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Evolutionary Dynamics on Scale-Free
Interaction Networks

Joshua L. Payne, Student Member, IEEE and Margaret J. Eppstein

Abstract— There has been a recent surge of interest in study-
ing dynamical processes, including evolutionary optimization,
on scale-free topologies. While various scaling parameters and
assortativities have been observed in natural scale-free interac-
tion networks, most previous studies of dynamics on scale-free
graphs have employed a graph-generating algorithm that yields
a topology with an uncorrelated degree distribution and a fixed
scaling parameter. In this paper, we advance the understanding of
selective pressure in scale-free networks by systematically inves-
tigating takeover times under local uniform selection in scale-
free topologies with varying scaling exponents, assortativities,
average degrees, and numbers of vertices. We demonstrate why
the so-called characteristic path length of a graph is a nonlinear
function of both scaling and assortativity. Neither the eigenvalues
of the adjacency matrix nor the effective population size was
sufficient to account for the variance in takeover times over the
parameter space that was explored. Rather, we show that 97 %
of the variance of logarithmically transformed average takeover
times, on all scale-free graphs tested, could be accounted for by a
planar function of: 1) the average inverse degree (which captures
the effects of scaling) and 2) the logarithm of the population size.
Additionally, we show that at low scaling exponents, increas-
ingly positive assortativities increased the variability between
experiments on different random graph instances, while increas-
ingly negative assortativities increased the variability between
takeover times from different initial conditions on the same graph
instances. We explore the mechanisms behind our sometimes
counterintuitive findings, and discuss potential implications for
evolutionary computation and other relevant disciplines.

Index Terms— Assortativity, complex networks, interaction
networks, interaction topologies, invasion dynamics, population
structure, saturation dynamics, scale-free, takeover time analysis.

I. INTRODUCTION

HE BEHAVIOR of a complex adaptive system is gov-

erned by the collective dynamics of its interacting system
components. Consequently, the topological characteristics of
the interaction network that specifies which components can
interact with one another have a pronounced influence on
the rate of information flow throughout the system, and thus
play a critical role in determining emergent system-wide
dynamics. For example, the evolution of altruism [1] and
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cooperation [2]-[5], species invasiveness [6], disease propaga-
tion [7]-[9], energy transfer in food webs [10], predator-prey
dynamics [11], the maintenance of genetic diversity [12]-[14],
the suppression of evolutionary pathologies [15], and the self-
organization of barriers to gene flow [16] have all been shown
to be highly dependent on the topological properties of the
underlying interaction network.

In the context of evolutionary computation, interaction net-
works are often utilized as population structures. This was
initiated in the design of parallel evolutionary algorithms
(for a review of this topic, see [17]), where populations
are typically structured into subpopulations that are distrib-
uted onto separate processing units. Mating interactions are
usually panmictic within the subpopulations, with periodic
migration occurring between subpopulations according to an
explicit subpopulation interaction topology (e.g., all-to-all,
grid-based, etc.) [18]-[23]. While population structures can
thus be exploited for computational efficiency of parallel
implementations of evolutionary algorithms, there has also
been an increasing interest in exploiting different population
structures to improve the effectiveness of evolutionary search.
In cellular evolutionary algorithms, populations are structured
on low-order regular graphs, such as a 1-D or 2-D lattice, and
mating events are restricted to occur within spatially localized
overlapping neighborhoods. In these regular population struc-
tures, the imposition of spatial constraints on recombination
events has been shown to improve the maintenance of genetic
diversity, in part by retarding the flow of advantageous alleles
and consequently reducing the selective pressure [24]. While
1-D and 2-D lattice population structures are the most com-
monly used interaction networks for evolutionary optimization,
the utilization of other regular graph structures, such as the
generalized Peterson graph and the complete bipartite graph,
have recently been investigated as well [25], wherein the
performance improvements obtained on each graph structure
were shown to be problem dependent.

In contrast to these regular population structures, the inter-
action networks of numerous natural populations have been
found to be heterogeneous (i.e., different nodes in the interac-
tion network have different numbers of connections). Of par-
ticular interest are scale-free networks [26], a class of highly
heterogeneous graphs, which have been shown to be quite
ubiquitous in natural systems, ranging from networks of social
interactions, such as email networks [27] and sexual con-
tacts [28], to cellular systems, such as metabolic networks [29],
[30] and protein—protein interactions [31]. Accordingly, there
has been a recent surge of interest in studying dynamical
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processes on scale-free topologies; examples include the sat-
uration dynamics of infectious disease in epidemiological
models [8], information cascades in binary decision models
[32], the emergence of cooperative behavior in evolutionary
games [4], [33], [34], and evolutionary optimization [35]-[38].
In particular, scale-free population structures have been ana-
lyzed in the context of genetic algorithms with self-adaptive
mutation [36] and multiobjective optimization [37], [38], and
have been applied to the localization problem in robotics [35],
with each study demonstrating varying degrees of success. For
example, while Giacobini et al. [36] found that populations
evolving on scale-free topologies were unable to outperform
panmictic populations on a variety of benchmark optimization
problems, Gasparri et al. [35] found that scale-free population
structures enhanced the genetic algorithm’s ability to solve
both the localization and kidnap problems in a mobile robotics
application. Such mixed results were also reported by Kirley
and Stewart [37], [38]. While populations evolving on scale-
free topologies were outperformed by populations evolving on
random topologies on a two-objective problem (in terms of
convergence speed and spread of solutions across the Pareto
front) [37], populations evolving on scale-free population
structures were shown to outperform populations evolving
on random, small-world [39], and regular lattice population
structures as the number of objectives increased, on specific
multiobjective problems [38].

Scale-free topologies exhibit a power-law distribution of
vertex connectivity, such that the probability p(k) of hav-
ing a vertex of degree k is of the form p(k) o« k77,
where y is referred to as the scaling parameter. Various
scaling exponents have been measured in natural systems, e.g.,
y ~ 2.4 for the number of species per genus of mammals
and y ~ 3.1 for the protein—protein interaction network of
S. cerevisiae [40]. The propensity with which vertices of
similar degree (i.e., number of connections) are connected
to one another is referred to as the assortativity (r) of the
network [41]. Some scale-free interaction networks (e.g., soci-
etal interactions) exhibit “positive assortativity” [41], where
vertices of high degree are more likely to be connected to
one another than to vertices of low degree. Other scale-free
networks (e.g., protein—protein interactions), exhibit “negative
assortativity” [41], where nodes of high degree are more likely
to connect to nodes of low degree. Networks in which there is
no relationship between the degree of adjacent vertices, such
as those produced by the preferential attachment algorithm
provided by Albert and Barabasi (AB) [26], are referred to as
“uncorrelated.”

While various scaling parameters and assortativities have
been observed in natural systems, most previous studies of
dynamics on scale-free graphs (including the evolutionary
optimization studies cited above) were generated using the AB
algorithm, which yields uncorrelated topologies (r ~ 0) [41]
with a scaling parameter that approaches y ~ 3 [26], as the
number of vertices approaches infinity. However, a few recent
studies have shown that both scaling and assortativity exert
important influences on graph-based dynamical processes. For
example, the equilibrium proportion of cooperators in the
prisoner’s dilemma played on scale-free networks has been

shown to decrease as the scaling exponent y increases [33],
or as the assortativity deviates from an uncorrelated mixing
pattern (r # 0) [34]. In the unbiased Voter Model, recent
results [42] have demonstrated that the expected consensus
time on scale-free graphs increases as the scaling exponent
increases, and that assortativity has a smaller secondary effect
on the amount of time required to reach consensus.

In order to better understand the potential for evolutionary
optimization on scale-free graphs, it is important to understand
how both scaling and assortativity affect fundamental system
dynamics. Such an understanding may also provide insight
into other types of dynamic processes on scale-free networks,
including spread of infectious disease and dissemination of
fads and ideas.

One commonly employed method for quantifying selective
pressure in evolutionary algorithms is through the analysis of
the dynamics with which a single favorable mutation spreads
throughout the population (aka “takeover time analysis™) [43].
Higher takeover times imply lower selective pressure, and vice
versa. Takeover times have been previously investigated and
modeled in several regular population structures. Goldberg et
al. [43] investigated saturation dynamics in panmictic pop-
ulation structures (i.e., complete graphs) under a variety of
selection mechanisms and showed that takeover is quite rapid
in such well-mixed systems. Rudolph [44] provided exact
analytical solutions for expected saturation times on ring struc-
tures (i.e., 1-D toroidal lattice) and lower and upper bounds for
array structures (i.e., 1-D non toroidal lattice). Sarma and De
Jong [45] investigated takeover times in 2-D toroidal lattices
with neighborhoods of various shapes and sizes and showed
that selective pressure is largely governed by the radius of the
local mating neighborhood, and Giacobini et al. [24] provided
mathematical models of takeover dynamics in 1-D and 2-D
(with Von Neumann neighborhoods) toroidal lattices using
synchronous and asynchronous updating policies.

Analysis of takeover times in irregular population structures
has received considerably less attention. Giacobini ef al. [46]
provided analytical approximations of takeover dynamics in
random graphs and empirical results for small-world topolo-
gies [39]. Their results demonstrated that random graphs
induce a selective pressure qualitatively similar to panmixia
and that the selective pressures induced by small-world topolo-
gies approach that of a random graph as the probability
of creating long-distance interactions increases. In the same
study [46], they showed that the average selective pressures
induced by the AB scale-free population structures they
employed were at least as strong as those induced by random
graphs and that, when the initial copy of the high-fitness
individual was strategically placed in a highly connected
vertex of an AB graph, takeover was even faster than with
panmixia.

In a preliminary study [47], we measured takeover times
using a variety of scale-free graph generating algorithms [26],
[30], [48] with various degrees of clustering, modularity, and
hierarchical organization (which resulted in a variety of scaling
exponents and assortativities, although these parameters were
neither systematically varied nor explicitly reported there).
We showed that selective pressures on different types of
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scale-free graphs vary from very high levels, comparable to
those induced by random mixing, to very low levels that
are even weaker than those induced by nearest neighbor
interactions (Moore neighborhoods). In a follow-up study,
we investigated the independent and combined influence of
scaling (y) and assortativity (r) on takeover times in scale-
free topologies at a single population size, with fixed average
degree [49]. In that work, we found that takeover times exhib-
ited a nonlinear negative correlation with the scaling exponent
and a nonlinear positive correlation with assortativity, with
additional nonlinear interactions between these two topological
properties. Further, we showed that with low scaling and high
positive assortativity, takeover times were much less dependent
on the degree of initial placement than on uncorrelated [46],
[49] and negatively assortative [49] scale-free graphs.
Ideally, expected takeover times in arbitrary population
structures (regular or irregular) could be simply predicted
using readily pre-computable metrics of the underlying inter-
action network. In related application domains, such as sta-
tistical physics and ecology, simple functional relationships
have been determined between the structural properties of the
interaction networks and the dynamic properties of spread-
ing behavior. For example, consensus time in the unbiased
Voter Model has recently been shown to be a function of
the population size and the first and second moments of
the degree distribution [42]. Investigations in heterogeneous
ecological networks have shown that indirect pathways are
an important governing influence in graph-based dynamical
processes [10], [50]. Specifically, the leading eigenvalue of
the network adjacency matrix has been shown to be a good
measure of the rate with which the number of paths between
vertices grows as a function of path length [50], and this has
been shown to have a pronounced influence on the rate of
flow of matter and energy throughout ecosystems [10]. In the
context of evolutionary computation, the expected takeover
time on regular graphs is known to be a positively correlated
linear function of the characteristic path length [44], [47], a
metric which quantifies the mean shortest distance between
all pairs of vertices. In addition, we have recently shown
that differential equation-based analytical methods, based on
pair approximations, can be parameterized by the ratio of
the local neighborhood radius to the global lattice radius in
order to rapidly estimate pre-equilibrium takeover dynamics
in grid-based regular population structures [51]. The problem
has proved more elusive in the case of scale-free topologies
with stochastic degree-dependent update policies. In [47], we
suggested that average takeover times on scale-free topologies
were positively linearly correlated with a combination of the
maximum and variance of the all-pairs shortest path lengths.
However, our subsequent work [49] showed that takeover
times were actually a logarithmic function of the metric
presented in [47] in uncorrelated and positively assortative
scale-free graphs, with the slopes varying as a function of
assortativity, while takeover times in negatively assortative
scale-free graphs were completely independent of this metric.
Conversely, while average takeover time was shown to be
an ambiguous multifunction of the characteristic path length
in uncorrelated and positively assortative scale-free graphs,

characteristic path length was found to have a negative non-
linear correlation with takeover times in negatively assortative
scale-free graphs (a counterintuitive result, given that this
correlation is positive in regular graphs).

The results of our previous studies thus indicate that metrics
based on all-pairs shortest direct paths are not sufficient to
explain the rate of information flow in scale-free networks with
stochastic, degree-dependent update policies. In this paper,
we seek to understand why this observation is true and to
determine if there are other static network properties that
govern takeover times on scale-free topologies with vary-
ing scaling exponents, assortativities, average degrees, and
population sizes (i.e., number of vertices). We significantly
extend our previous studies [47], [49] on takeover times under
local uniform selection in scale-free interaction networks. In
Section II, we explain how we generated and employed scale-
free graphs with systematically varying scaling exponents,
assortativities, average degrees, and population sizes. In Sec-
tion III we show why characteristic path length is a nonlinear
non-monotonic function of both scaling and assortativity, and
thus does not govern takeover time. We demonstrate that
the influence of scaling and assortativity on average takeover
times is qualitatively similar under three different stochastic
selection mechanisms: uniform selection, binary tournament
selection, and linear ranking selection. We then show that
the logarithm of average takeover times in scale-free topolo-
gies can be described as a planar function of the average
inverse degree and the logarithm of population size, and that
assortativity exerts a strong influence on the variability in
takeover times at low scaling exponents. In Section IV, we
discuss our findings and their relevance to other disciplines,
and suggest ways in which the structural characteristics of
scale-free interaction networks can potentially be exploited in
evolutionary optimization.

II. METHODS
A. Representing Population Structure as a Graph

The population structure of an evolutionary algorithm can
be represented as a graph G = (V, E), defined as a nonempty
finite set of vertices (V) and a finite set of edges (E)
connecting these vertices. Each individual in the population
is represented by a vertex i € V, so that |V| = N, where N
is the population size. The graph is undirected, with an edge
(i, j) € E for every individual j in the mating neighborhood
of individual i, for all i € V. The number of neighbors in the
mating neighborhood of individual i, which is also referred to
as the degree of vertex i, is denoted by k;. Throughout this
paper, the terms population structure, topology, network, and
graph are used synonymously.

B. Structural Properties of Graphs

When quantifying the structural properties of graphs, there
are several metrics of potential interest (e.g., see [52]). In this
section, we present the topological properties considered in
this paper (for the readers’ convenience, we also present a
glossary of variables in the Appendix). The distribution of
vertex connectivity p(k) is a probability distribution function
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(PDF) that depicts the frequency with which a node has
degree k. The scale-free topologies considered in this paper
possess a distribution of vertex connectivity of the form

p(k) =

The complementary cumulative distribution function (CCDF),
which is commonly used to visualize power-law distribu-
tions [40], depicts the frequency with which nodes have degree
greater than or equal to k£

pk) =

In (1) and (2), the scaling parameter y affects the shape of the
power-law distribution, such that distributions with smaller y
possess heavier tails (Fig. 1).

The ith moment (u;) of the degree distribution is given by

=D K pk) 3)
k

Pr(K =k) < k7. (1)

Pr(K > k) o< k™7 T, 2)

such that x is the average degree ((k)) and u_; is the average
inverse degree. It is important to point out that while the
average degree (u1) is unaffected by changes in the scaling
exponent (y ), the average inverse degree (x—_1) changes as a
function of both y and (k). Since the graphs considered are
connected, u_1 is always well defined.

A path is defined as a sequence of vertex—edge pairs,
beginning at one vertex i and ending at another vertex j; the
direct distance disz(i, j) between any two nodes i and j is
defined as the length of the shortest path between i and j. The
average individual path length L; of a vertex i is defined as
the mean of the shortest paths between i and all other vertices
in the graph

z dist(i, j). 4

|V| V/#teV

The characteristic path length L of a graph G is defined as
the mean of the individual path lengths

:—ZL 5)

VzeV

The assortativity (r) of a graph G measures the propensity
with which vertices of similar degree are connected to one
another. Assortativity is formally defined as [41]

2
~ 1
EI7Y D" kik = [IEIT D] E(k,~+k,-)
Vi, j)eE V(i,j)eE
r= 3
1 _ 1
ET D> S +k) = [IETY 30 Ski+k))
V(i,j)eE V(i,j)eE
(6)

which is equivalent to the Pearson correlation coefficient of the
degrees of vertices at the opposing ends of an edge [41]. A
graph is said to be positively assortative if r > 0, uncorrelated
if r = 0, and negatively assortative if r < 0.

It is worth noting that the radius [45] of a local interaction
neighborhood, which exhibits a strong effect on saturation

times in regular population structures [45], [51], is not a
meaningful metric in the case of scale-free topologies, since
these graphs are not embedded in Cartesian space.

C. Takeover Time Analysis

In order to most directly infer the influence of the structural
properties of scale-free interaction networks on the saturation
times of advantageous alleles, we minimized 1) the number
of different alleles, and 2) the complexity of the selection
operator. Specifically, we consider a population with only two
levels of fitness (as in [24], [44], [47], [49], [51]); i.e., let
A;(t) be the fitness value of vertex i € V at time ¢, where
A;(t) € {0, 1} and 1 is more fit than 0. In the initial population,
A;(0) =1 forexactlyone i € V and A;(0) =0Vj #ieV.
Let N; denote the proportion of nodes with value 1 at time ¢

Ne= i > A, ™
vieV
Following [44], we define the takeover time 7 = min{t|N; =
1} of an experiment to be the first generation in which the
fittest genotype fully saturates the population, starting from a
single copy of this genotype. This definition of takeover time
thus assumes that N; can never decrease.

E;[T] is defined as the empirical estimate of the expected
takeover time given that the initial best individual is located
in vertex i. Thus, the overall empirically estimated expected
takeover time of a beneficial mutation, averaged over all
potential initial conditions, is simply

|V| > EIT] ®)

VieV
assuming that the initial best individual is equally likely to
appear in any given node.

We tested three stochastic selection mechanisms that have
been used in previous takeover time analyses: local uniform
selection [53], binary tournament selection [24], and linear
ranking selection [24]. Note that in heterogeneous graphs
with a minimum node degree of 2, tournaments of larger
sizes are not possible for all nodes, and in takeover studies
with only two levels of fitness, ranking is arbitrary within
nodes of the same fitness level. Our tests verified that the
influence of scaling and assortativity on takeover dynamics is
qualitatively similar under these three selection mechanisms,
(see Section III-B). Thus, consistent with previous studies
of takeover dynamics on heterogeneous networks [46], [47],
[49], the remainder of our experiments utilized local uniform
selection [53], with a simple “replace if better” survivor
selection mechanism, as described below.

Each node is updated synchronously, as follows: for each
node i € V, a node j is selected at random with uniform
probability from the mating neighborhood of node i, with
neighborhood size k;. Thus, if there are x nodes containing
the fittest value in the mating neighborhood of node i, then
the probability of selecting one of them (Ps) is simply

X
Pse) = ki . (9)
The value of node i is then replaced by the value of node j
if j has higher fitness [i.e., A;(t) > A;(t)].
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D. Generating Scale-Free Topologies with Tunable Scaling
and Assortativity

Several methods have been proposed for generating topolo-
gies with power-law distributions of vertex connectivity
(e.g., [54]-[56]). However, most of these graph-generating
algorithms produce topologies that consist of a single giant
connected component and several small clusters of vertices
that are isolated from the rest of the graph, effectively resulting
in an unnecessary reduction of the population size. Further,
most scale-free graph generating algorithms produce topolo-
gies that asymptotically approach fixed structural properties
(e.g., the AB algorithm produces graphs with y approaching
3 and r approaching 0, as N approaches co). In this paper,
we wanted to generate connected scale-free topologies that
possess well-controlled scaling exponents and assortativities,
but whose interconnections are otherwise random. In the
following sections we describe the algorithms used to create
these graphs.

1) Tuning the Scaling Exponent: In order to generate scale-
free topologies with tunable scaling exponents, we utilized
the growing network (GN) model of Krapivsky, Redner, and
Leyvraz [57], which is a generalization of the AB algorithm.
Each graph was initialized as a fully connected clique of
mo nodes (whereas in original GN model [57] the graph is
initialized with only one node). In each time step ¢, a single
node is added to the graph and is connected to m existing
nodes, such that the probability of connecting to an existing
node of degree k is proportional to the linear connection
kernel Ay
my, if k = mo

A, =
k ok,

10
if k > mo. (10)

The probability IT that a newly introduced vertex attaches to
an existing vertex i of degree k; is then given by

Ay,
Z Ak, .

vjeV

(ki) = Y

After ¢ time steps, the graph consists of my+¢ vertices and
(";0) + mt edges, where t = N — mgp. So long as m = my,
graph connectivity is ensured, since the first incoming node is
forced to connect to all m nodes in the initial clique. Note
that if @ = 1, the AB algorithm is recovered.

By tuning the parameter o in (10), the scaling exponent can
be theoretically tuned anywhere in the range 2 < y < oo,
for infinitely sized graphs. (Graphs with y < 2 possess
degree distributions with infinite mean and variance.) While
an analytical formulation of y as a function of a is provided
in [57], this formulation assumes that the graph is infinitely
large, and can only be used as a rough approximation for
the finite graphs considered herein. Thus, the values of o
used in this paper to generate graphs with specific scaling
exponents, at various population sizes and average degree,
were determined empirically. Due to finite size effects and
the stochastic nature of the GN algorithm, the mapping of
o to y is not one-to-one, and a range of scaling exponents
(y) will be observed for any given a. In order to generate a
graph with a specific desired scaling exponent y, a graph was

[ 3

100

_
<

102

CCDF (P(k))
3

1073
a
A
A
10 : —
10° 10! 102
Degree (k)
Fig. 1. Data points showing representative complementary cumulative

distribution functions (CCDF) of vertex connectivity in randomized scale-free
interaction networks created with the GN algorithm (Section II-D.1), with the
smallest and largest scaling exponents used in this paper y € {2.8,4.0} and
(k) = 4. Lines are drawn using the scaling exponents measured using the
algorithm described in Section II-D.2 with a ki, of 4, and are deliberately
offset in the vertical direction so as not to obscure the data. Data shown
pertain to N = 10, 000. Note the double logarithmic scale. Insets denote
the corresponding probability distribution functions (PDF), showing how the
observed frequency of occurrence is lower-bounded by 1/N in these finite-
sized graphs.

generated using the empirically predetermined value of a, and
the observed y was then calculated for the graph (as described
in the subsequent section). Only if the graph had the desired
y (to within 0.01), was it retained and included in the study.

2) Measuring the Scaling Exponent: Accurately estimating
the scaling parameter (y ) of data that are thought to be drawn
from a power-law degree distribution is an area of current
research [40]. One common method for estimating y is to
use the slope of the best linear fit between log;y(p(k)) and
logo(k). While this method is straightforward, it has been
shown to introduce significant bias in common cases [40].

In order to avoid such bias, we estimated y using the
method provided by Clauset, Shalizi, and Newman [40]. This
method systematically varies y over a specified range and
iteratively applies the Kolmogrorov—Smirnov (KS) test to the
observed data and fitted model. The y that minimizes the KS
statistic is then chosen as the hypothesized power-law model.
The goodness of fit of this model is then calculated using a
Monte Carlo procedure [40] in order to verify that the degree
distribution is, in fact, drawn from the hypothesized power-law
model. While the minimum degree (kmin) of the hypothesized
power-law model can be simultaneously estimated [40], in this
paper it was sufficient to simply use kmin = (k).

3) Shuffling the Edge Set: In order to eliminate any struc-
tural motifs that may have been inadvertently introduced into
the topology as an artifact of the GN algorithm, we utilized the
method provided by Maslov and Sneppen [58] to randomize
the edge set of every topology used in this paper. The Maslov—
Sneppen algorithm is an iterative method that, in each iteration,
randomly chooses two edges, (a, b) and (x, y), from the edge
set E (where a, b, x, y are all distinct). These edges are then
shuffled to create two new edges (a,x) and (b, y), which
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replace the original edges, so long as they are not already
present in the graph. Since the degree of each vertex remains
unchanged by a shuffling event, this method exactly preserves
the underlying degree distribution.

4) Tuning the Assortativity: In order to investigate the
relationship between various assortativites and saturation times
in scale-free topologies, we devised a simple iterative method
that allows for the direct specification of assortativity within
some error tolerance, as follows. In each iteration of our
algorithm, the assortativity of the graph is measured using
(6) and compared to the desired assortativity. Two edges,
(a,b) and (x, y), are randomly selected from the edge set E
(where a, b, x, y are all distinct) with uniform probability. If
the observed assortativity is less than the desired assortativity,
the edges are swapped such that the two nodes with the larger
degree are connected to one another and the two nodes with the
smaller degree are connected together (a “positive” assortative
swap). If the observed assortativity is greater than the desired
assortativity, the reverse swap is done (a “negative” assortative
swap). If either of the new edges is already present in the
graph, then the swap is aborted. The algorithm iteratively
continues swapping edges in this fashion until the observed
assortativity is within 0.01 of the desired assortativity or until a
specified maximum number of swaps is reached (in this paper,
we set the maximum number of swaps to 1000000). Like
the Maslov—Sneppen algorithm, this method exactly maintains
the underlying degree distribution, since the degree of each
node remains unchanged after a swapping event. Since neither
our assortative shuffling algorithm nor the Maslov—Sneppen
algorithm guarantees that the graph remains connected, we
discarded graphs that became disconnected, as discussed in
Section II-D.5, step 4.

Our algorithm is similar to the single-parameter shuf-
fling algorithm proposed by Xulvi-Brunet and Sokolov [59],
which probabilistically alternates between Maslov—Sneppen
edge swaps and edge swaps that alter assortativity. However,
the non-determinism in the selection of the edge-swapping
algorithm results in a range of assortativities for a given
specified probability, whereas our method enables us to more
closely achieve the desired degree of assortativity (to within
some small error tolerance), thus facilitating the generation of
topologies with well-controlled assortativities.

Although assortativity can theoretically range from —1 <
r < 1, in reality the actual range of assortativities in scale-
free graphs that we were able to obtain, using the algorithms
described above, was much more constrained. The positive
(negative) assortativity limits were empirically assessed by
performing 10 million positive (negative) assortative edge
swaps on ten graph instances, for population sizes N € {1000,
1600, 3600, 6400, 10000}, and y <{2.4, 2.8, 3.2, 3.6, 4.0},
with (k) = 4 [Fig. 2(a)] and (k) = 8 (the data for (k) = 8
were very similar to those for (k) = 4, so for clarity are
not shown). Population size and number of edges had no
detectable effects on the achievable ranges of assortativity;
however, we observed greater constraints on achievable assor-
tativities at lower scaling exponents (y). A symmetric range
of assortativities for each scaling exponent was implicitly
limited by these constraints, and further experiments were

thus run using assortativities from —0.2 < r < 0.2, for
2.8 < y < 4, as shown by the shaded box in Fig. 2(a).
This range spans to either side of y = 3, below which the
variance of the degree distribution is theoretically infinite (this
is not possible for finite graphs, resulting in a degradation
in the scale-free behavior at high k, as shown in Fig. 1 for
y ~ 2.8). Parameters within this range have been observed
in natural systems (e.g., a recent analysis [40] of empirical
power law distributions arising in a variety of systems provides
statistical support for scaling exponents ranging from 1.7 to
4.3). We use a relatively small (N = 500) scale-free interaction
network with y = 2.8 and (k) = 4 to graphically illustrate
how the topology qualitatively differs at two extremes of the
parameter range shown in Fig. 2(a), when the assortativity of
the graph is reshuffled to have positive assortativity r = 0.2
[Fig. 2(b)] or negative assortativity » = —0.2 [Fig. 2(c)].
Note that the degree distributions of these two graphs are
identical.

5) Summary of Scale-Free Graph Generation: For each
desired scaling exponent y, assortativity », population size N,
and average degree (k), we performed the following steps.

Step 1: A graph was created using the GN algorithm, as
presented in Section II-D.1, with mg = m.

The scaling exponent (y ) of the resulting graph was
measured using the method presented in Section II-
D.2, with the minimum degree (kmin) at which the
scaling behavior was assessed set to (k) (Fig. 1).
If the absolute difference between the observed and
desired y was greater than 0.01, or if the goodness
of fit of the hypothesized power law model was not
satisfactory (p < 0.1, as calculated using the Monte
Carlo method presented in [40]), then the graph was
discarded and Step 1) was repeated.

Once a graph was created with an acceptable scal-
ing exponent, it was randomized by performing
100000 Maslov—Sneppen edge swaps, as described in
Section II-D.3. If the graph became disconnected due
to a swapping event, the shuffled graph was discarded
and Step 3) was repeated.

The graph was then further shuffled to obtain the
desired degree of assortativity (r), using the method
presented in Section II-D.4, until the absolute differ-
ence between the observed and desired assortativity
was less than 0.01. If the graph became disconnected
due to a swapping event, the shuffled graph was
discarded and Step 4) was repeated. If the graph
could not be shuffled to have the desired assortativity
within 1000000 swapping events, the graph was
discarded and Step 1) was repeated.

Step 2:

Step 3:

Step 4:

Self loops were implicitly or explicitly precluded by all steps
in graph generation.

E. Experimental Design

In this paper, population sizes of N e {1000, 1600, 3600,
6400, 10000} were considered with average degree (k) €
{4,8} (m = 2 and m = 4, respectively), where the scaling
exponent was varied between 2.8 < y < 4.0 in increments of
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(a) Upper bound of positive assortativities (r+) and lower bound of negative assortativities (r—) that we were able to obtain using the reshuffling

algorithm described in Section II-D.4, as a function of the scaling parameter (y ). Data points are the averages of the maximum (or minimum) assortativities
that were achieved in 10 million assortative edge swaps on each of ten graph instances at each of the five population sizes with (k) = 4. Error bars indicate
the minima and maxima observed for each combination of parameters. The shaded box indicates the range of experimental parameters examined in this paper.
(b) Visualization of one representative positively assortative graph (y = 2.8,r = 0.2, N = 500, (k) = 4), and (c) visualization of one representative negatively
assortative graph (y =2.8,r = —0.2, N = 500, (k) =4). In (b) and (c) the degree distribution of the graphs is identical. For visual clarity, the graphs shown
in (b) and (c) are deliberately smaller than any used in the experiments; visualizations were made using Pajek [60].

0.4 and assortativity was varied between —0.2 < r < 0.2 in
increments of 0.1. For each combination of N, (k), y, and r,
ten independent graph instances were generated by performing
the steps detailed in Section II-D.5.

In contrast to regular population structures, the expected
takeover times in scale-free interaction networks are known
to be affected by the placement of the initial high fitness
individual [46], [49]. Therefore, for each graph instance we
systematically placed the high-fitness individual of the initial
population in each vertex of the population structure, one at
a time, and subsequently performed 10 independent takeover
time simulations for each individual placement, in order to
account for the stochasticity inherent in the selection mecha-
nism. Thus, 100 x N independent simulations were performed
for each combination of N, (k), y, and r, resulting in a total
of over 140 million independent takeover time simulations.

To facilitate this extensive experimental design, simula-
tions and graph generation were performed on a cluster of
128 dual-processor, dual-core (Opteron 2220) IBM x3455s,

each with 6 GB of memory. All of the graph-generating
algorithms, edge-shuffling routines, and takeover simulations
were written in the C programming language for speed.
Data analysis was performed using MATLAB, as were the
methods employed to measure scaling exponents, using the
code provided with [40].

III. RESULTS

Results were qualitatively similar for all population sizes
(N) and average degree ({k)), so we initially present data for
the representative population size of N = 3600 and (k) = 4,
and then show how the results scale as a function of population
size and average degree. The first section pertains to the
influence of scaling and assortativity on the static structural
properties of the networks considered and the second section
pertains to the dynamical properties of the takeover times
observed on these networks.
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(a) Characteristic path length (L) and (b) and (c) expected takeover time (E[T]), each shown as a surface function of assortativity (r) and scaling

(y) on a representative population size and average degree (N = 3600, (k) = 4). The symbols represent the data points for each of the ten graph instances
at each parameter combination, with lines connecting the means. Panel (b) corresponds to local uniform selection and (c) to binary tournament selection (e
symbols, dashed line) and linear ranking selection (o symbols, solid line). In (a) and (b) the dashed—dotted lines at y ~ 2.8 correspond to the data presented
in Figs. 5 and 6, and the dashed lines at r ~ 0.2 correspond to the data presented in Figs. 4 and 7.

A. Static Properties

Characteristic path length (L) was found to vary non-
monotonically as a function of both the scaling exponent y
and assortativity r [Fig. 3(a)], consistent with the preliminary
results presented in [49]. For r ~ 0.2 [Fig. 3(a), dashed line],
L first decreases from y ~ 4.0to y ~ 3.2 (p <K 0.01,
ANOVA) and subsequently increases from y ~3.2toy ~ 2.8
(p < 0.01, ANOVA) . Similarly, for y ~ 2.8 [Fig. 3(a),
dashed—dotted line], L is lowest at r ~ O and increases as
the magnitude of assortativity (either positive or negative)
increases. These nonlinear relationships between y and L, and
between r and L, result from changes in the distribution of
underlying path lengths L;, as described below.

Fig. 4 depicts the effect of decreasing the scaling exponent
(y) on the distribution of individual path lengths (L;), and
consequently on the characteristic path length (L), for a single
representative graph instance with N = 3600, (k) = 4, and
r ~ 0.2 [this data corresponds to the dashed lines in Fig. 3(a)
and (b)]. For y ~ 4.0, the distribution of individual path
lengths is approximately normally distributed (p > 0.01,
x? test) with a mean of L = 6.05 and standard deviation
of 0.6 [Fig. 4(a)]. However, as y decreases, the distribution

of path lengths deviates from normality (p < 0.01, x? test)
and begins to flatten and become increasingly skewed, with
longer individual path lengths becoming more common as
y continues to decrease [(Fig. 4(b)-(d)]. For y ~ 3.6 and
y ~ 3.2, the flattening of the distribution has the effect of
decreasing L, but for y ~ 2.8 the increase in the frequency of
longer individual path lengths begins to play a dominating role,
and L consequently increases (dashed vertical lines, p < 0.01,
ANOVA).

Increasing the assortativity (r) has a similar impact on the
underlying distribution of path lengths, and on the correspond-
ing characteristic path length (L), as shown in Fig. 5, for a
representative scale-free interaction network with N = 3600,
(k) =4, and y ~ 2.8. The path length distributions deviated
from normality for all y ~ 2.8 (p < 0.01, x? test), though
for r ~ —0.2, the path length distribution was found to be
well centered around L = 5.26, with very few long paths
[Fig. 5(a)]. However, for r > 0.2, the path length distribution
was found to become increasingly flattened and skewed.
Longer path lengths were found to occur more frequently as r
increases, and their overall magnitude was found to increase
[e.g., compare the horizontal spread of * symbols in Fig. 5(a)
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Fig. 4. Distribution of individual path lengths (L;) in representative networks
with N = 3600, (k) =4,and r = 0.2 for (a) y ~4,(b) y ~3.6,(c)y ~3.2,
and (d) y ~ 2.8. The % symbols are placed atop each bin as a visual aid. The
insets magnify the domain immediately surrounding the average characteristic
path lengths L of the ten graph instances (denoted by the thick dashed vertical
lines) in order to illustrate the nonlinear relationship between L and y. Note
that the data in this Figure corresponds to the data along the dashed line in
Fig. 3(a).

with those in Fig. 5(e)]. Similar to the effect of decreasing vy,
increasing r initially has the effect of decreasing L [dashed—
dotted vertical lines for —0.2 < r < 0, p « 0.01, ANOVA,
Fig. 5(a)—(c)], but as the frequency of longer path lengths and
their overall magnitude increases, L subsequently begins to
increase [dashed—dotted vertical lines for 0 < r < 0.2, p K
0.01, ANOVA, Fig. 5(d) and (e)]. These changes in topology
as a function of assortativity are graphically illustrated by
comparing Fig. 2(b) (for positive assortativity), where there is
a preponderance of long paths through vertices of degree k =
2, and Fig. 2(c) (for negative assortativity), where individual
paths tend to alternate between high and low degree nodes,
and are consequently more homogeneous in length.

B. Dynamic Properties

While characteristic path length (L) varied non-
monotonically with both the scaling exponent (y) and
assortativity (r), [Fig. 3(a)], expected takeover times
increased monotonically: 1) as assortativity was increased
from r ~ —0.2 to r ~ 0.2 and 2) as the scaling exponent was
decreased from y ~ 4.0 to y ~ 2.8 [Fig. 3(b) and (c)], for all
three selection mechanisms considered. The variability in the
average takeover times, for each of the ten graph instances at

each parameter combination, also increased with increasing
r and decreasing y [in Fig. 3(b) and (c), each *, e, and o
symbol represents data points for the ten graph instances at
each combination of r and y].

The takeover times observed using binary tournament selec-
tion [Fig. 3(c), e symbols, dashed line] and linear ranking
selection [Fig. 3(c), o symbols, solid line] were shorter than
those observed under local uniform selection [Fig. 3(b)],
because both of these selection mechanisms increase the prob-
ability of selecting high-fitness nodes from the local neighbor-
hood, relative to uniform selection. However, the qualitative
influence of scaling and assortativity on average takeover times
was similar under all three selection mechanisms [compare
Fig. 3(b) and (c)]. The remainder of our results were achieved
using local uniform selection.

In Fig. 6, we depict the actual takeover dynamics [Fig. 6(a),
(c), and (e)], and corresponding distributions of takeover times
[Fig. 6(b), (d), and (f)], observed on a single representative
scale-free interaction network with N = 3600, (k) = 4,
and y ~ 2.8 [corresponding to the data around the dashed-
dotted lines in Fig. 3(a) and (b)]. Fig. 3(b) indicates that
both expected takeover times, and the variability in the
expected takeover times between graph instances, increase
with increasing assortativity. In contrast, Fig. 6 shows that
the variability in takeover times on a single graph instance,
due to different initial placements of the high fitness indi-
vidual, actually increases with decreasing assortativity, while
the average takeover time simultaneously decreases [e.g., at
y ~ 28 and r ~ 0.2, E[T] = 43.2, but this falls to
E[T]=31.3 at r ~ —0.2, Fig. 3(b)]. This occurs because, in
negatively assortative graphs, some initial placements result in
an extended initial period in which the high fitness genotype is
unable to spread [compare Fig. 6(a), (c), and (e), gray lines],
but a larger proportion of takeover times are comparatively
more rapid than at high assortativity [compare the heights and
locations of the peaks of the distributions in Fig. 6(b), (d),
and (f)]. None of the distributions in Fig. 6(b), (d), and (f) is
normal (p < 0.01, ){2 test).

In contrast, decreasing the scaling exponent (y ) of a scale-
free interaction network increases both the range and average
of takeover times observed on a single graph instance, as
shown for a representative topology with N = 3600, (k) = 4,
and r ~ 0.2 in Fig. 7 [corresponding to the data around the
dashed lines in Fig. 3(a) and (b)]. In this case, the distribution
of observed takeover times is shifted to the right and broadened
as the scaling exponent decreases, with the expected takeover
time increasing from E[T] = 29.5 (for y ~ 4.0) to E[T] =
43.2 (for y ~ 2.8), as shown in Fig. 7(b), (d), (f), and (h).
Once again, none of the distributions of takeover times are
normal (p < 0.01, ){2 test).

We now shift our attention to how our results scale with
population size (N) and average degree ({k)). Since expected
takeover time is an ambiguous multifunction of the charac-
teristic path length, L cannot be used to describe takeover
times (or selective pressure) in populations evolving on scale-
free topologies. We also found that the leading eigenvalue
of the network adjacency matrix is not a good indicator of
takeover times in the general case. For the scale-free graphs
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Fig. 5. Distribution of individual path lengths (L;) in representative networks
with N = 3600, (k) =4, and y ~ 2.8 for (a) r ~ —0.2, (b) r ~ —0.1, (¢)
r ~0,(d)r ~ 0.1, and (e) r ~ 0.2. The * symbols are placed atop each
bin as a visual aid. The insets magnify the domain immediately surrounding
the average characteristic path lengths L of the ten graph instances (denoted
by the thick dashed—dotted vertical line) in order to illustrate the nonlinear
relationship between L and r. Note that the data in this Figure corresponds
to the data along the dashed—dotted line in Fig. 3(a).

considered herein with (k) = 4, the expected takeover time
E[T] was found to grow linearly in the leading eigenvalue of
the adjacency matrix, for a given population size (R? > 0.86).
However, this relationship was found to deteriorate as the
average degree was increased to (k) = 8 (R? > 0.51). Further,
both the slope and intercept of the linear relationship between
the leading eigenvalue and expected takeover time were found
to differ between (k) = 4 and (k) = 8, with a combined
R? of only 0.02. In contrast, for each population size N,
we found that E[T] increased exponentially in the average
inverse degree (u—1) (with the goodness-of-fit RZ > 0.95
for each N considered in this paper); note that (x«—1) varies
with both (k) and scaling exponent y. Further, for both
values of (k) considered, we found that the logarithm of the
expected takeover time (log;q(E[T])) scaled linearly with the
logarithm of the population size (log;(N)) (the goodness-of-
fit R = 0.70 for (k) = 4 and R? = 0.87 for (k) = 8), with
coefficients on log;,(/N) less than 1, implying that E[T] grows
sub-linearly in N. Consequently, we constructed a 2-D best-fit
function [depicted in Fig. 8(a)], which accurately describes

expected takeover time according to the following relationship:

log o (E[T]) = 0.80 + 0.111og,o(N) + 0.88u_1  (12)

with R> = 0.97 and a root mean squared error of only 1.32
between this plane and all of the data points (i.e., for all
scaling exponents y , assortativities r, average degrees (k), and
population sizes N of the scale-free graphs considered herein).
In Fig. 8(b), the viewing angle has been rotated to show the
quality of the linear fit as a function of the average inverse
degree wi_1; note that the differences in expected takeover
time at each given average degree (k) and population size (V)
are due to the effects of different scaling exponents (y ), which
are captured by the average inverse degree (x«—1). In Fig. 8(c),
the viewing angle has been rotated to show the quality of the
linear fit as a function of log;q (V).

Much of the heteroskedasticity in E[7] as a function of
i—1, as evident in Fig. 8(b), is attributable to the effect of
assortativity (r) on the variability in takeover times. Assorta-
tivity has a relatively small effect on the average takeover time
E[T], that is not modeled by (12). However, assortativity does
have a strong influence on the variability of E[T], particularly
for scale-free graphs with low scaling exponents [e.g., compare
the spread of the data points in Fig. 3(b) at r ~ 0.2 for
y ~ 2.8 and y ~ 4.0]. In Fig. 9(a), we explicitly plot the
standard deviations of average takeover times (cg[r]) as a
surface function of r and y, on the largest population size
(N = 10000) with the smallest average degree ((k) = 4),
where this influence is most pronounced; i.e., these indicate
the variabilities in the mean takeover times between the
10 graph instances at each parameter combination (already
averaged over each of the N initial placements, which are
already averaged over each of the ten repetitions at each initial
placement). The of[r] increases nonlinearly as assortativity
increases and scaling decreases and contributes to the variable
spread of the data points around the plane in Fig. 8.

As previously noted, assortativity has the opposite effect
on the variability in individual takeover times due to different
initial locations of the high fitness value in a single graph
instance (e.g., Fig. 6). This is explicitly shown in Fig. 9(b),
where we plot or (i.e., the standard deviations in individual
takeover times 7 due to the N initial placements, which
are already averaged over the ten repetitions at each initial
placement, on each given graph instance) as a surface function
of r and y, again on the largest population size (N = 10 000)
with the smallest average degree ({k) = 4), where this influence
is most pronounced.

The same general relationships shown in Fig. 9(a) and (b)
occur at lower population sizes and higher average degree, but
are less pronounced because the magnitude of the variability
in takeover times decreases with both of these parameters
[Fig. 8]. Note that the scale of the y-axis is an order of
magnitude lower for the variability in the mean takeover times
observed on the ten different graph instances [Fig. 9(a)] than
for the variability caused by the N different initial placements
[Fig. 9(b)] at each parameter setting.

Authorized licensed use limited to: UNIVERSITY OF VERMONT. Downloaded on August 21, 2009 at 05:27 from IEEE Xplore. Restrictions apply.



PAYNE AND EPPSTEIN: EVOLUTIONARY DYNAMICS ON SCALE-FREE INTERACTION NETWORKS

r~-0.2
~ 1 T LI IR
3
£ 081 f
£ ;
= '
= 06 5
=y '
z :
= 04 :
2 i
€ 02t ¢
] H
A 0 g
0 50 100 150 200
(@)
r~0
~ 1 v
3 ,‘"
é 0.8 :
i ;
= 06 5
= [
T '
= 04 H
8 H
g 02t :
2 i
=% 0 ’i
0 50 100 150 200
©
r~0.2
~ 1 jomimimiminim
3
2 038 H
g 1
T ]
= 06 :
= '
s [
= 04 H
g f
g 02,
e H
~ 0 K
0 50 100 150 200
Generations (7)
(e

905

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Frequency

50 100 150 200

(b)

0451

Frequency

=) o =)
S L LLe L2
Y 0 \S TV IR US R, R °N

0.05

50 100 150 200

(d)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Frequency

50 100 150 200

®

Fig. 6. Takeover dynamics in representative networks with N = 3600, (k) =4, and y ~ 2.8 for (a) r ~ —0.2, (c) r ~ 0, and (e) r ~ 0.2 (corresponding to
the dashed—dotted lines in Fig. 3(b). The gray curves denote takeover dynamics for a single experiment and the dashed—dotted curves denote their averages.
In (b), (d), and (f) we show frequency histograms of observed takeover times (7") for the data shown in (a), (c), and (e), respectively. The * symbols are

placed atop each bin as a visual aid.

IV. DISCUSSION

The results of this paper demonstrate that in scale-free
interaction networks with randomized edge sets, takeover time
(E[T]) under local uniform selection increases as either: 1)
the assortativity r increases or 2) the scaling exponent y
decreases, with these two topological properties interacting
nonlinearly in their effect on takeover time [Fig. 3(b)]. In
negatively assortative graphs (r < 0), nodes with high degree
(aka “hubs”) are attached to nodes with low degree, and vice
versa [Fig. 2(c)]. As such, placing the initial high fitness
genotype in a hub results in rapid saturation, because the
neighbors of a hub have few connections themselves and
thus have a high probability of adopting the hub’s genetic
information quickly. In contrast, placing the initial high-fitness
genotype in a low-degree vertex that neighbors a hub can

result in a severe retardation of the propagation of this genetic
information [Fig. 6(a)], because the hub has more neighbors to
choose from. For example, if the initial high-fitness genotype
is placed in a low-degree neighbor of a hub with degree &,
then it will take on average k generations for this hub to adopt
this high-fitness information, under the local uniform selection
method outlined in Section II-C. While this has the effect
of increasing the variability in the takeover times observed
on a single graph instance [Fig. 6(a)], the extremely rapid
saturation that occurs when the initial high-fitness genotype is
placed in a highly connected node outweighs such occasional
slow takeover time events, and causes an overall decrease
in E[T] as r decreases [Fig. 3(b)]. In positively assortative
graphs (r > 0), hubs are connected to hubs, and nodes of
low degree are connected to one another. For example, when
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Fig. 7. Takeover dynamics in representative networks with N = 3600, (k) = 4, and r ~ 0.2 for (a) y ~ 4.0, (c) y ~ 3.6, (e) y ~ 3.2, and (g) y ~ 2.8
(corresponding to the dotted lines in Fig. 3(b). The gray curves denote takeover dynamics for a single experiment and the dashed curves denote their averages.
In (b), (d), (f), and (h), we show frequency histograms of observed takeover times (7') for the data shown in (a), (c), (e), and (h), respectively. The * symbols

are placed atop each bin as a visual aid.
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(r), and average degrees ({k)) considered in this paper. The data presented in (a) is also shown in (b) and (c), but from different viewing angles, in order to
better elucidate the strength of the relationship between (b) E[T] and x—_1 and (c) E[T] and N. Note that in (a) and (b), (k) =4 corresponds to m = 2 and
(k) = 8 to m = 4. In (a)—(c), the plane represents the best fit to the data (see text); open circles denote date points above this plane and filled squares denote
data below this plane. Note the logarithmic scaling of takeover time (E[T']) and population size (N) in each panel.

(k) = 4, this causes the formation of long sections of linear
chains of nodes [Fig. 2(b)]. In such topologies, placing the
initial high-fitness genotype in a hub does not result in rapid
saturation because its neighboring hubs are reluctant to adopt
the high-fitness genetic information, as they too have many
neighbors to choose from. Further, no matter where the initial
high-fitness genotype is placed, this genetic information must
still travel through the long chains of low-degree vertices,
resulting in the lack of correlation between the degree of the
vertex of initial placement and takeover time that was noted
in [49].

Decreasing y causes the interaction network to possess
more highly connected vertices (e.g., for N = 10000, kpmax =
27 for y ~ 4.0 and kpax = 140 for y ~ 2.8, Fig. 1). As
previously discussed, in negatively assortative and uncorre-
lated topologies, such hubs communicate advantageous genetic
information rapidly once they have it [46], [49], but their high
connectivity makes them more resistant to it in the first place.
This causes an increase in both the average takeover time and
the variability in the takeover times observed on a single graph
instance [Fig. 7]. In combination, high assortativity () and low

scaling exponents (y ) interact nonlinearly to increase takeover
time [Fig. 3(b)].

Metrics based on pairwise shortest paths, such as charac-
teristic path length (L), have a strong governing influence on
the rate of information flow in many topologies. For example,
expected takeover time (E[T]) is positively correlated with
L in regular population structures [47]. However, the degree
to which shortest path metrics govern information flow is
dependent upon both network heterogeneity [49] and whether
or not the local update mechanism is a function of vertex
degree. Even if the update mechanism were independent of
vertex degree, as in a Susceptible-Infectious-Susceptible model
with 100% infection rate, L would still not be sufficient to
describe the rate of spread in scale-free graphs, because the so-
called characteristic path length is not actually characteristic
of static structure in these graphs (as shown in Figs. 4 and 5).
An alternative shortest path metric, the average maximum
shortest distance from each vertex to any other vertex (i.e.,
the average eccentricity), will determine average saturation
times when the update mechanism is independent of vertex
degree, whether the graph is regular or not. However, when
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the updating mechanism is degree-dependent and the graph
is heterogeneous, shortest path metrics are not sufficient to
describe dynamics.

Our results show that it is possible to describe the logarithm
of the expected takeover time E[7] using a planar function of:
1) the inverse average degree (u—1) and 2) the logarithm of
population size [log;q(N)] [(12)]. Since the probability with
which a vertex of degree k adopts the high fitness allele of a
neighboring vertex is inversely proportional to k [(9)], it makes
intuitive sense that the expected takeover time is a function of
1—1, which weights the inverse degrees of the vertices in a
graph in proportion to their occurrence [(3)] and thus captures
the effects of both the average degree and the scaling exponent.
Further, our observation that the logarithm of takeover time
[log;o(E[T])] is linearly dependent on the logarithm of the
population size [log;,(N)] has been noted in other studies of
dynamical processes on scale-free graphs, including consensus
time (i.e., the number of steps required to reach a state of all
0’s or all 1’s) in the unbiased Voter Model [42].

In [42], it was also shown that consensus times in the unbi-
ased Voter Model on Molloy—Reed scale-free topologies [61]
with a fixed average degree were largely governed by the effec-
tive population size, defined as Neff = N ,u% / 2. However, this
metric did not account for much of the variability in expected
takeover times in our study. For the (k) = 4 data, R? =0.64
and for the (k) = 8 data, R? = 0.72; however, the slopes
and intercepts for these rather weak associations were quite
different from each other, indicating a strong sensitivity of Negt
to average degree, so the overall R was only 0.10. Although
the two-state Voter Model (VM) used in [42] is similar in
many ways to the takeover time study presented here, there are
several significant differences in these models that can account
for the differences in behavior. In the biased VM, state O is
prescribed a fitness f = 1 and state 1 a fitness of f = r,
with > 1; in the unbiased case, there is no preference for
either state, i.e., there is no selection pressure. In the VM,
nodes are updated asynchronously, such that in each step a
node i is chosen with probability inversely proportional to its
fitness (in contrast to our implementation using locally uniform
selection with synchronous updates). In the VM, node i then
imports the state of a neighboring node j, irrespective of the
fitness of node j (again, in contrast to our model which uses a
replace-if-better update policy). Thus, the results of this paper
complement those presented in [42], and highlight the sensi-
tivity of information flow to the specific selection and update
mechanisms. Future work will explore system responses to
additional update mechanisms, such as the heterogeneous
threshold-based update policies commonly used in models of
binary decisions [32], in which the update rule of any given
individual is contingent upon both the individual’s particular
response function and the states of its neighboring individuals.

Although the effects of assortativity were not explicitly
studied in [42], the authors do comment that assortativ-
ity had a smaller secondary effect (relative to the scaling
exponent) on consensus times. In this paper, we too found
assortativity to have a secondary effect on mean takeover
times. For example, (12), which does not account for the
effects of assortativity, explains 97% of the variance in the

logarithmically transformed average takeover times. However,
a closer examination of the data shows that, while assortativity
has little effect on either mean or variability of average
takeover times at the higher scaling exponents, at low scal-
ing exponents assortativity has a pronounced effect on the
variability in takeover times. Specifically, increasingly positive
assortativities increased the variability between experiments on
different random graph instances (after averaging over all ini-
tial placements on the same graph instance) [Fig. 9(a)], while
increasingly negative assortativities increased the variability
between takeover times from different initial placements on
the same graph instances [Fig. 9(b)]. These seemingly contra-
dictory findings can be explained as follows. At low scaling
exponents (i.e., large hubs), the average system dynamics
are sensitive to the specific connectivity patterns found in
different graph instances with the same degree of positive
assortativity, while the large number of very long individual
path lengths (L;) in these graphs means that they are relatively
insensitive to initial placement of the high fitness individual,
since these long paths must always be traversed. Conversely,
at low scaling exponents with negative assortativity, all graph
instances tend to have alternating high and low degree nodes
and in this sense the connectivity patterns are relatively similar
to each other, yet the takeover time is very sensitive to
whether the initial high-fitness individual is placed in a high
or low degree node, which respectively cause very short
or long delays before the onset of the sigmoidal saturation
process (Fig. 6). Thus, assortativity does have an important
role in influencing systems dynamics on scale-free networks,
especially if individual trajectories in specific systems are
more relevant than average expected behaviors over an entire
class of systems.

One of our goals has been to discover if there are simple,
and easily computable, metrics of graph topology which
govern the rate of spread of information in arbitrary networks.
Previously, we have focused on metrics based on all-pairs
shortest direct paths, such as characteristic path length, or a
combination of the maximum and variance of the all-pairs
shortest path lengths [47]. However, none of these has proven
to govern system dynamics in the general case [49]. In this
paper, we have also shown that neither the leading eigenvalue
of the adjacency matrix nor the “effective population size”
(Nefr) metric is sufficient to predict takeover times in these
heterogeneous graphs. However, we did find that most of
the variability in the logarithm of average takeover times in
scale-free graphs with a wide range of scaling exponents,
assortativities, number of nodes, and average node degree,
can be explained by a function of the average inverse degree
and the logarithm of the population size. Unfortunately, this
relationship will not generalize to the case of regular graphs,
in which the average inverse degree is constant for a given
topology. For example, consider the contrasting cases of a
lattice with Von Neumann neighborhoods ((k) = 4) and a
regular random graph of the same average degree. According
to (12), the takeover times on these two topologies would be
identical, while in reality the saturation times on a regular
random graph will be much more rapid than those observed on
the corresponding lattice with Von Neumann neighborhoods.
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(a) Standard deviation of expected takeover times (og(7]) due to differences between the means on the ten graph instances at each parameter

combination, and (b) Standard deviations of individual takeover times (o7) on the same graph instances, due to the N initial locations of the high fitness
individual. In both (a) and (b), standard deviations are shown as a surface function of assortativity (r) and scaling (y) at N = 10000, (k) = 4. Note that the

scale of the vertical axis in (a) is an order of magnitude smaller than in (b).

The results of this paper demonstrate how the topologi-
cal properties of randomized scale-free interaction networks
influence the flow of advantageous alleles, and thus impact
the selective pressures induced by such population structures.
As previously mentioned, the few studies [35]-[38] that have
utilized scale-free population structures for computational
optimization have reported mixed results. However, to date
all of the studies utilizing scale-free population structures for
evolutionary optimization have employed graphs generated
using the AB [26] algorithm, which exhibit no assortativity
(r ~ 0) and have a scaling exponent that asymptotically
approaches y = 3. Thus, it remains unclear whether or not,
and to what degree, the structural properties of the larger
class of scale-free interaction networks (with variable scaling
exponents and assortativity) can be exploited to improve the
search performance of evolutionary algorithms, and how these
topological characteristics relate to various aspects of problem
difficulty, such as multimodality, epistasis, and deception.
Since our results show that takeover times of individual
experiments are highly sensitive to initial placement of the
high fitness individual, especially at low scaling exponents
in disassortative networks [Fig. 9(b)], we suspect that evo-
lutionary algorithms on such networks would require multiple
restarts to assure reliable results. However, the question as to
whether the heterogeneity of these networks can sometimes
lead to higher fitness solutions than on regular graphs remains
to be seen. We have recently commenced further studies to try
to address these questions.

The population structures utilized in evolutionary compu-
tation are typically static. That is, the interaction network is
grown prior to the evolution of the population and it remains
fixed throughout the evolutionary process. However, recent
work has demonstrated that dynamic interaction network
structures, both regular [62] and irregular [63], can enhance
the search capabilities of population-based optimization algo-
rithms. Specifically, Alba and Dorronsoro [62] showed that
the solution quality of genetic algorithms can be improved
by dynamically altering the dimensions of rectangular lattice

population structures, and Whitacre ef al. [63] demonstrated
that self-organizing complex interaction networks improve
diversity maintenance in steady-state, asexual, mutation-
limited populations. The results presented in this paper demon-
strate that the selective pressures induced by scale-free interac-
tion networks can be altered by changing the scaling exponent
and/or assortativity, both of which can be achieved through
edge swaps. Thus, it may be possible to dynamically alter
the selective pressure in scale-free interaction networks, as
an online means for controlling the exploration/exploitation
tradeoff in evolutionary optimization.

The selection operators commonly used in evolutionary
optimization may differ from the local uniform selection
policy with replace-if-better updates employed in the bulk of
this paper. However, experimentation with selection operators
that are commonly employed in evolutionary optimization
on regular population structures, such as binary tournament
selection and linear ranking selection, produced qualitatively
similar results to those observed using local uniform selection.

For each graph instance considered in this paper, care
was taken to ensure that the edge sets were thoroughly
randomized. We expect that scale-free interaction networks
with more rigidly defined edge sets, such as the hierarchical
and modular scale-free graphs considered in [30], [64], may
induce qualitatively different selective pressures than those
reported herein.

All of the experiments performed in this paper were nonex-
tinctive, such that high-fitness individuals could not revert
back to low fitness. Thus, the formulation of takeover time
analysis considered herein implicitly assumed that once an
advantageous mutation arose, it spread relentlessly. In evo-
lutionary optimization, and other relevant contexts such as
epidemiology, this is clearly a simplifying assumption; indi-
viduals with advantageous mutations are often lost before they
are chosen for reproduction, and infectious individuals often
recover before they spread disease. Thus, population structure
influences the spread of genetic information by affecting: 1)
the probability with which an advantageous mutation becomes
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established and, once established, 2) the rate with which it
spreads. While this paper investigated the latter influence of
population structure, work is currently underway to investigate
how the structural characteristics of scale-free interaction
networks impact the former. As certain population structures
are known to be promoters of the spread of advantageous
alleles and others are known to be suppressors [65], [66],
investigating the influence of the topological properties of
scale-free interaction networks on establishment probabilities
will complement the results presented in this paper.

In summary, in this paper we demonstrated why the so-
called characteristic path length of a graph is not, in fact,
characteristic of system dynamics on scale-free graphs with
stochastic degree-dependent update mechanisms, because this
metric does not account for variability in node degree. We also
showed that the eigenvalues of the connectivity matrix and
the effective population size (Neff) are unable to account for
observed variability in takeover times. Rather, we found that
the logarithms of average takeover times on scale-free graphs,
with a variety of scaling exponents, assortativities, and average
degrees were well acounted for by a planar function of: 1)
the average inverse degree (which incorporates the influence
of scaling) and 2) the logarithm of the population size, and
that there is a strong nonlinear effect of assortativity on the
variability of takeover times at low scaling exponents. As the
formulation of takeover time analysis considered herein serves
as a simplified measure of information flow in general, we
believe that the results of this paper may provide insights
into a variety of dynamical processes which may occur on
scale-free networks, such as epidemiological invasion, the
dissemination of fads, ideas, and innovations, and evolutionary
optimization.

APPENDIX
GLOSSARY OF VARIABLES

1) Ag: Attachment kernel-The attachment weight of a node
of degree k, which is used to determine the probability
(IT(k)) that an incoming node will attach to a node of
degree k.

2) E[T]: Expected takeover time—Takeover time, averaged
over all initial placements, on a single graph instance.

3) y: Scaling parameter—The scaling exponent of a power-
law degree distribution, p(k) k7.

4) G: Graph-A graph G = (V, E), comprised of a vertex
set (V) and an edge set (E). In this paper, graph is used
synonymously with population structure, topology, and
network.

5) k: Vertex degree—The number of neighbors of a given
node.

6) (k): Average degree—The average number of neighbors
per node, which is equivalent to the first moment of the
degree distribution (u1).

7) kmin: Minimum degree—The minimum number of neigh-
bors possessed by a node in a graph G.

8) kmax: Maximum degree—The maximum number of neigh-
bors possessed by a node in a graph G.

9) A;(t): Vertex fitness—The fitness of a vertex i at time ¢.

10) L;: Average individual path length—Average shortest
path between vertex i and all other vertices in a graph
G.

L: Characteristic path length—Average all-pairs shortest
distance between vertices.

12) u1: Average degree-The first moment of the degree
distribution, which is equivalent to the average degree
((k)).

i—1: Average inverse degree—The first inverse moment
of the degree distribution.

14) N: Population size-The number of vertices in a graph

1)

13)

G.
15) Negi: Effective population size-Defined in [42] as
Nui/ 3.

16) N;: The proportion of high fitness nodes at time ¢.

17) TI(k;): The probability that a newly introduced vertex
attaches to an existing vertex i of degree k;.

18) p(k): Probability distribution function-The probability

of finding a node of degree k.

P (k): Complementary cumulative distribution function—

The probability of finding a node of degree greater than

or equal to k.

Pge1: Selection probability-Probability of selecting a

high fitness individual from a mating neighborhood.

r: Assortativity—Propensity of vertices of similar degree

to attach to one another.

or: Standard deviation of the takeover times observed

in each individual graph instance (i.e., for each of the N

initial placements of the high fitness individual, which

are already averaged over the ten replicates of each

initial placement).

og[7]: Standard deviation of the expected takeover times

across graph instances, for a given combination of y, r,

and N.

T: Takeover time—The takeover time observed in a single

experiment.

19)

20)
21)

22)

23)

24)
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