
2012). Yet, the abundance of genetic material in living organisms that
has been attributed to duplication (Lynch and Conery, 2000) and de
novo origination (Carvunis et al., 2012) is a testament to the
occasional success of these genetic perturbations. This occasional
success is mirrored in theoretical models of GRNs, which not only
find that the addition of new genes is sometimes tolerated, but also
that it may permit the exploration of novel phenotypes (Aldana et al.,
2007). However, it is not fully understood how the intrinsic proper-
ties of GRNs allow for the conservation of existing phenotypes
(robustness) while simultaneously facilitating the exploration of
novel phenotypes (evolvability).

The structural makeup of GRNs may help clarify this issue.
Several theoretical analyses have demonstrated that the robust-
ness and evolvability of GRNs are influenced by their underlying
topological properties (Variano et al., 2004; Poblanno-Balp and
Gershenson, 2011). For example, GRNs possess heavy-tailed dis-
tributions of the number of regulatory targets per gene (Babu
et al., 2004), and qualitatively similar degree distributions have
been shown to yield increased robustness to genetic perturbation
(Aldana and Cluzel, 2003) and an enhanced capacity to evolve
novel phenotypes (Oikonomou and Cluzel, 2006), as compared to
homogeneous random degree distributions.

Assortativity is a separate topological property, which can be
used to measure the tendency for pairs of connected nodes in a
network to possess similar numbers of connections (Newman,
2002). This property can vary between networks, even if they
possess identical degree distributions, and can affect their dynamical
behavior (Pomerance et al., 2009; Pechenick et al., 2012). Assorta-
tivity is known to vary among real-world networks (Newman, 2002;
Foster et al., 2010), and a recent study reported that the assortativity
of GRNs tends to be positive (i.e., assortative) (Piraveenan et al., 2012),
whereas random networks with similarly heterogeneous degree
distributions tend to be negative (i.e., disassortative) (Johnson et al.,
2010). In the context of a GRN composed primarily of transcription
factors (TFs), this positive assortativity might reflect that TFs that
regulate a large number of other TFs tend to mutually regulate each
other more often than would be expected by chance. It could also
reflect that those TFs tend not to fall under extensive regulation by
TFs that only regulate a few other TFs. The reason for the purported
assortativity of GRNs is unknown, but recent theoretical results
suggest that assortative GRNs may have an advantage over disas-
sortative GRNs due to an increased robustness to mutations in the
cis-regulatory logic of their constituent genes (Pechenick et al.,
2012).

While the robustness of a GRN influences its evolutionary
success, the observed robustness to mutation in cis-regulatory
regions (Pechenick et al., 2012) does not necessarily imply robust-
ness to other perturbations. Given the apparent assortativity of
GRNs (Piraveenan et al., 2012), and the evolutionary significance of
gene duplication (Lynch and Conery, 2000) and de novo origination
(Carvunis et al., 2012), it is important to understand whether the
assortativity of a GRN influences its robustness to such genetic
perturbations. Further, since gene birth may result in the advent of
novel phenotypes, it is also important to understand how the
assortativity of a GRN influences evolvability. Unfortunately, it is
currently not possible to address such questions in an experi-
mental system. While the construction of small synthetic regula-
tory circuits in cells is possible (Gardner et al., 2000; Elowitz and
Leibler, 2000; Purnick and Weiss, 2009), the relatively large GRNs
that are needed to vary assortativity at high resolution make the
direct testing of these questions impractical. We therefore employ
an abstract computational model of genetic regulation (Kauffman,
1969) to construct GRNs with different values of assortativity and
then assess the rates at which they: (1) conserve their existing
phenotypes following the introduction of a new gene, and
(2) innovate new phenotypes as a result of the same perturbation.
We thereby provide theoretical insight into how assortativity may
affect the robustness and evolvability of GRNs upon gene birth.
2. Methods

2.1. Boolean networks

We used Boolean networks to model GRNs (Kauffman, 1969)
(Fig. 1). In this model, genes are represented as nodes and
regulatory interactions as directed edges. These edges emanate
from nodes that are regulators and terminate at nodes that are



D.A. Pechenick et al. / Journal of Theoretical Biology 330 (2013) 26–3628
regulatory targets. Gene expression is binary, such that the state
siðtÞ of node i at time t is either expressed siðtÞ ¼ 1 (i.e., activated)
or not siðtÞ ¼ 0 (i.e., repressed). Node states are updated synchro-
nously according to their signal-integration logic f i, which maps
the combination of states of the kin;i regulators of node i to the
updated state

siðt þ 1Þ ¼ f iðsi1 ðtÞ;…; sikin;i ðtÞÞ; ð1Þ

where si1 ;…; sikin;i are the states of the kin;i regulators of node i.
This process is deterministic, such that the combination of the
states of all N nodes Σt ¼ s1ðtÞ;…; sNðtÞ at time t, referred to as a
configuration, will always result in the same updated configuration
Σtþ1. Since the number of possible configurations is finite (2N), this
deterministic updating of node states will eventually lead to a
previously encountered configuration. Specifically, given an initial
configuration Σ0, there is some time t+l in which the previously
encountered configuration Σt is encountered again:

Σ0-⋯-Σt-⋯-Σtþl−1-Σt-⋯: ð2Þ

Such a cycle P∞ðΣ0Þ is referred to as an attractor of length l

P∞ðΣ0Þ ¼ Σt-⋯-Σtþl−1; ð3Þ

which we consider as a phenotype and which has been likened to
cell fate (Huang et al., 2005). For any given GRN, we refer to the
collection of all its unique attractors as the attractor set Ω, and the
number of its unique attractors jΩj as the cardinality of the
attractor set.

Though abstract, Boolean networks have been successfully used
to predict gene expression in multiple model systems, including
the yeast S. cerevisiae (Serra et al., 2004), the fly Drosophila
melanogaster (Albert and Othmer, 2003), and the plant Arabidopsis
thaliana (Espinosa-Soto et al., 2004). GRNs modeled using Boolean
networks can be perturbed in explicitly defined ways, and the
resulting attractors of large ensembles of GRNs are easily identi-
fied and compared. Therefore, this model system is a valuable tool
with which to address questions about the robustness and
evolvability of GRNs (Aldana et al., 2007; Payne and Moore,
2011; Pechenick et al., 2012).
2.2. Degree distribution

GRNs with heavy-tailed output degree distributions were
generated by approximating a power-law distribution, as follows.
For each node in the GRN, its number of regulatory targets kout was
selected from the distribution (Darabos et al., 2009):

pðkoutÞ ¼
1

ZðγÞ k
−γ
out; ð4Þ

with the normalization constant ZðγÞ ¼∑N
j ¼ 1j

−γ . Drawing the out-
put degrees from this distribution and then randomly selecting
kout regulatory targets for each node resulted in a network with a
Poisson input degree distribution. The combination of Poisson
input and power-law output degree distribution was chosen
because it more closely resembles experimental regulatory net-
work data from E. coli, Bacillus subtilis, and S. cerevisiae than the
degree distributions of homogeneous random topologies (Aldana
et al., 2007).
2.3. Assortativity

Degree assortativity r∈½−1;1� is a global network property that
captures the extent to which nodes of similar degree are con-
nected to one another (Newman, 2002). It is calculated as the
following coefficient:

r¼
1
M
∑ijiki−

1
M

∑i
1
2
ðji þ kiÞ

� �2

1
M

∑i
1
2
ðj2i þ k2i Þ−

1
M

∑i
1
2
ðji þ kiÞ

� �2 ; ð5Þ

where ji, ki are the degrees of the nodes at the ends of edge i, and
M is the number of edges in the network. When r40 the network
is said to be assortative or positively assortative, and when ro0 it
is disassortative or negatively assortative. GRNs are directed net-
works, and as such j and k can either represent the in- or out-
degree, thereby resulting in four different ways to perform the
above calculation (Foster et al., 2010). Following our earlier work
(Pechenick et al., 2012), we focus exclusively on the case where
both j and k are out-degrees, and will refer to this out–out
assortativity (Foster et al., 2010) simply as assortativity.

We used an iterative edge-swapping method to rewire each
GRN to achieve the desired assortativity value (Milo et al., 2003;
Payne and Eppstein, 2009). Briefly, two edges i-j and x-y were
randomly chosen for an edge-swap that resulted in two new edges
i-y and x-j. The assortativity of the GRN with the new edges
was compared to the original GRN, and if the edge-swap altered
the value in the desired direction the new edges were kept.
Otherwise, the new edges were reverted to the original edges.
This process was repeated until the desired value was reached, or a
maximum number of swaps was attempted (Section 2.6). This
method preserves the degree distribution of the GRN, which
enables an investigation of the effects of assortativity on a GRN
while controlling for the effects of its degree distribution.

2.4. Gene birth, conservation, and innovation

Our method for simulating gene birth follows the duplication
and divergence procedure of Aldana et al. (2007) and is outlined in
Fig. 2. A node c is selected at random for duplication and is
included in the new GRN as node d. The divergence of d from c is
accomplished in four steps: (1) outgoing edges are rewired such
that they point to randomly chosen nodes (preserving the out-
degree of d), (2) incoming edges are rewired such that they
emanate from randomly chosen nodes (preserving the in-degree
of d), (3) the signal-integration logic of d is randomly initialized
such that each entry is filled with a 0 or 1 with equal probability
(ρ¼ 0:5), and (4) the signal-integration logic of the regulatory
targets of d are expanded. Upon expansion, the regulatory targets
of d maintain their signal-integration logic for the case where d is
repressed. For the case where d is activated, the corresponding
elements of signal-integration logic are assigned at random, such
that each entry is filled with a 0 or 1 with equal probability. While
this method is inspired by gene duplication (Aldana et al., 2007),
the immediate and extreme nature of the subsequent divergence
leaves no resemblance between the original gene and its duplicate.
As such, the method can just as easily be thought to simulate de
novo origination.

We are here concerned with the robustness of GRNs to gene
birth,which is ascertained through a measure of conservation
(Aldana et al., 2007). An attractor is considered conserved if it
exists unaltered in the attractor set of the perturbed GRN. Let
P∞ðΣ0Þ denote the attractor of a GRN prior to gene birth,where Σ0

is an initial configuration within the attractor itself (i.e.,
Σ0∈P∞ðΣ0Þ). Then,let P′∞ðΣ0

0Þ denote the corresponding attractor
of the GRN after gene birth given the expanded initial configura-
tion Σ

0
0 ¼ fΣ0;sNþ1ð0Þ ¼ 0g that is identical to Σ0 save the addition

of the state of the new node,which is repressed (as indicated
by the subscript). Analogously,let P′∞ðΣ1

0Þ denote the attractor
where the new node is activated in the initial configuration



Fig. 2. Gene birth. (A) The original GRN. (B) A node c from the original GRN is duplicated to form d. Edges characterizing the relationship between c and other nodes are
reproduced for d, shownwith dashed arrows. (C) Edges for d are randomly rewired, preserving in- and out-degree. (D) The original GRN, now shownwith signal-integration
logic. (E) New signal-integration logic must be assigned for the new node and its regulatory targets in the perturbed GRN. Nodes that are not regulatory targets of d retain
their original signal-integration logic (e.g., node b). Nodes a and c are regulatory targets of d, and their signal-integration logic must be expanded to account for the possibility
of d being activated or repressed. The original signal-integration logic is maintained for the case where d is repressed, and new signal-integration logic is randomly chosen
(ρ¼ 0:5) for the case where d is activated (bold). Finally, signal-integration logic is randomly chosen (ρ¼ 0:5) for d itself.

Fig. 3. Out-components of GRNs. An out-component (OC) can be drawn around
each node in the GRN. The OC of node i consists of six nodes (large shaded region),
and the OC of node j consists of three nodes (small shaded region). There are two
nodes that belong to the OCs of both i and j (overlap of shaded regions).

D.A. Pechenick et al. / Journal of Theoretical Biology 330 (2013) 26–36 29
(Σ1
0 ¼ fΣ0; sNþ1ð0Þ ¼ 1g). In general,we use Σ0 to represent an initial

configuration with N+1 nodes. Given these definitions,attractor
conservation occurs when P∞ðΣ0Þ is equal to either P′∞ðΣ0

0Þ or
P′∞ðΣ1

0Þ. To compare attractors of different dimension, the state of
the new node sNþ1 is ignored (Aldana et al., 2007). A GRN
demonstrates set conservation if every attractor in the GRN prior
to gene birth is conserved after gene birth.

We are additionally concerned with the evolvability of GRNs
upon gene birth, which is ascertained through a stringent measure
of innovation (Aldana et al., 2007). Innovation is said to have
occurred if at least one novel attractor exists after gene birth. This
measure is stringent because an attractor P′∞ðΣ0Þ is only consid-
ered novel if there is no overlap between its configurations and
those of the attractors in the attractor set prior to gene birth.
Formally, an attractor P′∞ðΣ0Þ is novel if ∀Σ t∈P′∞ðΣ0Þ∄Σ t∈
P∞ðΣ0Þ∀P∞ðΣ0Þ∈Ω.

2.5. Out-components

The regulatory influence of node i is reflected in its out-
component (OC), which is the set of weakly connected nodes in
a directed network that is reachable via directed paths starting
from i (Fig. 3). Therefore, the OC of node i is the set of all nodes
that i may directly or indirectly influence. The OC of node i was
determined by identifying all regulatory targets of node i, all of
their regulatory targets, and so on until every reachable node was
identified. Regulatory targets were identified strictly on a topolo-
gical basis, where j is a regulatory target of i as long as the edge
i-j exists in the network. Mean OC size (S) for a GRN was
calculated as follows:

S ¼ ∑N
i ¼ 1Si
N

; ð6Þ

where Si is the number of nodes in the OC of node i.

2.6. Simulation details

Weakly connected GRNs without self-loops were generated for
size N¼30. This size was selected as a compromise between those
GRNs that are large enough to achieve a range of assortativity
values, but also small enough to compute the numerous simula-
tions described below. In particular, the lengths of individual
attractors produced by chaotic GRNs grow very quickly as
N is increased (Kauffman, 1993), and some of these attractors
may be effectively too long to enumerate. Therefore, the ability to
calculate even modest numbers of attractors is limited by the
choice of N.

Although the dynamics of biological GRNs are influenced by
their autoregulatory self-loops (Alon, 2006), their presence is
confounding with respect to understanding the effects of assorta-
tivity. Increasing the number of self-loops is a trivial way to
increase the assortativity of a network, as by definition a self-
loop connects a node to itself, and thus always contributes
positively to assortativity. Self-loops were therefore excluded from
the main analysis in order to isolate the effects of assortativity
from those of self-loops.

Multiple heavy-tailed degree distributions were generated by
drawing out-degrees from power-law distributions with γ ¼ 3:10,
2.25, 1.81, 1.55. These values of γ were chosen because they yield
distributions such that kin ¼ 1:3, 2, 3, 4, respectively. These k in

were calculated for the specific size of the GRNs considered in this



Table 1
Lower and upper bounds on assortativity.

Regime γ kout Assortativity (r70:01) Bounds

Ordered 3.10 1.3 −0:29≤r≤0:48
Critical 2.25 2.0 −0:49≤r≤0:20
Chaotic 1.81 3.0 −0:58≤r≤0:01

1.55 4.0 −0:64≤r≤−0:02
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study (Aldana et al., 2007):

kin ¼
∑N

j ¼ 1j
1−γ

∑N
j ¼ 1j

−γ ð7Þ

(k in ¼ 1:3 was chosen because k in ¼ 1 only exists in the limit of
γ-∞). Note that kin ¼ kout.

Boolean networks lie in one of three dynamical regimes:
ordered, critical, or chaotic. The sensitivity of these GRNs to
perturbation defines their dynamical regime, and can be calcu-
lated as s¼ 2ρð1−ρÞkin, where ρ is the probability of assigning
1 within the signal-integration logic of the GRN. A GRN is in the
chaotic regime when s41, the ordered regime when so1, and the
critical regime when s¼1 (Shmulevich and Kauffman, 2004). We
use ρ¼ 0:5 across all simulations, and the above kin values thus
yield the desired dynamical regimes (Table 1). Visual inspection of
Derrida plots (Derrida and Pomeau, 1986) confirmed that the
selected parameters for each degree distribution produced GRNs
in the respective regimes (Fig. S1). After the topology of a GRN was
created, the signal-integration logic of each node was generated at
random, such that the probability of choosing a 0 or 1 was equal.

For each of the four values of kout, 45,000 GRNs were generated
with assortativity values that lie within the bounds shown in
Table 1. While the theoretical bounds of assortativity are r∈½−1;1�,
in practice they are constrained by degree distribution (Dodds and
Payne, 2009; Johnson et al., 2010). The bounds used here were
experimentally determined for each kout by performing first 2000
edge-swaps toward an assortativity value of −1, and then for the
same GRN another 2000 edge-swaps toward a value of 1 on each
of 1000 GRNs. This number of edge-swaps was chosen as a balance
between computational efficiency and achieving a wide range of
assortativity values (Pechenick et al., 2012). From each resulting
distribution of assortativity ranges, a representative range was
chosen such that both low and high bounds were together
contained within 25% of observed ranges.

It is important to point out that sampling from a degree
distribution yields a specific degree sequence, which may vary
between successive draws from the distribution. To ensure that
each degree sequence was represented at each assortativity value,
we adopted the following experimental design. Within each set of
assortativity bounds, 9 linearly spaced assortativity values were
chosen, and 5000 degree sequences were tuned to within 0.01 of
every value, preserving weak-connectivity and prohibiting self-
loops. Thus each of the 5000 degree sequences are represented at
every one of the 9 assortativity values. For each of the 5000 degree
sequences, the same signal-integration logic was assigned and the
same gene birth event was performed at every assortativity value.
As a result of this approach, assortativity was the sole property
varied for each degree sequence.

As with assortativity bounds, the null distribution of assorta-
tivity values for a particular GRN depends on kout (Foster et al.,
2010; Johnson et al., 2010). To calculate these null distributions,
1000 GRNs were constructed for each kout without regard to
assortativity. To remove any potential structural bias introduced
during construction, 10�M random edge-swaps were performed
for each GRN, such that degree sequence, weak connectivity, and
lack of self-loops were all preserved (Maslov and Sneppen, 2002).
Assortativity was then measured for each GRN, and these 1000
assortativity values served as a null distribution for each kout. The
null distributions were used to verify that the bounds of assorta-
tivity considered in this study (Table 1) lie outside what is
expected at random.

To calculate conservation and innovation, it is necessary to
characterize the entire attractor set of the GRNs both before and
after gene birth. While such exhaustive enumeration is possible for
small GRNs (Aldana et al., 2007; Payne and Moore, 2011), the size of
the GRNs considered herein necessitated a sampling approach. For
each GRN, both before and after gene birth, we randomly sampled
106 initial configurations Σ0, recorded the corresponding attractors,
and compared the attractor sets of the perturbed and original GRNs.
To ensure the accuracy of our conservation measure, we additionally
took a single configuration from each attractor of the original GRN
and used it as an initial configuration in the perturbed GRN. We then
recorded the attractors of the perturbed GRN for the case where the
new node was active and for the case where it was repressed. This
ensured that any attractor present in both the original and perturbed
GRNs would not be overlooked as a result of undersampling.
Analogously, we used every configuration in the attractor set of the
perturbed GRN as an initial configuration in the original GRN,
recorded the corresponding attractors, and updated the attractor
set if necessary. This allowed us to ensure the accuracy of our
innovation measure by determining whether novel attractors were
in fact novel or were simply overlooked in the original GRN as a
result of undersampling. These two post-sampling steps were
repeated until no new attractors were discovered in either the
original or perturbed GRNs.
3. Results

3.1. The influence of assortativity on conservation and innovation

The sensitivity of conservation and innovation to changes in
assortativity varied between dynamical regimes (Fig. 4). Conserva-
tion decreased slightly with assortativity in the ordered regime
(Fig. 4a), but increased in the critical (Fig. 4b) and chaotic regimes
(Fig. 4c and d). The extent of this increase became more pro-
nounced as the dynamical regime of the GRN shifted toward
chaos. For example, when kout ¼ 4, we observed a 116% increase in
conservation when comparing the GRNs of the lowest and highest
assortativity values. Innovation decreased with assortativity in the
critical (Fig. 4b) and chaotic regimes (Fig. 4c and d), and this trend
again became more pronounced as the GRNs became more
chaotic. In contrast, no trend was observed between innovation
and assortativity in the ordered regime (Fig. 4a). These results
corroborate previous observations (Aldana et al., 2007) that the
dynamical regime of a GRN impacts its capacity for conservation
and innovation, and highlights the sensitivity of these properties
to changes in assortativity. Furthermore, we observed that assor-
tativity does not influence the dynamical regime of a GRN (Fig. S1),
which underscores that any sensitivity to assortativity is not
simply a byproduct of variation within or between dynamical
regimes.

Following gene birth, some GRNs exhibited conservation and
innovation simultaneously (Fig. 4). In the ordered regime, the
proportion of networks able to achieve this balance decreased
slightly as assortativity increased (Fig. 4a), while in the critical
regime no trend was observed (Fig. 4b). In the chaotic regime, this
proportion increased dramatically. For instance, when kout ¼ 4, the
proportion of networks exhibiting both conservation and innova-
tion increased by 176%, when comparing the GRNs with the lowest
and highest assortativity values.



Fig. 4. Proportion of GRNs with set conservation, innovation, or both as a function of assortativity. (Above) Light gray bars show the proportion of GRNs at a fixed
assortativity value that exhibited set conservation after gene birth. Medium gray bars represent the proportion that exhibited innovation. Dark gray bars show the overlap,
which is the proportion that both conserved and innovated. These overlap proportions are mirrored above and below the x-axis such that heights of light gray and medium
gray bars accurately portray total conservation and innovation, respectively. Each bar is a proportion of 5000 GRNs for each of: kout∈f1:3;2:0;3:0;4:0g (denoted by A–D) and
9 assortativity values. Each degree sequence and gene birth combination is represented at every assortativity value. (Below) The proportion of the overlap is shown at a
zoomed-in scale. Note that the domains for assortativity differ for A–D (Table 1). Note also that total proportions of conservation and innovation may not add up to 1, as some
GRNs may exhibit neither. The legend in (D) applies to all panels. The percentage change from the smallest to the largest assortativity value is shown for conservation,
innovation, and both. Statistical significance for Spearman's correlation is denoted by n (po0:05), nn (po0:01), or nnn (po0:001). Vertical dashed lines show the minimum
and maximum assortativity values for the middle 95% of the null distribution for each kout (see Section 2.6).
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In a similar but separate analysis, GRNs with self-loops dis-
played qualitatively similar results as GRNs without self-loops (Fig.
S2). Specifically, ordered (Fig. S2a) and critical (Fig. S2b) GRNs with
self-loops were minimally affected by assortativity, whereas chao-
tic GRNs with self-loops exhibited increases in conservation and
decreases in innovation (Fig. S2c and d). Furthermore, these latter
trends produced concomitant increases in the proportion of GRNs
that exhibited both conservation and innovation, e.g., for GRNs
with kout ¼ 4 where this proportion increased 173% from the
lowest to the highest assortativity value (Fig. S2d). And, while a
significant increase was not observed for GRNs with kout ¼ 3 when
considering all assortativity values (Fig. S2c), upon considering the
highest 7 assortativity values there was a significant increase of
61% (Spearman's correlation, po0:01) in GRNs that both con-
served and innovated.

In contrast to GRNs without self-loops, critical GRNs with self-
loops appeared to be less sensitive to the effects of assortativity
(Fig. S2a), whereas ordered GRNs with self-loops displayed an
increased rate of innovation along with an apparent lack of trend
in those GRNs that both conserved and innovated (Fig. S2b). While
these differences may point to an interaction between the effects
of assortativity and self-loops, elucidating such a mechanism is
beyond the scope of the current investigation.

Qualitative changes in conservation and innovation between
dynamical regimes and multiple assortativity values were also
observed for larger GRNs where N¼100 (Fig. S3). Ordered (Fig.
S3a) and critical (Fig. S3b) GRNs with N¼100 were relatively
insensitive to changes in assortativity, whereas for chaotic GRNs
with N¼100 (Fig. S3c and d) increasing assortativity produced
increased conservation and decreased innovation. And, while
GRNs that both conserved and innovated were too few to detect
statistically significant trends, the chaotic GRNs with high assor-
tativity values were seemingly more likely to both conserve and
innovate compared with their counterparts with lower assortativ-
ity values (Fig. S3c and d). Unfortunately, the power to study the
effects of assortativity on GRNs with N¼100 is substantially
limited by the small numbers of GRNs capable of simultaneous
conservation and innovation (irrespective of N), along with the
computational difficulties of calculating the long attractors in
Boolean networks of this size (particularly in the chaotic regime).
Therefore, in the following sections we focus on GRNs with N¼30
and without self-loops, explaining the increase in conservation
and decrease in innovation observed in critical (Fig. 4b) and
chaotic (Fig. 4c and d) GRNs, along with the slight decrease in
conservation observed in ordered (Fig. 4a) GRNs.
3.2. The influence of assortativity on the cardinality of the
attractor set

Conservation requires that a GRN maintains all of the attractors
in its attractor set after gene birth. In Fig. 5, we depict the
relationship between the cardinality of the attractor set and
assortativity. We observe a slight increase in the cardinality of
the attractor set for ordered GRNs (Fig. 5a, statistically significant
but not visually discernable) and a strong decrease for critical and
chaotic GRNs (Fig. 5b–d). Since it is easier to conserve fewer
attractors than many (Fig. S4), one simple way in which assorta-
tivity influences conservation is by modifying the cardinality of the
attractor set. This explains, at least in part, the negative trend
between conservation and assortativity in ordered GRNs, and the
corresponding positive trends in critical and chaotic GRNs (Fig. 4).



Fig. 5. Cardinality of the attractor set as a function of assortativity. Points represent the median cardinality of the attractor set before gene birth in 5000 GRNs at a fixed
assortativity value, whereas error bars represent the 25th and 75th percentiles. GRNs are grouped according to their kout and assortativity value, as in Fig. 4. For all kout, the
cardinality of the attractor set is significantly affected by assortativity (Spearman's correlation coefficient (s), p50:001).

Fig. 6. Proportion of attractors that are conserved after gene birth as a function of assortativity. (Dark gray) Proportion of attractors that are conserved as a result of the
repression of the new node in all of the configurations in the attractor. (Light gray) Proportion of attractors that are conserved despite the new node being activated. For each
bar, all attractors are considered for 5000 GRNs with the same kout and a fixed assortativity value, as described in Fig. 4. Note that the domains for assortativity differ for A–D.
The legend in (D) applies to all panels. The percentage change from the smallest to the largest assortativity value is shown for each form of attractor conservation. Statistical
significance for Spearman's correlation is denoted by n (po0:05), nn (po0:01), or nnn (po0:001).
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3.3. The influence of assortativity on the conservation of individual
attractors

In addition to influencing the cardinality of the attractor set,
assortativity may separately impact the probability with which
individual attractors are conserved. To determine the likelihood of
conserving an individual attractor irrespective of the number of
attractors in the attractor set, we measured the proportion of all
attractors from all GRNs that were conserved after gene birth.
(Fig. 6; note that this proportion is different from that of Fig. 4,
which depicted the proportion of GRNs that exhibited set con-
servation.) Further, we split this proportion into two categories:
(1) the trivial case resulting from the constitutive repression of the
new node within the attractor and (2) a nontrivial case where an
attractor was conserved despite activation of the new node within
the attractor. For GRNs in the ordered regime, we observed no
relationship between assortativity and the conservation of indivi-
dual attractors (Fig. 6a). In contrast, the conservation of individual
attractors increased significantly for GRNs in the critical and
chaotic regimes (Fig. 6b–d), for both of the aforementioned
categories. Therefore, the attractor sets of assortative GRNs are
not only easier to conserve because of their reduced cardinality
(Fig. 5), but also because their constituent attractors are them-
selves easier to conserve.
3.4. The influence of attractor length on the conservation
of individual attractors

Why are the individual attractors of assortative GRNs easier to
conserve? We have shown elsewhere that increased assortativity
leads to a decrease in attractor length (recapitulated here in Fig.
S5), and that shorter attractors are more phenotypically robust
(Pechenick et al., 2012). In Fig. 7, we show the relationship
between the lengths of attractors that were or were not conserved
as a function of assortativity. The lengths of conserved attractors
tended to be shorter than those of non-conserved attractors,
suggesting that individual attractors of assortative GRNs are easier
to conserve because they are shorter.

In order to more completely address the role of attractor length
on attractor conservation, we examined its influence on the
dynamics of (1) the new node and (2) the regulatory targets of
the new node. We observed that shorter attractors had a reduced
probability of activating the new node, relative to longer attractors
(Fig. S6). Since attractor conservation is certain when the new
node is repressed, shorter attractors are expected to be conserved
with higher likelihood than longer attractors.

When the new node is activated, attractor conservation is no
longer certain. To describe how attractors may be conserved in this
case, we introduce the term target rule utilization (U), which is



Fig. 7. Lengths of attractors that were or were not conserved as a function of assortativity. Each point represents the median length of unique attractors before gene birth in
5000 GRNs at a fixed assortativity value. Error bars represent the 25th and 75th percentiles. Medians and percentiles for attractors that were not conserved are shown in
black, whereas those for attractors that were conserved are shown in gray. GRNs are grouped according to their kout and assortativity value, as in Fig. 4. Conserved attractors
are significantly shorter for every assortativity value and every kout (Wilcoxon Rank Sum test, p50:001).

Fig. 8. Proportion of attractors that are conserved after gene birth (pðCÞ) as a
function of target rule utilization (U). The points are observed proportions of all
attractors for 45,000 GRNs for each value of kout across all measured assortativity
values, and data that exists for larger values of U are not shown if there is no
conservation. The predicted proportion of conservation is shown by the solid line.
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defined as the number of elements in the expanded (see Section
2.4) signal-integration logic of all the regulatory targets of the new
node that are accessed at some point during the attractor. The
variable U thus captures the number of unique binary decisions
encountered within the attractor as a direct result of the new node
being activated. In other words, it is the extent to which the new
node is capable of perturbing that specific attractor. This is evident
in the relationship we observed between the probability of
attractor conservation, pðCÞ, and U, where pðCÞ ¼ ð12 ÞU (Fig. 8). This
simple relationship can be understood as follows: With each
increase of U by 1, the GRN must access an additional element of
the signal-integration logic that never existed in the GRN prior to
gene birth. And with each novel element, there is a 50% chance
that the expression of the regulatory target will deviate fromwhat
it would have been in the original GRN (since ρ¼ 0:5, see Section
2.4). Such a deviation changes the attractor, preventing its con-
servation. Thus, the likelihood of conservation is the combined
probability that none of the U accessed elements cause a deviation.

Since U considers the influence of a new node over all its
regulatory targets, one explanation for how some GRNs could
produce attractors with higher values of U is that the new node
simply has more regulatory targets. However, this cannot explain
the observed differences in attractor conservation, because we
ensured that the same new nodes with their respective out-
degrees were tested at every different assortativity value within
a dynamical regime (see Section 2.6).

Another possibility is that U is influenced by the length of the
attractor under consideration. Here, the intuition is that an
attractor that is short realizes only a few combinations of the
regulatory inputs in its signal-integration logic, and this is likely to
result in a small value of U. In contrast, a long attractor that
realizes many combinations may be more likely to encounter more
of those specific combinations that occur as a result of activation of
the new node, resulting in a higher value of U. In support of this
hypothesis, we observed that the average value of U increased
with increasing attractor length (Fig. S7). And, since shorter
attractors produce a smaller average U (Fig. S7), they are expected
to be conserved more often than longer attractors.

3.5. The influence of out-components (OCs) on innovation

Innovation was also sensitive to the effects of assortativity,
but unlike conservation the trends were generally decreasing
(Fig. 4b–d). It was apparent that innovation was more likely when
the new node regulated many targets (Fig. S8), which suggested
that the extent of the regulatory influence exerted by the new
node impacted the likelihood of innovation. However, our experi-
mental approach ensured that there was the same distribution of
new node out-degrees present for GRNs at every assortativity
value (Section 2.6), thus requiring an additional explanation for
how the extent of the regulatory influence could change with
assortativity.

The out-component (OC) of a node in a GRN is characterized by
the nodes that it potentially regulates (Fig. 3), and we reasoned that
the new node might exert a different amount of regulatory influence
depending onwhether its OC was large or small. The mean OC size of
a GRN shrinks as assortativity increases (Fig. S9), and might therefore
explain how assortativity influences innovation.

To examine the effects of OCs on innovation, we considered
only the most assortative GRNs, which have the smallest mean OC
sizes yet still exhibit some variation in OC sizes (Fig. S9). This
approach allowed us to establish the independent effect of OC size.
We then grouped networks by the out-degree of the new node
and whether its OC was large or small (Fig. 9). We observed that
for GRNs where the new node has many regulatory targets,
innovation does not depend on the OC size of the new node. This
suggests that a new node with high out-degree exerts enough



Fig. 9. Proportion of innovation as a function of the out-degree of the new node and whether the new node possesses a large or small out-component (OC). The 5000 GRNs
at the highest assortativity value for each kout were binned by the out-degree of the new node. Each out-degree bin was then split into two groups according to whether the
new node possesses a large OC (larger or equal to the median OC size) or small OC (smaller than the median OC size). Black markers represent the proportion of GRNs that
innovated at least one attractor where new nodes possess large OCs, and gray markers represent innovation for GRNs where new nodes possess small OCs. Asterisks mark
significant differences in proportions between large and small OC categories (po0:05, Pearson's chi-squared test). Only out-degrees for which at least 30 GRNs were present
in large and small OC bins are plotted.
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of an influence over the GRN that the size of its OC matters less. In
contrast, for GRNs with new nodes that possess fewer regulatory
targets, innovation was sensitive to the OC size of the new node,
such that a new node with a small OC was less likely to innovate
than a new node with a large OC. This underscores that innovation
is sensitive to the regulatory influence of the new node, and also
that the extent of this influence is shaped by more than simply the
number of targets regulated. Since GRNs that follow a heavy-tailed
out-degree distribution are likely to have new nodes with low out-
degree, the observed effect is expected to be wide-reaching
despite not being statistically significant for higher out-degree.
Therefore, as assortative GRNs possess smaller OCs (Fig. S9), they
are expected to show reduced rates of innovation (Fig. 4).
4. Discussion

Two central forces driving the evolution of GRNs are gene
duplication (Lynch and Conery, 2000) and de novo origination
(Carvunis et al., 2012). Using a computational model of genetic
regulation, we have shown that the conservation of existing
phenotypes by GRNs subject to gene birth is influenced by
assortativity. To explain this observation, we have proposed the
following pair of mechanisms. First, the cardinality of the attractor
set shrinks with increasing assortativity, thereby making set
conservation more likely. Attractor set cardinality is akin to the
number of potential cell types that may be reached via differentia-
tion (Huang et al., 2009), and a cell with an assortative GRN might
thus have a reduced capacity for differentiation. As GRNs grow in
size and complexity, the cardinality of the attractor set also grows
(Kauffman, 1971), making it unlikely that all possible attractors
would represent normal cell types (Huang et al., 2009). In this
case, an assortative GRN would limit the number of normally
unaccessed attractors, some of which may correspond to an
abnormal phenotype. To our knowledge, this is the first study to
identify a relationship between the assortativity of a GRN and the
cardinality of its attractor set.

Second, attractor length shrinks with increasing assortativity,
and shorter attractors are more likely to be conserved. This is
consistent with previous observations regarding the robustness of
shorter attractors (Luo and Turner, 2011). A number of theoretical
studies have shown a correlation between attractor length and
mutational robustness, where GRNs with shorter attractors were
more robust to genetic perturbation (Mihaljev and Drossel, 2009;
Szejka and Drossel, 2010). And, we have previously shown that
GRNs with shorter attractors are more phenotypically robust when
faced with mutation to their cis-regulatory logic (Pechenick et al.,
2012). In line with these previous observations, we have now
shown that shorter attractors are also less likely to be affected by
gene birth, because their small sizes limit the extent to which
novel regulatory decisions are encountered within the context of
the existing regulatory program. Therefore, assortative GRNs with
their shorter attractors are robust to a variety of genetic
perturbations.

In contrast to conservation, we found that the likelihood of
innovation by a GRN decreased with increasing assortativity. This
was due to a shrinking average sphere-of-influence associated
with increased assortativity. Specifically, the out-component (OC)
of the new node was on average smaller for assortative GRNs, and
thus the regulatory influence of the new node was lessened. This is
related to our previous observation that in-components (ICs) tend
to shrink with increasing assortativity (Pechenick et al., 2012). The
capacity for a new gene to yield an innovation is thus tied to its
regulatory influence; however, such innovation is typically dele-
terious in natural systems (Lynch and Conery, 2000). Indeed, it has
been shown that gene duplication events in S. cerevisiae were less
likely to occur in well connected portions of the protein–protein
interaction network (Li et al., 2006). Thus with their smaller OCs,
assortative GRNs may to some extent be shielded from perturba-
tion, and less likely to utilize these perturbations for innovation.

The relationship between GRN components and robustness has
also recently been investigated by Peixoto (2012), who observed
that populations of GRNs evolved under strong selection for
environmental robustness tended to develop small, dense sub-
graphs. These subgraphs acted as master regulators that were
segregated from much of the GRN, and were therefore largely
autonomous. The robustness of GRNs to environmental perturba-
tion is related to their robustness to genetic perturbation (Ciliberti
et al., 2007b), and the reported relationship between dense
subgraphs and robustness is consistent with our own observa-
tions. We previously linked small, autonomous ICs to high phe-
notypic robustness in the face of mutation to the cis-regulatory
logic of the GRN (Pechenick et al., 2012), and we here show that
small OCs limit the extent of the perturbation caused by gene
birth. Taken together, these studies illustrate complementary
processes by which GRNs might achieve higher robustness.
Peixoto (2012) allowed the transition from a random topology
to a segregated core topology through changes in the degree
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distribution, and we showed that changing the assortativity while
holding the degree distribution constant can lead to changes in ICs
(Pechenick et al., 2012) and OCs. Therefore, there may exist
multiple avenues of structural alteration for an evolutionary
process to achieve a GRN with a highly robust topology.

We further observed that increasingly assortative GRNs were
more likely to simultaneously conserve and innovate. Assortative
GRNs displayed a marked increase in conservation that outpaced
the decrease in innovation, with the result that assortative GRNs
more often achieved both. Thus, an apparent tradeoff of assorta-
tive GRNs—that they are highly robust but less evolvable—is not
the whole story. Instead, we found that assortative GRNs max-
imize the intersection of robustness and evolvability. While
innovation is rarely tolerated in natural systems (Lynch and
Conery, 2000), it will sometimes produce a phenotype on which
selection can act (Levine and Tjian, 2003), and our results suggest
that assortative GRNs may be poised for the exploration of novel
phenotypes conditional upon the conservation of existing
phenotypes.

The influence of assortativity on the overlap of robustness and
evolvability varied with dynamical regime. Ordered and critical
GRNs showed a weak negative trend and no trend, respectively,
whereas chaotic GRNs showed positive trends. This is consistent
with our previous observations, where the phenotypic robustness of
ordered and critical GRNs were relatively insensitive to changes in
assortativity (Pechenick et al., 2012). This relative insensitivity of
critical GRNs is noteworthy, as there is some evidence to support the
hypothesis that biological regulatory networks operate close to
criticality (Shmulevich et al., 2005; Nykter et al., 2008). However,
the differences in trends highlight a consequence of analyzing
populations of GRNs without considering assortativity. For example,
Aldana et al. (2007) observed that critical GRNs jointly conserve and
innovate more often than ordered or chaotic GRNs, and cited this as
further support for the criticality hypothesis. Yet, once GRNs are
subdivided by their assortativity, we saw that assortative chaotic
(kout ¼ 3:0) GRNs maximized this overlap of robustness and evolva-
bility. Remarkably, the assortativity of a GRN had no impact on its
dynamical regime, and therefore the observed high overlap for
assortative chaotic GRNs was not the result of their transitioning
toward criticality. In a separate study, Payne and Moore (2011)
performed an exhaustive analysis of the robustness of signal-
integration logic in small regulatory circuits, and also observed that
chaotic GRNs can maximize these two properties. Taken together,
these results present a challenge to the current understanding of
how criticality provides an evolutionary advantage over GRNs that
operate in the chaotic dynamical regime.

One limitation of this study is a lack of consideration of
selection and the potential fitness effects of innovation. While
gene duplicates are thought to initially experience relaxed selec-
tion, many eventually fall under strong purifying selection
(Wagner, 2002), and it is this selection that produces innovation
from variation (Wagner, 2008). We have shown that assortativity
influences the likelihood that a GRN produces variation in the
form of new phenotypes, but does assortativity affect the evolu-
tion of a specific phenotype with improved fitness? This question
can be addressed through the in silico evolution of GRNs that are
under selection for specific phenotypes that confer a fitness
advantage (Oikonomou and Cluzel, 2006; Greenbury et al., 2010).
Using such an approach, it has been observed that topological
properties of GRNs, such as degree distribution, affect their ability
to evolve specific phenotypes (Oikonomou and Cluzel, 2006;
Greenbury et al., 2010), and future studies should examine
whether and how assortativity plays a role.

Another direction of future research concerns the robustness
of GRNs to recombination. Recombination is a major force
that generates genetic variation, and the robustness of GRNs to
recombination is therefore of considerable interest (Martin and
Wagner, 2009). Through computational analysis of an alternative
model of GRNs, Martin and Wagner (2009) showed that popula-
tions of GRNs are more robust to genetic point mutations after
evolving to recombination-selection balance. However, the effects
of nonrandom assortativity were not considered. Therefore, a
natural extension of this work will be to assess the influence of
assortativity on the robustness of GRNs to recombination.

Our theoretical work has suggested that the assortativity of a
GRN influences its robustness and evolvability, and experimental
evidence will be instrumental in determining the biological
relevance of these findings. For example, future advances in
synthetic biology (Purnick and Weiss, 2009) may one day enable
the construction of synthetic GRNs that are large enough to
directly evaluate the influence of assortativity on robustness and
evolvability. In the meantime, our attention turns to the assorta-
tivity values of network representations of existing biological
datasets (Piraveenan et al., 2012), and interpreting these values
in the context of the underlying GRN of a cell. To understand the
complex nature of this task, it is important to keep in mind the
multiple layers of genetic regulation. For example, the chromatin
immunoprecipitation (ChIP) data produced by ENCODE (ENCODE
Project Consortium et al., 2011) may eventually lead to a compre-
hensive human transcription factor network. Properties of this
network, such as assortativity, could be calculated, but its topology
represents only a single regulatory layer of the GRN. Additional
layers that could be considered include post-transcriptional reg-
ulation by microRNAs (Chen and Rajewsky, 2007) and post-
translational regulation by protein phosphorylation (Linding
et al., 2007, 2008). Each time a new layer of regulation is included,
the topology of the apparent GRN will change, and properties such
as assortativity may also change. This is one of the advantages of
first taking a theoretical approach to understanding the effects of
the assortativity of a GRN. Multiple layers of regulation can be
implicitly represented in an abstract computational model, and
this allows us to infer how functional properties of the GRN may
be influenced by its topology. It will be important to place the
results of future experimentation, such as the assortativity of
experimental datasets and the phenotypic output of synthetic
GRNs, in the appropriate context of the multiple layers of gene
regulation.
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