
Interdiscip Sci Comput Life Sci (2010) 2: 213–220

DOI: 10.1007/s12539-010-0002-4

Exploiting Graphics Processing Units for Computational Biology and
Bioinformatics

Joshua L. PAYNE†, ∗, Nicholas A. SINNOTT-ARMSTRONG†, Jason H. MOORE
(Computational Genetics Laboratory, Department of Genetics, Dartmouth Medical School, Lebanon, NH 03756, USA)

Received 30 January 2010 / Revised 17 May 2010 / Accepted 18 May 2010

Abstract: Advances in the video gaming industry have led to the production of low-cost, high-performance
graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central
processing units (CPUs), the standard workhorses of scientific computing. With the recent release of general-
purpose GPUs and NVIDIA’s GPU programming language, CUDA, graphics engines are being adopted widely in
scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of
this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational
biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture,
introduce the basics of the CUDA programming language, and discuss important CUDA programming practices,
such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in
the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous
disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of
the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation
by a factor of 1700.
Key words: all-pairs distance, bioinformatics, computational biology, Compute Unified Device Architecture
(CUDA), Graphics Processing Units (GPU), high performance computing, parallelism.

1 Introduction

Market demand for high-resolution, three-
dimensional graphics have led to the production
of low-cost, highly parallel, many-core graphics pro-
cessing units (GPUs). These computing components
have higher memory bandwidth and more computing
power than central processing units (CPUs), and are
now regularly included in standard laptop and desktop
computers. NVIDIA, a leading GPU vendor, has
released a proprietary development platform known
as the compute unified device architecture (CUDA)
(NVIDIA Corporation, 2009a), which allows for the
general purpose programming of their consumer
graphics hardware in a C-like language. This has
generated a surge of interest in exploiting GPUs
for scientific computation, particularly in the fields
of computational biology and bioinformatics. For
example, GPU adaptations of algorithms for sequence
alignment (Manavski and Valle, 2008; Schatz et al.,
2007), epistasis analysis (Greene et al., 2010; Sinnott-

∗Corresponding author.
E-mail: Joshua.Payne@Dartmouth.edu
†These authors contributed equally to this work.

Armstrong et al., 2009), feature detection (Hussong
et al., 2009), phylogenetics (Suchard and Rambaut,
2009), and artificial vision (Pinto et al., 2009) have
recently been developed and have been shown to offer
dramatic speedups over their serial counterparts.

The goal of this article is to present the basics of
GPU hardware and programming to the computational
biologist or bioinformaticist in a concise form. Our only
assumption of the reader is a basic understanding of the
C programming language. After introducing the essen-
tials of GPUs and the CUDA programming language,
we address three fundamental GPU programming prac-
tices: the proper use of (1) coalesced reads, (2) data
types, and (3) memory hierarchies. We highlight these
principles with an example: that of computing the all-
pairs distance between instances in a dataset. We con-
clude with an empirical runtime analysis of the GPU
and CPU implementations of the all-pairs distance cal-
culation.

2 GPU and CUDA essentials

GPUs dedicate much more hardware per core to data
processing than CPUs, but possess far less hardware
per core for data caching and flow control (Fig. 1).

214 Interdiscip Sci Comput Life Sci (2010) 2: 213–220

(a) CPU (b) GPU

RAM

Cache

Control ALU

ALU

ALU

ALU

Fig. 1 Schematic of the architectures of the (a) central processing unit (CPU) and the (b) graphics processing unit (GPU).
The color scheme used in (a) to denote the arithmetic logic units (ALU), control and cache hardware, and random
access memory (RAM) is the same as in (b). Note that the GPU dedicates much more hardware to processing units
and much less to control and caching

This makes GPUs ideal for problems in which the same
(small) program is executed on many data elements in
parallel, as is the case in the all-pairs distance calcula-
tion (Appendix 1), and numerous other applications.

CUDA allows the developer to mix CPU and GPU
code seamlessly, through an intuitive extension of the
C programming language. The developer can design a
program such that code portions exhibiting little par-
allelism are executed on the CPU (referred to as the
host), and portions exhibiting high parallelism are ex-
ecuted on the GPU (referred to as the device). The
developer should attempt to minimize the amount of
code executed on the host, as the potential speedups
of parallelization are inherently limited by these code
portions (Amdahl, 1967). Program execution begins on
the host and is executed serially until a GPU-specific
section of the code is encountered, which is then exe-
cuted on the device in parallel. The data that is needed
by the device is copied from host memory (RAM) to
device global memory. After the GPU code has fin-
ished execution, its output is transferred from global
memory to RAM, and control is returned to the CPU.
This swapping of control between the CPU and GPU
can occur as many times as needed in an application,
though writing between these memory resources is very
slow and should be performed sparingly. This encour-
ages the developer to send data to the device once and
then perform many operations on it, so that the mem-
ory stays on the device and is not transferred between
memory types.

Device code is executed by many independent
threads, which are hierarchically organized; groups of
threads are organized into thread blocks, and thread
blocks are organized into grids (Fig. 2). Threads within
a block are organized into groups of 32, referred to
as warps. Each multiprocessor schedules and executes
threads at the warp level.

Each thread possesses its own registers (Fig. 2).
Memory accesses to registers are very fast, but register
file size is extremely small. Each block possesses its own
memory, which is referred to as shared memory (Fig. 2).
All threads within a block have access to shared mem-
ory, which is also very fast and can be used to efficiently
transfer information between threads. Threads in all
blocks have access to global memory (Fig. 2), which is
the largest form of memory on the GPU, but extremely
slow to access (almost 100 times slower than registers
or shared memory).

The task of the developer is to divide a problem into
small, independent subtasks that can be executed in
parallel at the block level. Within each block, these sub-
tasks are further divided, such that individual threads
cooperate to solve the subtask in parallel. This block-
level, coarse-grained parallelism contributes to the scal-
ability of a GPU program, since individual subtasks can
be sent to any available multiprocessor. The more mul-
tiprocessors, the higher the parallelism. As different
NVIDIA GPUs have a differing number of multiproces-
sors, the number of blocks should be high enough that
running on large devices does not lead to the under-
utilization of resources — ideally, at least 250 blocks
would be sufficient for current generation devices.

However, it is important to keep in mind that the de-
gree of parallelism obtained by a program depends on
the amount of resources requested by each thread, and
on the specifics of the underlying GPU. In the GeForce
9600M GT employed in this study, a maximum of 8
blocks can be assigned to each multiprocessor. If a mul-
tiprocessor cannot satisfy the resource needs of those
blocks, then the number of blocks is reduced until the
resource demand can be met. For example, the GeForce
9600M GT has 8K registers for each multiprocessor. If
each block requests 2K worth of registers, then only 4
blocks can reside on each multiprocessor. Thus, maxi-

Interdiscip Sci Comput Life Sci (2010) 2: 213–220 215

Shared memory

Block (0,0)

Registers

Thread (0,0)

Registers

Thread (1,0)

Registers

Thread (0,1)

Registers

Thread (1,1)

Shared memory

Block (1,0)

Registers

Thread (0,0)

Registers

Thread (1,0)

Registers

Thread (0,1)

Registers

Thread (1,1)

Global memory

Fig. 2 Schematic of the CUDA memory hierarchy. In this example, the grid is a 1x2 array of blocks, where each block
contains a 2x2 matrix of threads. Each thread has exclusive access to its own register file. All threads within a block
have access to the same shared memory, and threads in all blocks have access to global memory

mum parallelization requires the careful use of hardware
resources. A useful tool for measuring the resource uti-
lization of CUDA code on a specific GPU architecture
is provided by the NVIDIA Corporation (2009b).

3 CUDA basics

Data is shared between the CPU and GPU by writ-
ing from host RAM to global memory. CUDA pro-
vides a very simple syntax to allocate global memory
and to perform the data transfer. For example, if we
want to transfer a 100-element integer array (named
outputHost) from the host to the device, we would do
the following.
int *outputDevice;

cudaMalloc((void**)&outputDevice,

100*sizeof(int));

cudaMemcpy(outputDevice, outputHost,

100*sizeof(int), cudaMemcpyHostToDevice);

First, we allocate global memory using the CUDA
version of malloc, which is intuitively named
cudaMalloc. Then we call the CUDA function
cudaMemcpy to write the host data to the global
memory space allocated on the GPU, using the
cudaMemcpyHostToDevice option.

Device code, referred to as a kernel, operates on data
stored in global memory. Kernel prototypes in CUDA
are very similar to function prototypes in C. For ex-
ample, the prototype for a function named foo could
be

global void foo(int *input, int *output);

The global qualifier indicates that the func-
tion is a kernel, implying that it is called by the host
and can only be executed on the device. Kernel return

values must be void. The first operand is the integer
array input, upon which some operation will be per-
formed. The output of this operation will then be writ-
ten to the second operand, the integer array output.
Both input and output must exist in global memory
and therefore must be copied from host to device using
cudaMemcpy. If arguments are not passed by reference
(e.g., if they are not pointers), then they are stored in
a fast, cached memory space, which does not suffer the
same read penalties as the very slow global memory.

Kernels are executed in parallel across many threads.
The organization of threads into blocks, and blocks into
a grid is specified with the following two commands:
dim3 dimBlock(2,2);

dim3 dimGrid(1,2);

These commands state that each block will contain a
2x2 matrix of threads, and the grid will contain a 1x2
array of blocks, as depicted in Fig. 2. Once the block
and grid dimensionality are established, the kernel can
be invoked as follows:
foo<<<dimGrid,dimBlock>>>(inputDevice,

outputDevice);

Note that dimGrid and dimBlock are structures with
fields x, y, and z for the first, second, and third di-
mensions; they can be modified individually after cre-
ation. Following kernel execution, its output must be
read from global memory into host RAM, using the fol-
lowing command:
cudaMemcpy(outputHost, outputDevice,

100*sizeof(int), cudaMemcpyDeviceToHost);

With these concepts, we can begin to write CUDA
kernels for calculating the all-pairs distance between
instances in a dataset.

216 Interdiscip Sci Comput Life Sci (2010) 2: 213–220

4 A näıve implementation

In this section, we provide a näıve implementation
of the all-pairs distance kernel. The kernel is designed
such that each block calculates the distance between a
pair of instances, and the threads within a block cal-
culate part of this distance by focusing on specific at-
tributes. The grid is arranged as a square of blocks,
where the grid dimensions correspond to the number
of instances. Thus, each block writes a single out-
put value, corresponding to a unique pairing of in-
stances. For example, block (0, 2) would compare in-
stances 0 and 2 (Fig. 3a), with each thread assigned a
subset of the attributes. We assume a ternary alpha-
bet, such as encountered with single nucleotide poly-
morphism (SNP) data, and measure distance as the
number of attributes that differ between two instances.
This assumption is easily relaxed to alternative alpha-
bets, such as Cartesian coordinates. For simplicity, we
assume that the number of instances, attributes, and
threads are held fixed and stored in the global variables
INSTANCES, ATTRIBUTES, and THREADS, respectively.
1. global void GPUnaive(int *data, int

*distance) {
2. int idx = threadIdx.x;

3. int gx = blockIdx.x;

4. int gy = blockIdx.y;

5. for (int i = idx; i< ATTRIBUTES; i+=THREADS) {
6. if (data[INSTANCES*i + gx] !=

data[INSTANCES*i + gy]) {
7. atomicAdd(distance + INSTANCES*gy + gx, 1);

8. }
9. }
10. }

The kernel takes two operands: the input and out-
put data, both as integer arrays (line 1). Each thread
obtains its unique identification number idx (line 2),
and the x and y coordinates of its block in the grid,
gx (line 3) and gy (line 4), so it knows what data ele-
ments to operate on. The kernel then loops over all of
the attributes (line 5), such that the individual threads
leapfrog over one another to calculate the distance be-
tween the two instances. If the attribute assigned to a
thread differs between the two instances (line 6), then
the thread increments the value corresponding to the
respective pair of instances in the output array (line 7).
This is executed atomically, meaning that if two threads
attempt to update this array location simultaneously,
their requests will be serialized.

5 GPU programming principles

We present four programming principles for develop-
ing GPU applications. We complement the presenta-
tion of these principles with extensions of the näıve all-
pairs distance calculation presented above. For the sake
of clarity, we only provide code for the kernels. How-

ever, we provide the full, compilable, and documented
code as supplementary material (Computational Genet-
ics Laboratory, 2010).
5.1 Coalesced reads

The time required to access global memory can be re-
duced if threads request a single contiguous segment of
global memory. Such a request results in a single mem-
ory transaction for every 32 bytes transferred, assuming
that each thread accesses a successive address and the
base address is a multiple of the segment size, 32 bytes.
In contrast, if threads request n non-contiguous global
memory addresses, then n memory transactions occur.
The following implementation of the all-pairs kernel in-
cludes coalesced reads through a transposition of the
input data and a row-major access pattern. Figure 3c
shows how the input data would be restructured and
how block (0, 2) would access the rows corresponding
to data instances 0 and 2, as opposed to the column-
major order access patterns in the näıve implementa-
tion (Fig. 3a).
1. global void GPUcoalesce(int *data, int

*distance) {
2. int idx = threadIdx.x;

3. int gx = blockIdx.x;

4. int gy = blockIdx.y;

5. for (int i = idx; i< ATTRIBUTES; i+=THREADS) {
6. if(data[i + ATTRIBUTES*gx] != data[i +

ATTRIBUTES*gy]) {
7. atomicAdd(distance+INSTANCES*gy+gx, 1);

8. }
9. }
10. }

The only difference between this kernel and the näıve
implementation is that the input data is transposed
(compare Fig. 3c with 3a) and the accesses to global
memory (line 6) occur in row-major order. Together,
these two changes dramatically reduce the number of
global memory accesses (compare Fig. 3d with 3b),
since requests to contiguous blocks of memory are coa-
lesced into a single transaction. As we will later show,
this leads to appreciable speedups.
5.2 Data types

In the previous examples, we have represented our
input data using integers, a data type that requires 32
bits of storage. Since our input data uses a ternary
encoding (0, 1, and 2), the majority of these 32 bits
are not actually needed. As an alternative, we propose
to use a character representation, which allows four at-
tributes to be packed into 32 bits. This reduces both
the memory footprint of the program and the number
of global memory accesses.
1. global void GPUchar(char * data, int *

distance) {
2. int idx = threadIdx.x;

3. int gx = blockIdx.x;

4. int gy = blockIdx.y;

Interdiscip Sci Comput Life Sci (2010) 2: 213–220 217

0 0 0 2 1

1 2 0 0 1

0 1 1 0 1

2 1 1 2 0

Instances

In
st

an
ce

s
A

tt
ri

bu
te

s

Attributes

0 1 0 2

0 2 1 1

0 0 1 1

2 0 0 2

1 1 1 0

0 1 0 2 0 2 1 1 1 1 2 0 0 2 1 1 1 00 0

0 0 0 2 1 1 2 0 0 1 1 0 1 2 1 1 2 00 1

(a) (b)

(c) (d)

Fig. 3 Data organization and accessing patterns impact program efficiency. In (a), the data are written such that each row
corresponds to the instances of a single attribute and (b) shows this data stretched into a one-dimensional array, by
row-major order. In (c), the data are written such that each row corresponds to the attributes of a single instance,
and (d) shows the corresponding one-dimensional representation of these data. The data highlighted in gray depict
the memory access patterns of the threads within block (0,2)

5. for (int i=4*idx; i<ATTRIBUTES; i+=THREADS*4) {
6. char4 j=*(char4*)(data+i+ATTRIBUTES*gx);

7. char4 k=*(char4*)(data+i+ATTRIBUTES*gy);

8. if (j.x ^ k.x)

9. atomicAdd(distance + INSTANCES*gy+gx, 1);

10. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))

11. atomicAdd(distance+INSTANCES*gy+gx, 1);

12. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))

13. atomicAdd(distance+INSTANCES*gy+gx, 1);

14. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))

15. atomicAdd(distance + INSTANCES*gy+gx, 1);

16. }
17. }

This kernel expects the input data to be stored as
an array of characters (line 1). As in the previous ex-
amples, the kernel loops over the attributes, with the
threads leapfrogging over one another (line 5). How-
ever, the duration of this loop is shortened by a factor
of four because each thread accesses four characters per
memory transaction using the char4 data type (lines 6
and 7). These four attributes are stored as fields (x, y,
z, w) of the two instances j and k, which are compared
using an exclusive-or operation in each iteration of the
loop (lines 8–15). Note that the second clause of the
if statement in lines 10, 12, and 14 is required because
ATTRIBUTES need not be a multiple of four. Also note
that the reduction in global memory accesses comes at
the expense of an increased number of atomic add in-
structions. We will later show this to have an undesired
effect on program execution speed.

5.3 Memory hierarchy

So far, we have written all of our output directly to
global memory, and these writes have been performed
atomically. In this section, we will demonstrate how the

memory hierarchy of the GPU (Fig. 2) can be exploited
to further improve performance. We start at the thread
level and demonstrate the use of registers, and then
move to the block level, demonstrating the use of shared
memory.

Each thread has its own registers, which are small,
but writing to them is significantly faster than writing
to global memory. In our example, these registers can
be used to store the intermediate results of the compar-
isons between the two data instances.
1. global void GPUregister(char *data, int

*distance) {
2. int idx = threadIdx.x;

3. int gx = blockIdx.x;

4. int gy = blockIdx.y;

5. for (int i = 4*idx; i < ATTRIBUTES;

i+=THREADS*4) {
6. char4 j = *(char4 *)(data + i + ATTRIBUTES*gx);

7. char4 k = *(char4 *)(data + i + ATTRIBUTES*gy);

8. char count = 0;

9. if (j.x ^ k.x)

10. count++;

11. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))

12. count++;

13. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))

14. count++;

15. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))

16. count++;

17. atomicAdd(distance + INSTANCES*gx + gy, count);

18. }
19. }

Whereas in our previous example we wrote to global
memory after each comparison, we now only write to
global memory once (line 17), and this occurs after all
four comparisons have been made. This eliminates the

218 Interdiscip Sci Comput Life Sci (2010) 2: 213–220

tradeoff between global memory accesses and increased
atomic add instructions encountered in the previous ex-
ample. The intermediate results of the four compar-
isons are stored in the variable count (lines 8, 10, 13,
14, 16), which is local to each thread and stored in a
register. Using registers in this way reduces the number
of global memory writes by three quarters. Since these
writes were previously performed atomically, the use of
registers to store intermediate results also reduces much
of the contention overhead that occurs when multiple
threads request write permission to the same global
memory location.

This contention can be further reduced using shared
memory. In fact, it can be eliminated. Shared mem-
ory is accessible by all threads within a block, allowing
for efficient communication and cooperation between
threads. Like registers, writing to shared memory is
significantly faster than writing to global memory. The
same is true of reading from shared memory.

1. global void GPUshared(char *data, int

*distance) {
2. int idx = threadIdx.x;

3. int gx = blockIdx.x;

4. int gy = blockIdx.y;

5. shared int dist[THREADS];

6. dist[idx] = 0;

7. syncthreads();

8. for (int i = idx*4; i < ATTRIBUTES;

i+=THREADS*4) {
9. char4 j = *(char4 *)(data + i + ATTRIBUTES*gx);

10. char4 k = *(char4 *)(data + i + ATTRIBUTES*gy);

11. char count = 0;

12. if (j.x ^ k.x)

13. count++;

14. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))

15. count++;

16. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))

17. count++;

18. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))

19. count++;

20. dist[idx] += count;

21. }
22. syncthreads();

23. if (idx == 0) {
24. for (int i = 1; i < THREADS; i++)

25. dist[0] += dist[i];

26. distance[INSTANCES*gy + gx] = dist[0];

27. }
28. }

Above, we present our final kernel, to which we have
made several changes. First is the introduction of a
shared array (line 5), which is used to store the calcula-
tions of each thread. This array is initialized in parallel,
with each thread writing zero to a single element of the

array (line 6). To ensure the array is fully initialized be-
fore moving on, the CUDA function syncthreads()
is called (line 7), which pauses execution until all
threads within the block have reached this instruction.
As in the previous example, the kernel loops over the
attributes with the threads leapfrogging over one an-
other, and intermediate results are written to the local
variable count. However, these intermediate results are
then written to shared memory (line 20), instead of per-
forming an atomic write to global memory. Since each
thread is writing to a unique location in the shared ar-
ray, there is no risk of contention. The threads are then
synchronized again (line 22) and thread zero (line 23)
adds the results from all the other threads in the block
to its own value (lines 24-25), which are all stored in
the shared memory array. This sum, which is the to-
tal distance between instances j and k, is then written
to the corresponding element of the output array in
global memory (line 26). Note that this write need not
be atomic, since only one thread in each block is do-
ing the writing, and each element of the output array
corresponds uniquely to one block.

6 Empirical runtime analysis

In Fig. 4, we present an empirical runtime analysis
of the CPU and GPU implementations of the all-pairs
distance calculation. For each of the six methods, we
consider twenty-five independent analyses, using ran-
domly generated data sets with a ternary alphabet, 112
instances, and 512 attributes. All experiments used 128

CPU

GPUnaive

GPUchar

GPUcoalesce

GPUregister

GPUshared

Implementation

E
xe

cu
ti

on
 t

im
e

(m
S)

45000

2000

1500

1000

500

0

Fig. 4 Execution time in milliseconds (mS) for the CPU

and GPU implementations of the all-pairs distance

calculation. Data points represent the average ex-

ecution time on 25 randomly generated datasets

with ternary alphabets, 112 instances, and 512 at-

tributes. Standard errors are smaller than the sym-

bol size and are therefore not shown. Symbol labels

correspond to the kernel names (see text). Note the

break in scale on the y-axis

Interdiscip Sci Comput Life Sci (2010) 2: 213–220 219

threads per block. The CPU implementation was ex-
ecuted on a 2.66 GHz Intel Core 2 Duo with 4GB of
RAM and the GPU implementations were executed on
an NVIDIA GeForce 9600M GT with 512MB of RAM.
Both are standard issue on the current MacBook Pro
(MacBookPro5.3). The code used to perform this anal-
ysis is available as supplementary material (Computa-
tional Genetics Laboratory, 2010).

As shown in Fig. 4, the CPU implementation re-
quired an average of 44,865 mS to complete the all-pairs
distance calculation. The näıve GPU implementation
brought this execution time down to an average of 2,140
mS, improving efficiency by a factor of 20. Execution
time was further reduced to 1,766 mS by coalescing the
global memory reads. This led to a speedup of 25, rel-
ative to the CPU implementation. Changing the data
type to characters reduced the memory footprint of the
program, but slightly increased execution time (1,784
mS) due to the increase in atomic add instruction con-
tention. However, this tradeoff was overcome through
the use of registers, resulting in an execution time of
683 mS and a speedup of 65, relative to the CPU imple-
mentation. Finally, using shared memory to eliminate
global writes reduced execution time to 26 mS, which
is 1700 times faster than the CPU implementation.

7 Discussion and concluding remarks

The goal of this article was to present GPU hard-
ware and programming practices to computational biol-
ogists and bioinformaticists in a succinct form. We used
the example of computing all-pairs distance between
instances in a dataset. After presenting a CPU im-
plementation of this algorithm, we discussed five GPU
implementations, each one building upon its predeces-
sor. This allowed for the incremental introduction and
discussion of several important GPU programming con-
cepts within the framework of a concrete example. In
particular, we focused on the incorporation of coalesced
reads from global memory, the implications of using
various data types, and the proper usage of GPU mem-
ory hierarchies. Numerous other optimizations are pos-
sible with CUDA, as GPUs are designed to take advan-
tage of a number of graphics optimizations. In partic-
ular, the use of constant memory and texture memory
(NVIDIA Corporation, 2009a) can lead to significant
speedups, as they avoid reading global memory. An-
other powerful technique is parallel reduction (Harris,
2009). However, as evidenced by our runtime analysis,
sufficient speedups can be obtained using even these
less than optimal kernels. In the example presented
here, the GPU implementation outperformed its serial

counterpart by a factor of 1700.

Acknowledgments This work was supported by
NIH grants LM009012, LM010098, and A159694.

Appendix 1

Computing the all-pairs distance between instances
in a dataset is a common task in scientific computing.
Here, we provide a simple C function to accomplish this
task. We assume that INSTANCES and ATTRIBUTES are
globally defined variables.
1. void CPU(int * data, int * distance) {
2. for (int i = 0; i < INSTANCES; i++) {
3. for (int j = 0; j < INSTANCES; j++) {
4. for (int k = 0; k < ATTRIBUTES; k++) {
5. distance[i + INSTANCES * j] +=

6. (data[i * ATTRIBUTES + k] != data[j *

ATTRIBUTES + k]);

7. }
8. }
9. }
10.}

This code is used in the runtime analyses performed
in the final section of this article.

References

[1] Amdahl, G. 1967. Validity of the single processor ap-

proach to achieving large-scale computing capabilities.

Proceedings of the American Federation of Information

Processing Studies (AFIPS) Conference 30, 483–485.

[2] Computational Genetics Laboratory. 2010. Supple-

mentary Material. http://sourceforge.net/projects/

all-pairsgpu

[3] Greene, C.S., Sinnott-Armstrong, N.A., Himmelstein

D.S., Park, P.J., Moore, J.H., Harris, B.T. 2010. Mul-

tifactor dimensionality reduction for graphics process-

ing units enables genome-wide testing of epistasis in

sporadic ALS. Bioinformatics 26, 694–695.

[4] Harris, M. 2009. Optimizing parallel reduction in

CUDA. NVIDIA White Paper. http://developer.

download.nvidia.com/compute/cuda/1 1/Website/

projects/reduction/doc/reduction.pdf

[5] Hussong, R., Gregorius, B., Tholey, A., Hildebrandt,

A. 2009. Highly accelerated feature detection in pro-

teomics data sets using modern graphics processing

units. Bioinformatics 25, 1937–1943.

[6] Manavski, S.A., Valle, G. 2008. CUDA compati-

ble GPU cards as efficient hardware accelerators for

Smith-Waterman sequence alignment. BMC Bioinfor-

matics 9, S10.

[7] NVIDIA Corporation. 2009a. NVIDIA CUDA pro-

gramming guide. Version 2.3.1.

220 Interdiscip Sci Comput Life Sci (2010) 2: 213–220

[8] NVIDIA Corporation. 2009b. CUDA Occupancy Cal-

culator. http://developer.download.nvidia.com/com-

pute/cuda/CUDA Occupancy calculator.xls

[9] Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D. 2009.

A high-throughput screening approach to discovering

good forms of biologically inspired visual representa-

tion. PLoS Computational Biology 5, e1000579.

[10] Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney,

A. 2007. High-throughput sequence alignment using

graphics processing units. BMC Bioinformatics 8, 474.

[11] Sinnott-Armstrong, N.A., Greene, C.S., Cancare, F.,

Moore, J.H. 2009. Accelerating epistasis analysis in hu-

man genetics with consumer graphics hardware. BMC

Research Notes 2, 149.

[12] Suchard, M.A., Rambaut, A. 2009. Many-core algo-

rithms for statistical phylogenetics. Bioinformatics 25,

1370–1376.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50500
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50500
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

