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a b s t r a c t

Gene regulatory networks (GRNs) drive the cellular processes that sustain life. To do so reliably, GRNs

must be robust to perturbations, such as gene deletion and the addition or removal of regulatory

interactions. GRNs must also be robust to genetic changes in regulatory regions that define the logic of

signal-integration, as these changes can affect how specific combinations of regulatory signals are

mapped to particular gene expression states. Previous theoretical analyses have demonstrated that the

robustness of a GRN is influenced by its underlying topological properties, such as degree distribution

and modularity. Another important topological property is assortativity, which measures the propen-

sity with which nodes of similar connectivity are connected to one another. How assortativity

influences the robustness of the signal-integration logic of GRNs remains an open question. Here, we

use computational models of GRNs to investigate this relationship. We separately consider each of the

three dynamical regimes of this model for a variety of degree distributions. We find that in the chaotic

regime, robustness exhibits a pronounced increase as assortativity becomes more positive, while in the

critical and ordered regimes, robustness is generally less sensitive to changes in assortativity. We

attribute the increased robustness to a decrease in the duration of the gene expression pattern, which is

caused by a reduction in the average size of a GRN’s in-components. This study provides the first direct

evidence that assortativity influences the robustness of the signal-integration logic of computational

models of GRNs, illuminates a mechanistic explanation for this influence, and furthers our under-

standing of the relationship between topology and robustness in complex biological systems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Living organisms are constantly beset by environmental and
genetic perturbations, which threaten to compromise the intri-
cate processes that sustain life. Despite the harmful potential of
such perturbations, organisms show remarkable robustness at
many levels of biological organization (Wagner, 2005). For exam-
ple, the three-dimensional structure and function of biological
macromolecules, such as RNA and proteins, are robust to point
mutations in primary sequence (Schuster et al., 1994; Bloom
et al., 2005). Similarly, the biological networks that drive cellular
processes are robust to topological reorganization, as exemplified
by the removal of nodes in the protein–protein interaction net-
work of the yeast Saccharomyces cerevisiae (Jeong et al., 2001) and
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the rewiring of the gene network in the bacterium Escherichia coli

(Isalan et al., 2008), both of which regularly fail to elicit a change
in growth rate.

There are several sources of robustness in biological systems
(Kitano, 2004; Wagner, 2005). Of fundamental importance is the
many-to-one mapping of genotype to phenotype. In RNA, for
example, myriad primary sequences (genotypes) may result in
the same secondary structure (phenotype) upon folding in three
dimensions. These distinct sequences are often connected by
neutral point mutations, and form a vast web of primary
sequences that all yield identical secondary structure (Schuster
et al., 1994). Such webs are referred to as genotype networks,
wherein vertices represent genotypes and edges connect two
genotypes that can be interconverted via neutral point mutations
(Wagner, 2008a). Within this context, a genotype is said to be
robust if it has many connections in the genotype network, and a
phenotype is said to be robust if its underlying genotype network
is made up of many robust genotypes (Wagner, 2008b).

The conceptual framework of a genotype network (Van
Nimwegen et al., 1999) has been used to study the robustness
of numerous biological systems, particularly at the molecular
scale (Schuster et al., 1994; Huynen et al., 1996; Ferrada and
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Wagner, 2008; Cowperthwaite et al., 2008; Wagner, 2008b;
Rodrigues and Wagner, 2011). However, this framework has been
less frequently applied to the study of robustness at higher levels
of biological organization, such as gene regulatory networks
(GRNs). GRNs consist of collections of genes and gene products
that interact to produce the gene expression patterns that drive
cellular processes. The genotype of a GRN typically represents the
topology of regulatory interactions (Ciliberti et al., 2007a,b) and
the phenotype represents some property of the GRN’s expression
pattern (Mihaljev and Drossel, 2009; Szejka and Drossel, 2007,
2010). The corresponding genotype network is therefore a ‘‘net-
work of networks’’ (Ciliberti et al., 2007b), wherein two GRNs are
directly connected in the genotype network if they yield the same
phenotype, yet differ in a single regulatory interaction (Ciliberti
et al., 2007a,b). Using these definitions, recent analyses have
revealed three general properties of GRNs. First, the topology of
a GRN has a governing influence on phenotypic robustness
(Aldana and Cluzel, 2003; Greenbury et al., 2010). Second, robust
phenotypes are comprised of vast genotype networks that span
the space of all possible genotypes (Mihaljev and Drossel, 2009;
Szejka and Drossel, 2007, 2010). Third, these genotype networks
harbor a reservoir of genetic diversity (Bergman and Siegal, 2003;
Ciliberti et al., 2007a) that promotes adaptation to novel environ-
ments (Espinosa-Soto et al., 2011) and allows for the evolution of
genotypic robustness without phenotypic alteration (Ciliberti
et al., 2007b).

While these analyses have improved our understanding of
robustness in GRNs, they are limited by the assumption that
genetic perturbations primarily correspond to topological altera-
tions. It is well known that the presence or absence of regulatory
interactions is not the only determining factor of gene expression
patterns (Setty et al., 2003; Mayo et al., 2006; Kaplan et al., 2008).
Gene expression may also be influenced by the arrangement of
transcription factor binding sites in a gene’s regulatory region
(Hunziker et al., 2010). This region encodes an input–output
function, referred to as signal-integration logic, that maps a
specific combination of regulatory signals to a particular gene
expression state. Such regulatory programs offer an additional
source of robustness, as many rearrangements of a gene’s reg-
ulatory region yield the same expression output (Little et al.,
1999; Mayo et al., 2006). Thus, not only can the topology of a GRN
confer robustness (Aldana and Cluzel, 2003; Greenbury et al.,
2010), so too can the signal-integration logic encoded in regula-
tory regions.

Despite the known importance of signal-integration logic as a
source of robustness in GRNs, its theoretical analysis has received
little attention. In a recent study, Payne and Moore (2011)
explored the genotype networks of three-node GRNs under the
assumption that genetic perturbations correspond solely to
alterations in regulatory regions. In this case, the genotype
represents the signal-integration logic and two GRNs are directly
connected in a genotype network if they are topologically iden-
tical and yield the same phenotype, yet differ in a single element
of their signal-integration logic. Under these assumptions, their
analysis revealed that robust phenotypes only occupy a small
fraction of the space of possible regulatory programs and that
these phenotypes are often mutationally biased toward other
robust phenotypes.

The results of Payne and Moore (2011) pertain to topologically
random GRNs. However, recent characterizations of the GRNs of
biological organisms have uncovered several nonrandom topolo-
gical properties, including heavy-tailed degree distributions, hier-
archical organization, and modularity (Ravasz et al., 2002), many
of which are known to affect the robustness of GRNs (Aldana and
Cluzel, 2003; Variano et al., 2004; Aldana et al., 2007; Poblanno-
Balp and Gershenson, 2011). Another important topological
property is degree–degree assortativity (Newman, 2002), which
captures the propensity with which nodes of similar degree are
connected to one another. Assortativity has been shown to vary in
biological systems (Newman, 2002; Foster et al., 2010) and its
functional significance has been demonstrated in a number of
dynamical network processes (Newman, 2002; Rong et al., 2007;
Payne et al., 2009; Payne and Eppstein, 2009), including the
stability of GRNs (Pomerance et al., 2009). However, it is not yet
known how assortativity affects the robustness of the signal-
integration logic encoded in the regulatory regions of GRNs.

Here, we use computational models of genetic regulation to
address this open question. We separately consider three degree
distributions, two of theoretical interest and one that resembles
the topological properties of biological GRNs (Aldana and Cluzel,
2003; Aldana et al., 2007), and use a simple edge-swapping
algorithm to tune the assortativity of the GRNs while holding
the degree distribution constant. To quantify robustness, we use
ensembles of random walks, which explore the genotype net-
works of possible signal-integration functions. We find that
assortativity influences the robustness of signal-integration logic
in a computational model of GRNs, and we provide a mechanistic
explanation for the relationship between these two quantities.
We close with a discussion of our results and present several
directions for future research.
2. Methods

2.1. Boolean networks: genotype and phenotype

We used Boolean networks to model GRNs (Kauffman, 1969).
Boolean networks are made up of nodes, which represent genes,
and directed edges, which represent regulatory interactions
between genes. Each node i has a binary state siðtÞAf0;1g, which
represents whether or not the gene is being expressed at time t.
Therefore the number of possible expression states for a Boolean
network with N nodes is 2N. The dynamics of the system occur in
discrete time with synchronous updating of node states. Specifi-
cally, the state of each node si is updated at time tþ1 according
to a Boolean function fi, such that

siðtþ1Þ ¼ f iðsi1 ðtÞ, . . . ,sikin,i
ðtÞÞ, ð1Þ

where si1 , . . . ,sikin,i
are the states of the kin,i inputs to node i. The

function fi is defined by a look-up table containing a binary entry
for each of the 2kin,i possible combinations of states for the kin,i

input nodes (Fig. 1A). The binary string generated by concatenat-
ing the rightmost output columns of these look-up tables is
referred to as the rule vector (Fig. 1B). We consider the rule
vector to be the GRN’s genotype, because it represents the signal-
integration logic that defines the regulatory program for the
entire GRN (Payne and Moore, 2011).

For deterministic Boolean functions, a unique combination of
the states of the kin,i input nodes realized at any time t always
results in the same state for node i at time tþ1. Since there are a
finite number of possible expression states for the GRN (2N), some
expression state must eventually repeat. This results in a
sequence of unique states that is repeated, which is referred to
as an attractor (Fig. 1C); its length corresponds to the duration of
the gene expression pattern. We consider the attractor to be the
GRN’s phenotype, as it represents the gene expression pattern
that defines cell type (Huang et al., 2005).

While abstract, the Boolean model has proven quite accurate
in predicting the dynamics of GRNs in certain biological systems.
For example, the model has recapitulated precise expression
dynamics for the gap gene system of the fruit fly Drosophila

melanogaster (Albert and Othmer, 2003) and for the primordial
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Fig. 1. A Boolean network example. (A) This Boolean network is composed of

three nodes and four directed edges. Each node possesses a look-up table that

determines the dynamics of the Boolean network by defining the expression state

of the node at time tþ1 as a function of the states of its inputs at time t. For

example, the look-up table for node b shows how each possible combination of

expression states saðtÞ and scðtÞ of the inputs at time t dictate the expression state

sbðtþ1Þ. (B) The rule vector, which captures the signal-integration logic for the

entire GRN, is obtained by concatenating the rightmost output columns of the

look-up tables for all nodes. (C) Starting with initial states at t¼0, the states are

updated according to the look-up tables until they repeat, forming an attractor

(shaded region). In this example, the attractor length is two.
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floral organ cells of the plant Arabidopsis thaliana (Espinosa-Soto
et al., 2004). The model has also accurately reproduced the
avalanche distributions that result from gene knockout in S.

cerevisiae (Serra et al., 2004). Due to its accuracy in emulating
gene expression dynamics and its explicit representation of
signal-integration logic, the Boolean model provides a compelling
synthetic system with which to carry out this study.

2.2. Degree distributions

Three distinct combinations of input and output degree dis-
tributions were considered. The first, referred to as fixed-input/
Poisson-output (FIPO), was constructed by fixing the number of
inputs to a constant, kin ¼ c, and randomly selecting c inputs for
each node. The second, Poisson-input/Poisson-output (PIPO), was
constructed by drawing kin for each node from a Poisson dis-
tribution,

pðkinÞ ¼
lkin e�l

kin!
: ð2Þ

The third, Poisson-input/Power-law-output (PIPLO), was con-
structed by drawing kout for each node from a power-law
distribution (Darabos et al., 2009),

pðkoutÞ ¼
1

ZðgÞ
k�gout ð3Þ

with the normalization constant ZðgÞ ¼
PN

j ¼ 1 j�g, where N is the
number of nodes in the GRN. In the first two cases, we specified
the input degree distribution and in the last case, we specified the
output degree distribution. Once the specified distribution was
established, edges were laid down at random to satisfy the
distribution (Newman, 2003). This naturally resulted in a Poisson
output distribution in the first two cases and a Poisson input
distribution in the last case (Aldana et al., 2007).

2.3. Dynamical regimes

Boolean networks exist in one of three dynamical regimes:
ordered, critical, and chaotic. The behavior of Boolean networks in
the different regimes is characterized by the rates of divergence
between similar initial states, where similarity between states is
characterized by Hamming distance (Derrida and Pomeau, 1986).
In the chaotic regime, the distance between two such states
increases exponentially as the states get updated. In the ordered
regime, the distance decreases, because on average such a
perturbation affects fewer than one node. The critical regime
occupies the boundary between ordered and chaotic regimes, and
this along with the ordered regime are thought to be relevant to
biological systems (Shmulevich et al., 2005; Nykter et al., 2008).

The dynamical regime of a Boolean network is a function of the
properties of its degree distribution, such as average degree
(Kauffman, 1993; Aldana and Cluzel, 2003). For each of the three
degree distributions considered, we specified the average degree
necessary to yield the three dynamical regimes (see Section 2.7).

2.4. Assortativity

Degree–degree assortativity, rA ½�1;1�, is a global network
property that measures the propensity for nodes of similar degree
to be connected. In assortative networks, r40, edges often exist
between nodes with similar degree, whereas in disassortative
networks, ro0, edges often exist between nodes with dissimilar
degree. In directed networks, nodes possess both an in- and an
out-degree, and for the purposes of this study we looked at the
assortativity between the out-degrees of connected nodes (Foster
et al., 2010). This out–out degree assortativity, referred to hence-
forward simply as assortativity, was calculated as a Pearson’s
correlation coefficient (Newman, 2002):

r¼
M�1P

i jiki�½M
�1P

i
1
2ðjiþkiÞ�

2

M�1P
i
1
2 ðj

2
i þk2

i Þ�½M
�1P

i
1
2ðjiþkiÞ�

2
, ð4Þ

where ji and ki are the out-degrees of the nodes at the ends of the
ith edge, and i¼1,y,M, where M is the number of edges in the
network.

A standard edge-swapping method was employed for tuning
the assortativity of a network to a desired value (Milo et al., 2003;
Payne and Eppstein, 2009). In each iteration of this method two
edges i-j and x-y were selected at random. Edges were then
swapped, resulting in two new edges i-y and x-j. These new
edges replaced i-j and x-y if they changed assortativity in the
desired direction. Otherwise, the new edges were discarded and
the old edges were kept. Such edge swaps preserved the in- and
out-degrees of all nodes involved, thereby keeping the degree
distribution intact.

2.5. Robustness

Several definitions of robustness exist at both the genotypic
and phenotypic scales (Aldana et al., 2007; Wagner, 2008b;
Mihaljev and Drossel, 2009; Draghi et al., 2010). Genotypic
robustness is commonly measured as the connectivity of a
genotype in a genotype network, capturing the total number of
neutral mutations available to the genotype (Wagner, 2008b).
Phenotypic robustness is often measured as the average genoty-
pic robustness of a phenotype’s underlying genotype network
(Wagner, 2008b). Here, we are primarily concerned with pheno-
typic robustness, and we will use the term ‘‘robustness’’ as
shorthand for ‘‘phenotypic robustness’’ unless stated otherwise.

The size of the GRNs considered in this study (see Section 2.7)
prohibited the exhaustive enumeration of all genotype networks,
so we approximated robustness using random walks on genotype
networks. A potential step in the random walk was assessed by
flipping the bit of a single randomly chosen entry in the rule
vector, and then recording the corresponding attractor generated
from the same initial state. If the attractor remained unchanged,
the step was neutral and the new rule vector was kept (fulfilling
the requirement that the random walk remain on the genotype
network). Otherwise, the flipped bit was restored to what it was
immediately before that step. Thus, we quantified robustness as
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the proportion of total attempted steps in a random walk that
were neutral. This proportion serves as a proxy for measuring the
average genotypic robustness of the connected set of genotypes
that comprise a phenotype.

2.6. In-components

An in-component (IC) is a group of weakly connected nodes in
a directed network that receives no input connections from other
nodes in the network (Fig. 2). Therefore, the IC of a node i is the
set of all nodes that directly or indirectly has an influence on i.
The IC was determined by identifying all nodes that provide input
to i, all nodes that provide input to those nodes, and so on until
there were no nodes outside the IC that provide input to nodes in
the IC. Mean IC size (S) for a GRN was calculated as follows:

S ¼

PN
i ¼ 1 Si

N
, ð5Þ

where Si is the number of nodes in the IC of node i.

2.7. Simulation details

Weakly connected FIPO, PIPO, and PIPLO GRNs of size N¼30
were generated without self-loops in the ordered, critical, and
chaotic dynamical regimes, resulting in a total of nine combina-
tions of degree distribution and dynamical regime. To generate
ordered, critical, and chaotic FIPO GRNs, fixed kin was set to c¼1,
2, 3, respectively. To generate ordered, critical, and chaotic PIPO
GRNs, the average in-degree, kin, was set to l¼ 1:3, 2;3, respec-
tively (the average of 1.3 was chosen because it is difficult to
ensure weak-connectivity with l¼ 1). To generate ordered, cri-
tical, and chaotic PIPLO GRNs, g¼ 3:00, 2:25, 1:81 were chosen to
yield power-law distributions with kin ¼ 1:3, 2, 3, respectively.
These kin were calculated for the specific size of the GRNs
considered in this study (Aldana et al., 2007)

kin ¼

PN
j ¼ 1 j1�g

PN
j ¼ 1 j�g

ð6Þ

(kin ¼ 1:3 was chosen because kin ¼ 1 only exists in the limit of
g-1). Visual inspection of Derrida plots (Derrida and Pomeau,
1986) confirmed that the selected parameters for each degree
distribution produced networks in the three respective regimes.
After the topology of a GRN was created, its rule vector was
generated at random, such that the probability of choosing a 0 or
i

j

Fig. 2. In-components of GRNs. An in-component (IC) can be drawn around each

node in the GRN. The IC of node j consists of five nodes (lightly shaded region), of

which the IC of node i is a subset (darkly shaded region).
1 was equal. Each GRN was also paired with its own randomly
generated initial state, which was held constant throughout the
random walk.

For each of the nine combinations of degree distribution and
dynamical regime, 75,000 GRNs were generated with assortativity
values that lie within the bounds shown in Table 1. While the
theoretical bounds of assortativity are rA ½�1;1�, in practice they
are constrained by degree distribution (Dodds and Payne, 2009).
Approximate bounds were experimentally determined for each of
the nine combinations by performing 2000 edge-swaps toward an
assortativity of �1 or 1 (see Section 2.4) on 100 GRNs. This
number of edge-swaps was chosen as a balance between compu-
tational efficiency and achieving an assortativity value approach-
ing the absolute bound (Fig. 3A). From each resulting distribution
of assortativity values, a representative value was chosen as a
bound. Within each set of bounds, 15 linearly spaced values were
chosen as the assortativity targets, and 5000 networks were
tuned to within 0.01 of each target, preserving weak-connectivity
and prohibiting self-loops.

As with assortativity bounds, the range of assortativity values
expected at random for a particular GRN depends on the degree
distribution and dynamical regime (Foster et al., 2010; Johnson
et al., 2010). To determine this null distribution, 1000 GRNs were
generated for each combination of degree distribution and dyna-
mical regime. Subsequently, 10�M random edge-swaps were
performed, taking care to preserve the degree distribution, weak
connectivity, and lack of self-loops (Maslov and Sneppen, 2002).
These random edge swaps ensured the removal of any structural
bias introduced during the construction of the GRNs. After the
edges were thoroughly randomized, assortativity and mean IC
size were measured, providing a null distribution of these
quantities for each combination of degree distribution and dyna-
mical regime. These null distributions were used to verify that the
bounds of assortativity considered in this study (Table 1) lie
outside what is expected at random.

To calculate robustness, the length of the random walks was
set at 500 attempted steps, which again was chosen to balance
computational efficiency with accuracy (Fig. 3B). Average robust-
ness for each GRN was calculated from random walks for 100
random initial states and rule vector pairings, and mean attractor
length was calculated from the resulting 100 attractors. Our study
was limited to networks of size of N¼30 because the attractor
lengths of chaotic networks grow exponentially with N (Aldana,
2003), placing computational constraints on the feasible length of
such random walks. The choice of N¼30 therefore reflects a
balance between network size and the accuracy of the robustness
estimate.

Statistical significance of all reported trends was determined
using Pearson’s correlation, and the direction and strength of the
trends are approximated by the slope of the best linear fit to
the data.
Table 1
Lower and upper bounds on assortativity.

Degree distribution Regime Assortativity (r) bounds

Fixed-input/Poisson-output (FIPO) Ordered �0:82rrr0:47

Critical �0:86rrr0:64

Chaotic �0:82rrr0:67

Poisson-input/Poisson-output (PIPO) Ordered �0:83rrr0:51

Critical �0:84rrr0:61

Chaotic �0:82rrr0:66

Poisson-input/Power-law-output (PIPLO) Ordered �0:31rrr0:51

Critical �0:46rrr0:21

Chaotic �0:56rrr0:05



Fig. 3. Parameters for tuning assortativity and estimating robustness. (A) Assortativity (r) is shown after each of 5000 edge-swaps for 100 critical FIPO GRNs, as r is tuned

toward 1. The grey lines represent individual GRNs, and the solid black line depicts the corresponding average. The vertical dashed line shows our choice for the maximum

number of edge-swaps allowed to generate each GRN. The horizontal dashed line shows the upper assortativity bound selected for critical FIPO GRNs (Table 1). (B) Residual

robustness is shown after each of 2000 steps in a random walk on the genotype networks of 100 critical FIPO GRNs. Residual robustness is calculated as the difference

between the robustness measured at each step and the robustness measured at step 2000. The vertical dashed line shows our choice for the maximum number of steps

allowed to estimate robustness, and the horizontal dashed line provides a reference for convergence.

D.A. Pechenick et al. / Journal of Theoretical Biology 296 (2012) 21–32 25
3. Results

3.1. The influence of assortativity on robustness

The sensitivity of robustness to changes in assortativity varied
between dynamical regimes (Fig. 4). Ordered and critical GRNs
displayed slopes close to zero, indicating a general insensitivity to
changes in assortativity. In contrast, the slopes for chaotic GRNs
were steeper. Chaotic GRNs are therefore more sensitive to
changes in assortativity, with robustness increasing as the GRN
becomes more positively assortative. These trends were consis-
tent across the three degree distributions tested.

3.2. The influence of assortativity on attractor length

The sensitivity of attractor length to changes in assortativity
also varied between dynamical regimes (Fig. 5). Except for the
ordered PIPO GRNs (Fig. 5D), the directions of the trends were the
opposite of those observed for robustness (Fig. 4), indicating that
shorter attractors result in higher robustness. Structurally altering
the topology of GRNs in order to achieve different assortativity
values therefore influences their dynamical behavior.

3.3. Assortativity, in-components, and attractor length

For each combination of degree distribution and dynamical
regime, mean IC size was negatively correlated with assortativity
(Fig. 6). An increase in assortativity was therefore marked by a
corresponding decrease in mean IC size, which had a direct
influence on attractor length (Fig. 7). In all but a single case (see
Section 3.5), attractor length increased as mean IC size increased.
Thus, an increase in assortativity leads to a decrease in mean IC
size, which generally leads to a reduction in attractor length.

3.4. Relating in-components and attractor length to robustness

To provide a mechanistic explanation for the relationship
between assortativity and robustness, we draw the following
connection between mean IC size and attractor length.

High assortativity can be achieved by increasing the number of
edges that exist between highly connected nodes, while simulta-
neously reducing the number of edges that exist between these
nodes and the rest of the GRN. For the degree distributions
considered in this study, there are few highly connected nodes.
Thus, placing edges between them and encouraging their isola-
tion from the other nodes in the GRN results in the presence of
small ICs. As such, increasing assortativity leads to the formation
of smaller ICs (Fig. 6).

Since they receive no inputs from the rest of the GRN, ICs
behave autonomously. Therefore, an IC operates like a small
Boolean network that is independent of, yet nested within, a
larger Boolean network (Fig. 8). Smaller Boolean networks gen-
erate shorter attractors (Kauffman, 1993), so a small IC will
provide a simple regulatory signal (in the form of a short
attractor) to other parts of the GRN, reducing the attractor length
of the GRN as a whole. Decreasing the mean IC size thus leads to a
decrease in attractor length (Fig. 7).

Attractor length is directly related to robustness. Attractors are
determined by accessing entries in the rule vector until an
expression state repeats, and longer attractors access more
entries than shorter attractors. Robustness is higher when there
are more unaccessed entries in the rule vector, as perturbing
these entries does not affect the attractor. Thus, reducing attractor
length increases robustness (Figs. 4 and 5).

Hence, the mechanism by which assortativity influences
robustness: increased assortativity reduces mean IC size, which
reduces the length of attractors, which increases robustness. This
effect is most apparent in chaotic GRNs (Figs. 4–7). An intriguing
counterexample is provided by the ordered FIPO GRNs.

3.5. The counterexample: in-components as forcing structures

In almost all cases, there is a positive correlation between
mean IC size and attractor length (Fig. 7). However, ordered FIPO
GRNs display a negative trend, where larger mean IC size is
associated with shorter attractors (Fig. 7A). This phenomenon can
be understood as follows.

FIPO GRNs have connectivity restrictions that limit each node
to exactly one input. This causes the smallest IC in a GRN to form
a cycle (Fig. 8A and B). Such a cycle acts as a ‘‘forcing structure’’
(Kauffman, 1990), where the state of a single node in the cycle
decides the states of all other nodes in the cycle. When the
smallest IC is a large forcing structure (Fig. 8B), the propagation of
such ‘‘frozen nodes’’ (Kauffman, 1990) reduces the attractor
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length. Thus, in FIPO GRNs, the reduction of mean IC size that
accompanies increased assortativity results in an increase in
mean attractor length (Fig. 5A) and a corresponding reduction
in robustness (Fig. 4A).

3.6. Sensitivity to changes in assortativity

Assortativity affects robustness more strongly in the chaotic
regime than in the critical and ordered regimes (Fig. 4). One
possible explanation for this is that chaotic GRNs are more
sensitive to change in general, either in topology, rule vector, or
initial state (Kauffman, 1993). An alternative explanation is that
the sensitivity of a GRN to factors that influence its robustness is a
function of its variance in attractor length. We therefore plot the
strengths of the trends observed in Fig. 4 against the standard
deviations of attractor lengths for each combination of degree
distribution and dynamical regime (Fig. 9). The positive
correlation suggests that if a GRN can access attractors whose
lengths deviate widely from the mean, changing its assortativity
will have a greater impact on robustness.
4. Discussion

This study provides the first direct evidence that degree–
degree assortativity influences the robustness of the signal-
integration logic of computational models of gene regulatory
networks (GRNs). This occurs via the modification of in-compo-
nent (IC) sizes, which has a direct effect on attractor length, and
thus robustness. To the best of our knowledge, this is the first
study to show a direct relationship between IC sizes and the
dynamics of computational models of GRNs.

We used linear regression to approximate the sensitivity of
robustness to assortativity. However, some of the observed trends
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were nonlinear, exhibiting insensitivity below a critical assorta-
tivity value and sensitivity above that value. This may reflect a
phase transition in the structure of ICs as assortativity increases,
similar to the percolation of the giant component in undirected
networks (Newman, 2002).

To clarify the relationship between the dynamics of GRNs and
robustness, we intuitively linked increasing attractor length to
decreasing robustness. Additional supporting evidence for this
relationship can be found in studies of evolving populations of
GRNs (Bornholdt and Sneppen, 2000; Mihaljev and Drossel, 2009),
where selection for increased robustness leads to a decrease in
attractor lengths, relative to random GRNs. Further support can be
found in related models of GRNs (Wagner, 1996), where robust-
ness scales inversely with attractor length (Luo and Turner, 2011).

The relationship between assortativity and robustness was
consistent across the three degree distributions tested, contrast-
ing with the dynamics of GRNs reported in some related studies,
which vary between scale-free and Poisson degree distributions
(Aldana and Cluzel, 2003; Aldana et al., 2007; Oikonomou and
Cluzel, 2006). This general insensitivity to degree distribution
results from the fact that changing assortativity leads to the
rewiring of nodes in a fashion that is independent of degree
distribution, and attractor lengths were therefore similarly
affected across the different degree distributions tested.

In contrast, the relationship between assortativity and robust-
ness varied between dynamical regimes. Specifically, ordered and
critical GRNs were relatively insensitive to changes in assortativ-
ity, whereas chaotic GRNs exhibited a greater sensitivity. Empiri-
cal evidence indicates that biological GRNs may operate in the
critical or ordered regimes (Shmulevich et al., 2005; Nykter et al.,
2008). For example, studies have been conducted that measured
the information theoretic content of global gene expression
patterns produced by the underlying GRNs of HeLa cells
(Shmulevich et al., 2005) and murine bone marrow-derived
macrophages (Nykter et al., 2008). These results were then
compared to the information contained in the attractors of
Boolean models operating in the ordered, critical, or chaotic
regimes, and it was shown that critical models produced
dynamics with information complexity most similar to that of
the biological datasets. While such results suggest that biological
GRNs may be insensitive to changes in assortativity, our results
further indicate that the relationship between assortativity and
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robustness may also be a function of the diversity of attractor
lengths that a particular GRN can access. Since attractor length
increases with the number of nodes in a GRN (Kauffman, 1993),
the relatively larger GRNs of biological organisms may be more
sensitive to changes in assortativity than the smaller GRNs tested
herein, even if they operate in the critical regime.

Evidence that assortativity may influence the dynamics of GRNs
was initially set forth by Pomerance et al. (2009), who introduced a
framework for predicting the stability of GRNs with varying
assortativity. Their measure of stability averaged the Hamming
distance between expression states over time as the signal-integra-
tion logic was continuously perturbed. This ‘‘semiannealed’’ proce-
dure found disassortative GRNs to be the least stable, which agrees
with our observation that robustness is positively correlated with
assortativity in critical and chaotic GRNs.

4.1. Future directions

Robustness is defined as a function of the specific type of
perturbation a system may suffer, and in this study we examined
the effects of point mutations to the signal-integration logic of
GRNs. Another source of genetic variation to consider is
recombination. Using a variation of the model considered here
(Wagner, 1996), Martin and Wagner (2009) investigated the
effects of both point mutations and recombination on the phe-
notypic robustness of GRNs, and found that GRNs are more robust
to recombination than to mutation. Understanding how assorta-
tivity influences a GRN’s robustness to recombination is another
exciting direction for future research.

In addition to robustness, evolvability is also an important
property of biological systems (Wagner, 2005). While robustness is
characterized by a system’s insensitivity to perturbations, evolva-
bility is characterized by a system’s capacity to utilize these
perturbations for the exploration of novel phenotypes. Theoretical
studies of the relationship between these two properties have
shown that evolving systems often tend toward robust phenotypes
(Cowperthwaite et al., 2008; Payne and Moore, 2011), allowing the
population to diffuse neutrally throughout the underlying genotype
network. This permits the accumulation of genetic diversity
(Huynen et al., 1996), which increases evolvability by facilitating
access to novel phenotypes (Wagner, 2008b; Draghi et al., 2010).
Since robustness is influenced by assortativity, evolvability may be
as well, and future work will examine how assortativity impacts the
relationship between robustness and evolvability.
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This relationship has been investigated at the genotypic level
in uncorrelated Boolean networks subject to random node dupli-
cation (Aldana et al., 2007). Critical GRNs were found to simulta-
neously maximize the conservation of existing attractors
(robustness) and the generation of new attractors (evolvability),
which was cited as evidence supporting the hypothesis that real-
world biological GRNs would benefit most from being critical, as
opposed to chaotic. However, the influence of nonrandom assor-
tativity was not considered. Our results show that chaotic GRNs
exhibit increasingly robust phenotypes with increasing assorta-
tivity, whereas critical GRNs are relatively insensitive to such
changes. Therefore, an examination of how the robustness and
evolvability of assortative chaotic GRNs compares to uncorrelated
critical GRNs is warranted.

As a proxy for measuring evolvability, previous computational
studies have investigated the ability of GRNs to match prespeci-
fied target expression patterns (Oikonomou and Cluzel, 2006;
Greenbury et al., 2010), which represent adaptation to some
environment. While several topological properties, including
degree distribution, have been found to impact the target-match-
ing abilities of GRNs (Oikonomou and Cluzel, 2006; Greenbury
et al., 2010), the influence of assortativity is not yet known, and
requires further investigation.

The results presented in this study link assortativity to
robustness in a computational model of GRNs, which leaves open
the question of whether assortativity might influence real biolo-
gical GRNs. Over the last decade a wealth of data on biological
GRNs has been collected, which promises to yield new insights
into how GRNs ensure robust gene expression (Macneil and
Walhout, 2011). Methods such as chromatin immunoprecipita-
tion (ChIP) have been used to experimentally identify transcrip-
tion factor (TF) binding sites in the fly, D. melanogaster, during
specific stages of development, which was shown to be predictive
of gene expression patterns across both spatial and temporal
dimensions (Zinzen et al., 2009). ChIP data is also being generated
and analyzed by the ENCODE (ENCODE Project Consortium et al.,
2011) and modENCODE (Celniker et al., 2009) projects, one of
whose ambitious goals is to catalogue the genome-wide binding
events of hundreds of TFs across multiple independent systems
that span human, mouse (Mus musculus), fly (D. melanogaster),
and nematode (Caenorhabditis elegans). In a separate approach,
yeast one-hybrid (Y1H) assays have been used to experimentally
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map a post-developmental GRN of metabolic genes in the nema-
tode, C. elegans (Arda et al., 2010), and a root stele tissue-specific
GRN with both TFs and miRNAs in the plant, A. thaliana (Brady
et al., 2011). Efforts have also been aimed at reconstructing GRNs
from gene expression datasets, for example inferring and system-
atically testing a GRN controlling the murine dendritic cell
response to pathogens (Amit et al., 2009), and reverse-engineer-
ing a glioma-specific GRN to identify how mesenchymal genes are
turned on during malignancy (Carro et al., 2010). Another recent
enterprise was the inference of the whole-genome set of micro-
RNA regulatory interactions implicated in glioblastoma (Sumazin
et al., 2011), which provided a layer of regulatory information
complementary to that of genome-wide TF binding.

The comparison and integration of data from these different
approaches will produce a more complete picture of biologically
relevant GRNs (Walhout, 2011), the prospects of which will be the
ability to examine these networks for topological features that
explain their functional properties. Therefore, an important next
step is to investigate whether robustness might come about
through changes in assortativity in these biological networks.
Foster et al. (2010) analyzed a variety of directed real-world
networks to examine whether the assortativity values that
characterize such networks are any different from those expected
at random. In a separate study, Johnson et al. (2010) established
that highly heterogeneous degree distributions are expected to
produce disassortative networks for statistical reasons, and pro-
vided examples of disassortative biological and technological
networks that fail to differ from the neutral expectation. Such
analyses have yet to be applied to biological GRNs, and are among
the means that are necessary to determine (1) if nonrandom
assortativity exists, and if so, (2) how and why assortativity
evolved in these biological networks. These extensions, among
others, will further our understanding of the relationship between
assortativity, IC size, and robustness in biological GRNs.
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