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Abstract
In complex adaptive systems, the topological properties of the interaction network are
strong governing influences on the rate of flow of information throughout the system.
For example, in epidemiological models, the structure of the underlying contact net-
work has a pronounced impact on the rate of spread of infectious disease throughout
a population. Similarly, in evolutionary systems, the topology of potential mating in-
teractions (i.e., population structure) affects the rate of flow of genetic information and
therefore affects selective pressure. One commonly employed method for quantifying
selective pressure in evolutionary algorithms is through the analysis of the dynam-
ics with which a single favorable mutation spreads throughout the population (a.k.a.
takeover time analysis). While models of takeover dynamics have been previously de-
rived for several specific regular population structures, these models lack generality.
In contrast, so-called pair approximations have been touted as a general technique for
rapidly approximating the flow of information in spatially structured populations with
a constant (or nearly constant) degree of nodal connectivities, such as in epidemiological
and ecological studies. In this work, we reformulate takeover time analysis in terms of
the well-known Susceptible-Infectious-Susceptible model of disease spread and adapt
the pair approximation for takeover dynamics. Our results show that the pair approx-
imation, as originally formulated, is insufficient for approximating pre-equibilibrium
dynamics, since it does not properly account for the interaction between the size and
shape of the local neighborhood and the population size. After parameterizing the
pair approximation to account for these influences, we demonstrate that the result-
ing pair approximation can serve as a general and rapid approximator for takeover
dynamics on a variety of spatially-explicit regular interaction topologies with varying
population sizes and varying uptake and reversion probabilities. Strengths, limitations,
and potential applications of the pair approximation to evolutionary computation are
discussed.
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1 Introduction

In complex adaptive systems, the topological properties of the interaction network
are strong governing influences on the rate of flow of information throughout the
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system. For example, in epidemiological models, the structure of the underlying con-
tact network has a pronounced impact on the rate of spread of disease throughout
a population (Keeling, 1999; Newman, 2002; Pastor-Satorras and Vespignani, 2001).
Similarly, in evolutionary systems, the topology of potential mating interactions (i.e.,
population structure) affects the rate of flow of genetic information and therefore affects
selective pressure (Giacobini, Tomassini, and Tettamanzi, 2005; Giacobini, Tomassini,
Tettamanzi et al., 2005; Payne and Eppstein, 2007b, 2008; Rudolph, 2000; Sarma and De
Jong, 1996). In classical mathematical epidemiology (Anderson and May, 1995), quan-
titative genetics (Falconer and Mackay, 1996) and canonical evolutionary algorithms
(Holland, 1992), inter-individual interactions are typically assumed or allowed to be
random. Whether studying the proliferation of infectious disease or the spread of an
advantageous genetic mutation, such well-mixed (i.e., panmictic) contact networks fa-
cilitate the rapid propagation of information throughout the population. In contrast,
when inter-individual interactions are spatially constrained, the rate of dissemination
of information is significantly mitigated.

Most natural populations exhibit some form of spatial structure, and the important
influence of the spatial scale of inter-individual interactions has thus become increas-
ingly appreciated in many recent modeling efforts (e.g., Eppstein and Molofsky, 2007;
Payne and Eppstein, 2007a; Rauch and Bar-Yam, 2006; Sayama et al., 2003; Werfel and
Bar-Yam, 2004). For example, human populations have been shown to exhibit complex
networks of interactions (e.g., Ebel et al., 2002; Liljeros et al., 2001; Watts and Strogatz,
1998). The assumption of panmixia in a model of disease spread may therefore limit the
applicability of its results. Accordingly, several recent epidemiological models have em-
ployed more biologically realistic contact networks (Eames and Keeling, 2002; Keeling,
1999; Keeling and Eames, 2005; Meyers et al., 2006; Newman, 2002; Pastor-Satorras
and Vespignani, 2001), and the topological characteristics of these networks have been
shown to dramatically impact the dynamics of disease spread. Similarly, in evolution-
ary models, the spatial nature of inter-individual interactions significantly impacts the
emergent dynamics. Imposing constraints on the spatial locality of interaction events
has been shown to facilitate the emergence of evolutionary phenomena that would be
otherwise impossible in well-mixed systems. For example, the maintenance of genetic
diversity (Kerr et al., 2002; Sayama et al., 2003), the suppression of evolutionary patholo-
gies (Altenberg, 2005), and the evolution of altruism (Matsuda et al., 1992; Van Baalen
and Rand, 1998; Werfel and Bar-Yam, 2004) and cooperation (Hauert and Doebeli, 2004;
Ohtsuki et al., 2006; Santos and Pacheco, 2005) have all been shown to be largely influ-
enced by the spatial nature of the underlying contact network. Such spatially-explicit
contact networks have also received an increasing amount of attention for use as popu-
lation structures in evolutionary algorithms (Bryden et al., 2005; Giacobini, Tomassini,
and Tettamanzi, 2005; Giacobini, Tomassini, Tettamanzi et al., 2005; Giacobini et al.,
2006; Kirley and Stewart, 2007; Payne and Eppstein, 2006, 2007b, 2008; Rudolph, 2000;
Sarma and De Jong, 1996; Sprave, 1999; Whitacre et al., 2008). For example, cellular
evolutionary algorithms (cEAs), in which populations are structured on low-order reg-
ular graphs and mating events are restricted to occur in spatially localized, overlapping
neighborhoods, can be used as a means of maintaining population diversity by miti-
gating selective pressure (Giacobini, Tomassini, Tettamanzi, et al., 2005).

One useful method for quantifying how the flow of information is influenced by
a given interaction topology is through the analysis of takeover time (Goldberg and
Deb, 1991). Takeover time is defined as the expected number of generations until a
population consists entirely of copies of the best individual, starting from an initial
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population that contains only one copy of the best individual. This analysis removes
the confounding effects of variation operators, such as recombination and mutation,
with selection acting as the only evolutionary operator. Higher takeover times imply
lower selective pressure, and vice versa.

Takeover dynamics have been previously investigated for several specific inter-
action topologies. Goldberg and Deb (1991) analyzed takeover dynamics in panmic-
tic population structures under a variety of selection mechanisms and showed that
takeover is quite rapid in such well-mixed populations. Takeover dynamics in one-
dimensional (1D) and two-dimensional (2D) cEAs have also received a large amount
of attention. For example, Rudolph (2000) provided exact analytical solutions for ring
topologies (1D toroidal lattices) and lower and upper bounds for array topologies (1D
non-toroidal lattices). Sarma and De Jong (1996) analyzed 2D toroidal lattices with spa-
tially localized neighborhoods of various shapes and sizes and showed that selection
pressure is strongly influenced by the radius of the local mating neighborhood (see
Equation (2) in Section 2). Under both synchronous and asynchronous updating poli-
cies, Giacobini, Tomassini, Tettamanzi, et al. (2005) provided mathematical models of
takeover dynamics in 1D and 2D toroidal lattices (with von Neumann neighborhoods).
The general result of these studies is that regular lattice population structures with lo-
calized interaction neighborhoods reduce selective pressure, relative to panmictic inter-
action topologies, and can thus enhance the exploratory power of evolutionary search.
However, all of these models of takeover dynamics are specific to the particular interac-
tion topologies for which they were designed. The hypergraph model (Sprave, 1999) is
somewhat more general, and has been shown to model takeover dynamics in panmic-
tic, metapopulation, and toroidal ring interaction topologies with reasonable accuracy.
However, this model relies upon the success probabilities of selection operators that
were derived (Chakraborty et al., 1997) under the assumption of panmixia and thus is
not directly transferable to spatially structured populations with localized interactions.
In addition, the hypergraph model requires computationally expensive calculations of
recursive probabilistic formulations using possibly large and dense matrices. It would
be useful to formulate a general method for estimating takeover dynamics that is not
only broadly applicable, but also quickly computable, so that takeover dynamics could
be rapidly predicted for a variety of regular population structures with varying selection
and reversion probabilities.

Pair approximations (PAs) were originally derived as a statistical mechanics formu-
lation to approximate equilibrium conditions in spatially structured biological popu-
lations, in order to determine conditions for the evolution of altruism (Matsuda et al.,
1992). PAs are so named because they use differential equations to estimate the dynam-
ics of states of neighboring pairs of individuals. This technique has gained popularity
in theoretical biology, ecology, and epidemiology (Eames and Keeling, 2002; Hauert
and Doebeli, 2004; Heibeler, 2000; Joo and Lebowitz, 2004; Keeling, 1999; Keeling and
Eames, 2005; Ohtsuki et al., 2006; Petermann and De Los Rios, 2004; Satō et al., 1994; Satō
and Iwasa, 2000; Van Baalen and Rand, 1998; Van Baalen, 2000) due to its purported gen-
erality and the rapidity with which the resulting analytical expressions can be solved.
For example, Van Baalen and Rand (1998) used PAs to derive explicit conditions for the
invasion of altruistic mutants into non-altruistic populations on a variety of popula-
tion structures, including triangular and hexagonal lattices and random graphs. Hauert
and Doebeli (2004) used PAs to estimate equilibrium proportions of cooperators in the
snowdrift game on rectangular (with both von Neumann and Moore neighborhoods),
triangular, and hexagonal lattices. Ohtsuki et al. (2006) formulated a PA of the spatially
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extended prisoner’s dilemma on regular graphs, in order to derive a simple rule for the
evolution of cooperation. In most cases, the PA has been used to predict equilibrium
frequencies, in accordance with their original intent. An exception to this is the work of
Keeling (1999), where the PA was used to estimate the dynamics of disease spread for a
single population size in a specific type of random graph, which was designed to have
nearly constant nodal degree and spatially localized clustering. Another notable excep-
tion is the work of Petermann and De Los Rios (2004), in which the PA was extended
and generalized to model higher order interactions between individuals and was used
to estimate the saturation dynamics of infectious disease in random graphs and lattices
with triangular and von Neumann neighborhoods.

While PAs have thus been applied to a wide variety of spatial topologies in the
context of epidemiology, ecology, and evolutionary biology, each of the previous stud-
ies has been restricted to a single population size for a given population structure. To
date, there has been no analysis of the accuracy of the PA as a function of the inter-
action between the topological characteristics of the local neighborhood structure and
population size. And despite the potential advantages of general applicability and low
computational effort, PAs have yet to be applied in the context of takeover dynamics in
evolutionary algorithms.

Our intent is to investigate whether the PA can be used as a rapid and general
method for approximating takeover dynamics of evolutionary algorithms using spa-
tially explicit local interaction neighborhoods with regular topologies, for various popu-
lation sizes and selection and reversion probabilities. First, we reformulate takeover time
analysis for evolutionary algorithms in terms of the well-known Susceptible-Infectious-
Susceptible (SIS) model of disease spread (Anderson and May, 1995; Keeling and Eames,
2005; Newman, 2002) and adapt the PA to predict takeover dynamics. We show that
the PA, as originally formulated (Matsuda et al., 1992), over-predicts the rate of spread
of advantageous alleles, since it does not properly account for the interaction between
the size and shape of the local neighborhood and the population size. After parameter-
izing the PA to account for these influences, we demonstrate that the resulting PA is an
efficient approximator of takeover dynamics on a variety of spatially-explicit regular in-
teraction topologies. We discuss the strengths, limitations, and potential improvements
to the PA, and suggest how this approach may be useful to practitioners of evolutionary
computation.

2 Methods

2.1 Representing Population Structure as a Graph

The population structure of an evolutionary algorithm can be represented as a graph
as follows. A graph, G = (V,E), is defined as a nonempty finite set of vertices (V ) and
a finite set of edges (E) connecting these vertices. Each individual in the population
is represented by a vertex i ∈ V , so that |V | = μ, where μ is the population size. An
undirected edge 〈i, j〉 is added to E for each individual j in the mating neighborhood
of individual i, for all i ∈ V . Note that many commonly implemented population struc-
tures (Giacobini, Tomassini, Tettamanzi et al. 2005; Rudolph, 2000; Sarma and De Jong,
1996), including all of the population structures considered herein, are embedded in
Cartesian space. However, it is important to note that adjacency in Cartesian space does
not imply adjacency in the interaction graph, and vice versa. That is, two individuals that
share an edge in the graph representation of the population structure are not necessarily

206 Evolutionary Computation Volume 17, Number 2



Pair Approximations of Takeover Dynamics

spatially proximal in Cartesian space. In this manuscript, the term neighbor is always
used to mean adjacency in the interaction graph G.

2.2 Structural Properties of Graphs

When quantifying the structural properties of a graph, there are several metrics of
potential interest (e.g., see Newman, 2003). In this section, we briefly define the struc-
tural properties considered in the current study. The so-called ”clustering” metric (φ)
of a graph G, stored as an adjacency matrix A, can be computed as the ratio of closed
triangles to total triplets (Keeling, 1999), as follows:

φ = #triangles
#triplets

= trace(A3)
||A2|| − trace(A2)

(1)

where the superscripts denote matrix exponentiation, ‖M‖ denotes the sum of all of the
elements in a matrix M , and trace denotes the sum of the elements on the main diagonal.

The radius of an interaction neighborhood N captures the level of dispersion present
in that neighborhood (Sarma and De Jong, 1996). Selective pressure has been shown to
increase as the ratio of the radius of the local neighborhood (radiusN ) to the radius of
the underlying lattice (radiusG) increases (Sarma and De Jong, 1996). For an interaction
neighborhood N of size k (i.e., k is the degree of the nodes in the population structure)
centered on a vertex located at 〈x, y〉 in Cartesian space, this metric is formally defined
as

radiusN =
√
√
√
√

1
k + 1

(
k+1
∑

i=1

(xi − x̄)2 +
k+1
∑

i=1

(yi − ȳ)2

)

(2)

where

x̄ = 1
k + 1

k+1
∑

i=1

xi, ȳ = 1
k + 1

k+1
∑

i=1

yi (3)

and xi and yi are the Cartesian coordinates of the vertex 〈x, y〉 and the k vertices in
its interaction neighborhood. The radius of the entire graph (radiusG) can be calculated
using Equations (2) and (3) by assuming that the central vertex (x =

√
μ

2 , y =
√

μ

2 ) of
graph G is connected to every other vertex in the topology (i.e., k = μ − 1). We calculate
the ratio ρ of the radius of the interaction neighborhood radiusN to the radius of the
underlying population structure radiusG:

ρ = radiusN

radiusG

. (4)

Thus, ρ will take on a value of 1 only in the limiting case of a well-mixed system.
Note that both the clustering coefficient (φ) and radius of an interaction neighborhood
(radiusN ) are independent of population size, while graph radius (radiusG), and thus
also ρ, are both a function of population size.
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Table 1: Naming conventions and schematic diagrams of the (a) rectangular and (b) tri-
angular neighborhood structures considered in this study. (M7 and VN3 are not shown,
but can be easily inferred.) Abbreviated names for each population structure are pro-
vided, as are the names as they appear in Sarma and De Jong (1996), where applicable
(in italics). In (a), the links between vertices are implicit; each vertex in the interaction
neighborhood (black circles) centered around a given vertex (×) is connected to this
center vertex. In (b), the links between individuals are shown explicitly (solid lines).
For clarity, only one representative interaction neighborhood is shown for each type of
graph.

(a)

M3 M5 VN1 VN2 MVN
Moore (d = 3), Moore (d = 5) von Neumann, L9 C13

C9 L5

(b)

T AT ST
Triangular Alternating Semi

Triangular Triangular

2.3 Population Structures

A regular graph is one in which every vertex has the same degree k. In this study, we in-
vestigate takeover dynamics on 10 distinct types of regular population structures, each
based on 2D toroidal lattices, but with different local interaction neighborhoods. The
naming conventions and corresponding schematic diagrams of the population struc-
tures are provided in Table 1, and their relevant structural characteristics are provided
in Table 2a. Note that Table 2a presents the population structures in order of increasing
radius; all subsequent tables and figures will follow this convention. For each popu-
lation structure, we considered a total of eight population sizes μ ∈ {576, 1024, 1600,
2304, 3136, 4096, 5184, 6400}, each structured on a (

√
μ × √

μ) node toroidal lattice. The
corresponding graph radius for each population size is provided in Table 2b.

The local neighborhood structures considered in this study vary in both the num-
ber and the spatial locality of the individuals they contain, resulting in differing vertex
degrees (k) and clustering (φ) characteristics (Table 2a). The topologies considered in
this study include the most commonly implemented locally interacting population
structures in the literature. For example, the von Neumann (VN1, Table 1a) and Moore
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Table 2: (a) Structural metrics of the spatial interaction topologies considered in this
study, presented in order of increasing radius of the local neighborhoods. (b) Graph
radius as a function of population size on square lattices.

(a)

Population Structure k φ radiusN

VN1 4 0 0.89
ST 5 0.3 0.97
AT 6 0.4 1.03
T 6 0.4 1.07

M3 8 0.43 1.16
MVN 12 0.46 1.47
VN2 8 0.21 1.49
M5 24 0.52 2.00

VN3 12 0.27 2.08
M7 48 0.54 2.83

(b)

Population Size (μ) radiusG

576 9.79
1024 13.06
1600 16.32
2304 19.59
3136 22.86
4096 26.13
5184 29.40
6400 32.66

neighborhoods (M3, Table 1a) are the most frequently employed interaction networks
in spatially structured evolutionary algorithms (e.g., Giacobini, Tomassini, Tettamanzi,
et al., 2005; Sarma and De Jong, 1996). We also investigated common variations of these
with larger interaction neighborhoods; specifically, Moore neighborhoods with diame-
ter 5 (M5, Table 1a) and 7 (M7, not shown) and extended von Neumann neighborhoods
(VN2, Table 1a, and VN3, not shown). The triangular population structures considered
herein (T, AT, and ST, Table 1b) are commonly employed in various models of ecologi-
cal (Van Baalen, 2000), evolutionary (Hauert and Doebeli, 2004; Van Baalen and Rand,
1998), and physical systems (Ong and Cava, 2004).

2.4 Takeover Time

Consider a population with only two levels of fitness; that is, let �i(t) be the fitness
value of vertex i ∈ V at time t , where �i(t) ∈ {0, 1} and 1 is more fit than 0. In the initial
population, �i(0) = 1 for exactly one i ∈ V and �j (0) = 0∀j 	= i ∈ V . Let Nt denote the
proportion of nodes with value 1 at time t :

Nt = 1
|V |

∑

∀i∈V

�i(t) (5)
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Following Rudolph (2000), we define the takeover time T = min{t | Nt = 1} to be the
minimum number of generations such that copies of the most fit individual fully satu-
rate the entire population, starting with only one such individual in the initial popula-
tion. This definition of takeover time thus assumes that Nt can never decrease.

Ei[T ] is defined as the empirical estimate of the expected takeover time given that
the initial best individual is located in vertex i. Thus, the overall empirically estimated
expected takeover time of a beneficial mutation, averaged over all potential initial
conditions, is simply

E[T ] = 1
|V |

∑

∀i∈V

Ei[T ] (6)

assuming that the initial best individual is equally likely to appear in any given node.

2.5 Selection

In this study, we adopt a simple ”replace if better” selection mechanism (a.k.a. uniform
selection, Gorges-Schleuter, 1999), where nodes are updated synchronously, as follows.
For each node i ∈ V , a node j is selected at random with uniform probability from the
mating neighborhood of node i, with neighborhood size k. Thus, if there are x nodes
containing the fittest value in the mating neighborhood of node i, then the probability
of selecting one of them (Psel) is simply

Psel = x

k
. (7)

With uptake probability pup, the value of the selected node j then replaces the value of
node i if �j (t) > �i(t). Therefore, the probability of a high fitness individual replacing
a given node (Prep) is given by the product of the uptake probability (pup) and the
selection probability (Psel):

Prep = pupPsel . (8)

Decreasing pup serves as a simple means for decreasing selective pressure in models of
takeover dynamics (Rudolph, 2000), although pup < 1 is nonstandard in evolutionary
algorithms.

2.6 Reversion

While the definition of takeover time assumes that Nt can never decrease, this nonex-
tinction assumption can be relaxed by allowing vertices of value 1 to revert back to
0 with some probability g (Rudolph, 2001). This reversion probability is analogous to
mutation in evolutionary systems, where genetic information is occasionally lost, or
to recovery from infection in models of disease spread, where infected individuals may
recover and either become immune or again become susceptible.

In all experiments performed herein, reversion of high fitness individuals occurred,
with probability g, at the end of each generation, after the population had been updated
with the selection mechanism. Thus, the probability of a given high fitness individual
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reverting to low fitness was independent of the fitness values of the other individuals
in its mating neighborhood.

2.7 Reformulating Takeover Time Analysis in Terms of the SIS Model

In the SIS model, a population of μ individuals is compartmentalized into two discrete
states: susceptible (S) and infected (I ). This model evolves according to the following
transition rules

S
pup→ I

g→ S (9)

where pup governs the rate at which infection occurs and g governs the rate of recovery
from infection. Once a node has recovered, it again becomes susceptible. In a spatially
structured population, the transmissibility of disease across a connection is (Keeling,
1999)

τ = pup

k
. (10)

The SIS model and our model of takeover dynamics are thus equivalent. The susceptible
state (S) corresponds to low fitness individuals (with fitness 0) and the infected state (I )
corresponds to high fitness individuals (with fitness 1). The probability of a given node
becoming infected (Pinf ) is given by the product of the number of infected neighbors
(x) in its contact neighborhood and the probability of disease transmission across a
connection (τ):

Pinf = τx. (11)

By substituting Equation (10) into Equation (11) and Equation (7) into Equation (8),
it is clear that the probability of infection in the SIS model (Pinf , Equation (11)) is
equivalent to the replacement probability in our formulation of takeover time analysis
(Prep, Equation (8)). Lastly, the reversion probability (g) corresponds to the probability
of mutation back from high to low fitness. Note that when there is no reversion (g = 0),
the system behaves as an SI model, or ”contact process” (Satō and Iwasa, 2000). Despite
the clear relationship between these two classes of models, this is the first time, to the
best of our knowledge, that this correspondence has been explicitly made.

2.8 Pair Approximations

Instead of estimating the dynamics of the states of nodes in a contact network, pair
approximations (PAs) estimate the dynamics of states of neighboring pairs of nodes. By
capturing the correlations between pairs of vertices, some aspects of the structure of the
interaction topology can be accounted for.

The PA works as follows. Consider a population of size μ structured on an inter-
action topology wherein every node has k neighbors. (It is important to note that PAs
assume that the underlying contact network is regular, or at least possesses a well de-
fined average degree k.) Following Keeling (1999), let [X] denote the number of nodes
in state X, [XY ] denote the number of pairs of connected nodes in state XY, and [XYZ]
denote the number of connected triplets of nodes in state XYZ, such that XY pairs are
always counted once in each direction (i.e., [XY ] = [YX]) and XX pairs are counted
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twice (i.e., [XX] is always even). PAs work by tracking the changes in the numbers of
all possible combinations of pairs [XY ]. Since the interaction topology is regular with
constant degree k, the number of singles can always be recovered from the number of
pairs, as follows (Keeling, 1999):

[X] = 1
k

∑

W

[XW ]. (12)

However, the rates of change in the number of pairs depend upon the numbers of
configurations larger than pairs, such as triplets, and this information is not maintained
by the PA. Even if the number of triplets were maintained, the rates of change in the
number of triplets would similarly depend upon the numbers of quadruplets, and so
on for larger connected motifs. Thus, in order to estimate the dynamics in terms of the
numbers of pairs, the numbers of configurations larger than pairs must be approximated
to some degree of accuracy. This is referred to as “closing” the system (Keeling, 1999;
Matsuda et al., 1992; Van Baalen, 2000).

The simplest closure strategy (Keeling, 1999; Satō and Iwasa, 2000) is to assume
that the nodes at the ends of triplets are not connected to one another (i.e., that triplets
are linear, not triangular). Under this assumption, the number of triplets [XYZ] can be
approximated as (Keeling, 1999):

[XYZ] ≈ (k − 1)[XY ][YZ]
∑

W [YW ]
= (k − 1)

k

[XY ][YZ]
[Y ]

. (13)

While this assumption closes the system at the level of pairs, it can introduce a significant
amount of error, since it ignores all of the spatial structure beyond pairwise interactions
and therefore neglects possible correlations between the nodes at the ends of triplets.
For example, consider the takeover dynamics of a population structured on a square
2D lattice with 3 × 3 (Moore) interaction neighborhoods (Table 1a, M3). In the early
stages of the dynamics, only a few of the most fit individuals (with state 1) are present
in the topology, and they are propagating locally into a sea of less fit individuals
(with state 0). Under the closure assumption of Equation (13), [101] (i.e., the number
of triplets in state 101) would be approximated by ((k − 1)/k)([10][01]/[0]). Both [10]
and [01] are computed globally, and so can be expected to be quite small (and [0] quite
large) during the early stages of the takeover dynamics, when there are only a few
1’s in the topology. Consequently, the approximation of [101] by Equation (13) will
also be very small. However, since fit individuals are spreading only locally, the true
value of [101] will be larger than the number estimated by Equation (13), because the
1’s that are present in the graph are in the same local region. This error is especially
pronounced if the interaction topology has a preponderance of triangular paths (e.g.,
M3), in which case it is not safe to assume that the distant ends of a triplet are not
connected.

In order to more accurately estimate the number of triplets [XYZ], one can explicitly
take into consideration the proportion of triplets in the interaction topology that form
closed triangles (Keeling, 1999). The ratio of closed triangles to total triplets (φ, Equation
(1), also known as the clustering coefficient) can be incorporated directly into the closure
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method, as follows (Keeling, 1999):

[XYZ] ≈ (k − 1)
k

[XY ][YZ]
[Y ]

(

(1 − φ) + φμ

k

[XZ]
[X][Z]

)

. (14)

Thus, the closure method of Equation (14) captures the correlation between nodes at the
opposing ends of a triplet in proportion to the ratio of the number of closed triangles
to total triplets inherent in the underlying population structure. Note that when there
is no clustering (φ = 0), the closure method of Equation (14) reduces to Equation (13).
Spatial structure beyond triplets, however, is not considered in Equation (14).

2.9 Estimating Takeover Dynamics with Pair Approximations

In this section, we develop a PA of takeover dynamics by modifying the Susceptible-
Infectious-Recovered (SIR) PA proposed by Keeling (1999). In the SIR model each vertex
has three potential states, and the PA developed by Keeling (1999) thus requires a total
of five coupled differential equations. However, in the reformulation of takeover time
analysis in terms of the SIS model (Equation (9)) each vertex has only two potential
states: 1 for high fitness individuals and 0 for low fitness individuals. With a binary
state space, there exist four distinct types of pairs; due to symmetry, the following three
differential equations suffice:

d[00]
dt

= c(−τ[001] + g[01] + g2[11])

d[01]
dt

= 0.5c(τ([001] − [101] − [01]) + g([11] − [01]))

d[11]
dt

= c(τ([101] + [01]) − g[11] − g2[11]) (15)

where the additional factor of 0.5 in the second equation accounts for the symmetry
between [01] and [10]. In the original derivation of the PA (Matsuda et al., 1992),
designed for the prediction of population densities at equilibrium, the value of the
coefficient c was proposed to be the constant 2, and this value has since been used in
numerous other studies (e.g., Keeling, 1999; Petermann and De Los Rios, 2004; Satō
et al., 1994; Van Baalen, 2000). In fact, it is trivial to show that equilibrium conditions
are independent of the particular choice of the coefficient c. However, if one is to use
the PA to approximate pre-equilbrium dynamics, then the value of c becomes important.
As will be shown in Section 3.1, our results clearly demonstrate that the optimal choice
of c is a function of ρ (Equation (4)), which depends on both the local neighborhood of
interactions and the population size.

In this study, all occurrences of [XYZ] in Equation (15) are computed using Equation
(14), τ from Equation (10), and the parameterized coefficient c from Equation (24), which
we present in Section 3.1. Thus, the PA employed herein is parameterized by the popula-
tion size (μ), the ratio (ρ, Equation (4)) of radiusN to radiusG, the vertex degree (k), the ratio
of closed triplets to total triangles (φ, Equation (1)), the reversion probability (g), and the
uptake probability (pup). For small reversion probabilities the effect of g2 in Equation (15)
is negligible, so this term is often ignored (e.g., Keeling, 1999). However, since we wanted
to test the accuracy of the PA as a function of g, the inclusion of the g2 term was necessary.
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2.10 Experimental Design

For each combination of the 10 population structures (Table 2a) and eight population
sizes (Table 2b), takeover dynamics were observed by placing a single copy of the best
individual in only one node and then observing the rate with which this advantageous
allele spreads through the population. Since each of the 10 population structures con-
sidered in this study are regular, the takeover dynamics are unaffected by the placement
of the initial copy of the high fitness individual—in sharp contrast to irregular spatial
structures (e.g., Giacobini, Tomassini, and Tettamanzi, 2005; Payne and Eppstein, 2007b,
2008). For each of the 80 distinct combinations of population structure and population
size, 50 such simulations were performed and averaged, in order to mitigate the stochas-
ticity inherent in the selection and reversion policies. When g = 0, the simulations were
carried out until saturation occurred; when g > 0, simulations were performed for a
total of 500 generations, long after the saturation sill had been reached.

Takeover dynamics were also approximated by solving the coupled differential
equations of the PA (Equation (15)) via numerical integration, using a Runga-Kutta
method with adaptive step size (Matlab’s ode45 function). For each combination of
population size and population structure, we considered pup ∈ {0.5, 0.75, 1} (which
spans the range of feasible selection probabilities in evolutionary algorithms) and g ∈
{0, 0.05, 0.1} (which are common mutation rates in evolutionary algorithms).

2.11 Assessing Error

Since we are interested in using the PA to estimate pre-equilibrium takeover dynamics,
we employ several error metrics in order to assess the accuracy of the approximation.
All error metrics are represented as percentages, relative to the values observed through
direct simulation. To clarify the presentation of these error metrics, we depict represen-
tative curves for takeover dynamics predicted by the PA (Figure 1, dashed black line)
and observed through direct simulation (Figure 1, solid black line) for the VN2 popula-
tion structure with pup = 1 , g = 0, and μ = 1024. While these curves are later described
in the results section, they are provided here as a visual aid to help elucidate the defi-
nition of the error metrics. Throughout the rest of this manuscript, Sim(t) refers to the
simulation data for Nt , while PA(t) refers to the pair approximation of Nt .

Since the PA is a continuous approximation of discrete system dynamics, Nt only
asymptotically approaches 1 (when g = 0). Consequently, the expected takeover time
of the simulation data (Figure 1, E[T ]Sim) and the PA (Figure 1, E[T ]PA) were calculated
as the first generation in which Nt was within 1% of the maximum saturation value of
1. When g > 0, E[T ]Sim and E[T ]PA are technically undefined, since complete takeover
will never occur. In this case, we use E[T ]Sim and E[T ]PA to denote the first generation
in which Nt is within 1% of its respective saturation sill. The values of the saturation
sills were estimated for both the PA and the simulation data by averaging Nt over
generations 300 through 500 (long after saturation had occurred).

The first error metric, area error, quantifies the area between the predicted and
observed takeover curves, as a percentage of the total area under the observed takeover
curve. (Area errors were thus normalized by the total area under the simulation curve
ASim, in order to provide a relative error metric that is independent of takeover time.) A
portion of the area error is negative (Figure 1, A−) where the PA is predicting a slower
spread of the high fitness individuals than that observed through direct simulation,
and a portion is positive (Figure 1, A+) where the PA is predicting a more rapid spread.
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Figure 1: Error metrics used in this study are depicted in a schematic diagram of rep-
resentative takeover curves approximated by the PA (dashed black lines) and observed
as the average of 50 direct simulations (Sim, solid black lines). G represents generation
error, A represents area error, and E[T ] represents expected takeover time. See text for
details.

Specifically, if t1 denotes the number of generations when the two curves intersect and
t2 denotes the maximum of E[T ]Sim and E[T ]PA, then

ASim =
∫ t2

t=0
Sim(t) dt (16)

A− =
∫ t1

t=0
PA(t) dt −

∫ t1

t=0
Sim(t) dt (17)

A+ =
∫ t2

t=1
PA(t) dt −

∫ t2

t=1
Sim(t) dt (18)

and the area error metrics are defined as:

NegativeAreaError = A−

ASim

× 100% (19)

PositiveAreaError = A+

ASim

× 100%. (20)

After fitting spline curves to both the PA and simulation data, Equations (16–18) were
computed using the trapezoidal rule at 1000 uniformly spaced points on the spline
curves, between the lower and upper bounds of each integration. The total absolute
area error was then computed as:

|Area Error| = |NegativeAreaError| + |PositiveAreaError|. (21)

Generation error quantifies the maximum generation difference (in either direction), for
the same degree of saturation Nt , between the takeover dynamics predicted by the PA

Evolutionary Computation Volume 17, Number 2 215



J. L. Payne and M. J. Eppstein

and as observed through simulation, and is given as a percentage of the takeover time
observed through simulation (E[T ]Sim). Generation error is more robust for assessing
dynamics than simply assessing error in takeover time, since it is assessed over the
entire pre-equilibrium range. These discrepancies take on a positive value (Figure 1,
G+) when the PA is predicting a slower spread of the high fitness individuals than
that observed in the simulation data and negative value (Figure 1, G−) when the PA
is predicting a more rapid spread. Generation error is defined as the maximum of the
absolute values of G− and G+ and is normalized by the simulation data, as follows,

Generation Error = max{|G−|,G+}
E[T ]Sim

× 100%. (22)

When g > 0, we also assess (a) the percentage of unsuccessful introductions, out of the
50 trials, where unsuccessful introductions occurred when all high fitness individuals
disappeared, due to reversion, in the first few generations, and (b) the Sill Error, which is
the error in the proportion of high fitness individuals that are predicted by the PA to exist
at saturation if the introduction was successful. As before, the values of the saturation
sills for the PA (SPA) and the simulation data (SSim) were calculated as the average value
of Nt over generations 300 to 500 of the PA and simulation data, respectively. The sill
error was then normalized by the sill of the simulation data, as follows,

Sill Error = SPA − SSim

SSim

× 100%. (23)

Thus, the sill error is negative when the PA predicts a smaller sill than that observed
through simulation, and is positive otherwise.

3 Results

3.1 Accounting for ρ in the PA

In order to determine the values of c needed for Equation (15), we varied the coefficient
from 0.1 to 2.0, in increments of 0.01, for each combination of population structure and
population size (using pup = 1 and g = 0), and then selected the value that minimized
generation error (Equation (22)) as the empirically determined optimal value for c. In
Figure 2, we show these optimal values for c, as a function of ρ, along with the best fit
logarithmic curve. The equation for the best fit curve is

c ≈ 1.82 + 0.9 log10(ρ) (24)

with R2 = 0.88, and a maximum residual of 0.19 (which occurred with neighborhood
structure T, μ = 576). Our intent is to try to create a rapid and general method which
can be applied to arbitrary regular population structures of arbitrary size. If one had to
perform extensive simulations in order to estimate the optimal coefficient c before the
PA could even be applied, this would defeat the purpose. Thus, Equation (24) was used
in all subsequent experiments (rather than the optimally determined values of c) to
assess the accuracy of the PA (Equation (15)) with the c parameterized by ρ. The value
of c = 2, used in previous studies, is shown for reference (Figure 2, horizontal dash-dot
line); in all cases, the optimal coefficient values for c were well below 2.
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Figure 2: The values of c that minimized generation error as a function of ρ, along with
the best logarithmic fit. The dash-dot horizontal line, representing c = 2, is provided as
reference.

Sarma and De Jong (1996) found that the rate of saturation increased logarithmically
with the ratio of local neighborhood radius to grid radius. Thus, it makes sense that
the coefficient c must increase logarithmically with ρ, in order to compensate for the
decreased takeover times that occur with larger ρ. A key finding of this work is that, if
one is to use the PA to approximate dynamics, the PA must be parameterized to account for the
interaction between the size and shape of the local neighborhood and the population size.

3.2 Non-Extinctive Dynamics

We first consider the nonextinctive case, where g = 0. For all combinations of population
size and population structure considered, takeover time was found to decrease as the
radius of the local neighborhood increased, in concurrence with the results of Sarma and
De Jong (1996). Figure 3 shows takeover dynamics predicted by the PA (dashed black
lines) and observed by direct simulation (solid black lines) on six representative regular
population structures with pup = 1 and μ = 1024. When plotting simulation results
here and elsewhere in this paper, we depict the proportion of nodes (Nt ) containing
maximum fitness at generation t , averaged over all 50 independent simulations on that
combination of graph type and population size. The scale of the horizontal axis varies for
each topology in order to best elucidate the discrepancies between the approximation
and simulation data, since this is the relevant measure of accuracy in this case (as
opposed to a comparison of takeover dynamics between topologies, in which case the
scale of the horizontal axes would be held constant). Error metrics for all graph types
and population sizes are quantified in the subsequent sections, but first we offer some
general observations.

For the PA, all takeover curves are sigmoidal, exhibiting exponential growth (R2 >

0.95 for an exponential fit below the inflection point, for all PA curves) followed by satu-
ration. In contrast, takeover curves on 2D lattice topologies with local interaction neigh-
borhoods are known to be polynomial (Gorges-Schleuter, 1999; Giacobini, Tomassini,
and Tettamanzi, 2005) below the inflection point (polynomial exponent varied from 1.9
to 2.8, R2 > 0.96, for all topologies and population sizes considered herein, where the
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Figure 3: Takeover dynamics as predicted by the PA using Equation (24) (dashed black
lines) and as observed through direct simulation (solid black lines) on six regular
population structures using μ = 1024, pup = 1, and g = 0. For reference, we also show
the dynamics predicted by the PA using c = 2 (dash-dot lines). The legend and vertical
axis applies to all panels. Note the change in scale among the horizontal axes of each
panel.

exponent increased linearly with increasing radiusN , R2 > 0.96 for all population sizes).
Thus, the PA is not an actual mechanistic model of the governing dynamics of this
system, but is more appropriately characterized as an approximation, and all PA curves
were statistically different from the corresponding simulation curves (p < .001,χ2). In
general, the slope of the PA tends to increase too slowly early in the growth phase
and later, too rapidly, as compared to the simulation data. However, in most cases the
resulting curves are in reasonably good agreement with the data observed through sim-
ulation (Figure 3c–f). (In contrast, the curves resulting from the PA using c = 2, shown
in Figure 3 as dash-dot lines, always dramatically overestimate the rate of spread of the
advantageous allele.)

If the optimal c were used, the Sim(t) and PA(t) curves would intersect at the
inflection point. However, the use of Equation (24) to estimate c introduces a small
amount of error, sometimes causing the curves to intersect a little too early (as for
VN1, Figure 3a), or a little too late (as for T, Figure 3b), thus resulting in an over- or
underestimate of the rate of takeover, respectively. Other errors are due to simplifications
in the PA itself, causing the PA to be least accurate on the VN1 topology, and most
accurate for populations with large neighborhood radii and small population sizes.
These results are quantified in the next section and discussed in Section 4.

3.2.1 Area Error and Generation Error
Both area error (Figure 4a) and generation error (Figure 4b) were found to decrease
approximately exponentially as a function of ρ. The average goodness of fit was R2 =
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Figure 4: (a) Area error and (b) generation error as a function of ρ for all population
sizes and population structures, with pup = 1 and g = 0. The solid line in each figure
depicts the best exponential fit to the data for all population structures, and is provided
as a visual aid only. Note the logarithmic scale on the vertical axis.

0.73 between the logarithm of area error and ρ and R2 = 0.79 between the logarithm
of generation error and ρ. In both cases, the decay coefficient varied with population
structure, as can be seen from the individual symbol types shown in Figure 4. The
maximum area error (31%) was observed on the VN2 population structure with μ =
5184, the minimum (5%) was observed on the M7 population structure with μ = 1024,
and the overall average area error was 19%. The maximum generation error (29%) was
observed on the VN1 population structure with μ = 4096, the minimum generation
error (3.2%) was observed on the M7 population structure with μ = 576, and the average
generation error was 17%. Since area error was highly correlated to generation error
across all population structures, population sizes, and uptake/reversion probabilities
(R2 > 0.9), we present generation error, but not area error, in our subsequent results.

The exponential decrease of generation error as ρ increases has the ironic implication
that the PA, even after the formulation has been adjusted to compensate for ρ, becomes
more accurate for estimating saturation dynamics as the system approaches the well-
mixed case. This finding also has the important implication that for any given local
interaction neighborhood, the accuracy of the PA depends heavily upon population size
(μ), with smaller population sizes yielding more accurate results. To better elucidate
the dependence of the accuracy of the PA on population size, Figure 5 depicts the
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Figure 5: Influence of population size on the accuracy of the PA. Takeover dynamics as
estimated by the PA (dashed line) and as observed through direct simulation (solid line)
on the M3 population structure, with a population size of (a) μ = 1024, (b) μ = 2304,
(c) μ = 4096, and (d) μ = 6400.

takeover dynamics observed on the M3 population structure as population size is
increased from μ = 1024 to μ = 6400. As population size increases, the discrepancy
between the PA and simulation curves becomes more pronounced, with generation
error increasing from 10% (Figure 5a) to 18% (Figure 5d). This results from the increase
in the number of generations required for complete saturation to occur as population
size increases, providing the exponential trend of the PA curve more time to diverge
from the polynomial trend of the simulation curve.

3.2.2 Relaxing Selection Pressure, pup < 1
For a given combination of population structure and population size, takeover time was
found to increase in proportion to p-1

up, shifting both the PA and simulation curves to the
right as pup decreases (Figure 6). Decreasing pup causes the PA to predict a slower spread
of the high fitness allele than that observed through direct simulation (as explicitly
shown for two graph types, VN2 and M3, in Figures 6a–c and 6d–f, respectively),
shifting the PA curve more to the right, relative to the curve observed through simulation
(e.g., compare Figures 6a and 6c). Thus, decreasing pup causes an improvement in the
accuracy of the PA for combinations of population structure/population size in which
PA(t) intersected Sim(t) before the inflection point when pup = 1 (such as VN2, μ = 1024,
Figure 6a–c); and it causes a degradation in accuracy for populations in which PA(t)
intersected Sim(t) at or after the inflection point pup = 1 (such as M3, μ = 1024, Figure
6d–f). Decreasing pup from 1 to 0.5 resulted in a maximum improvement in generation
error of 11%, observed on the VN2 population structure with μ = 6400, and a maximum
degradation in accuracy of 12%, observed on the M7 population structure with μ = 1024.

3.3 Relaxing the Non-Extinction Assumption, g > 0

We now consider the case in which reversion is possible, where high fitness individuals
can revert back to low fitness with probability g.

3.3.1 Percentage of Unsuccessful Introductions
Table 3 shows the percentage of all 50 trials with unsuccessful introductions, using
pup ∈ {0.5, 0.75, 1} and g ∈ {0.05, 0.1}. Since the percentage of unsuccessful introductions
was unaffected by population size, the data presented in Table 3 depict the average of
the percentages observed on all eight population sizes. Note that data for g = 0 are
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Figure 6: Influence of uptake probabilities pup on the accuracy of the PA. Representative
takeover dynamics as estimated by the PA (dashed line) and as observed through
direct simulation (solid line) on the (a–c) VN2 and (d–f) M3 population structures with
μ = 1024, g = 0. The three plots in each row correspond to pup ∈ {1, 0.75, 0.5}, from left
to right. The legend and vertical axis applies to all panels. Note the change in scale
among the horizontal axes of each panel.

Table 3: Percentage of unsuccessful introductions as a function of pup ∈ {1, 0.75, 0.5}
and g ∈ {0.05, 0.1}. The data represent the percentage out of 50 independent trials on
each graph type, averaged over all population sizes. Note that the data for g = 0 are
not displayed, since an unsuccessful introduction is impossible in this case.

Unsuccessful Introductions (%)

Population Structure pup = 1 pup = 0.75 pup = 0.5

g = 0.05 g = 0.1 g = 0.05 g = 0.1 g = 0.05 g = 0.1
VN1 2.50 5.00 6.25 15.25 12.00 26.50
ST 2.75 4.25 4.25 11.75 8.75 16.50
AT 4.50 6.25 5.50 12.75 7.00 18.75
T 2.75 10.25 5.25 8.25 7.25 16.50

M3 2.00 7.50 4.00 10.00 8.75 19.75
MVN 2.25 9.00 6.50 8.75 9.00 21.75
VN2 3.00 5.50 4.50 11.75 10.25 21.50
M5 1.25 6.75 4.25 13.00 8.00 18.00

VN3 3.00 6.25 5.50 11.00 6.50 20.75
M7 2.25 7.00 4.75 12.75 6.25 17.00

not displayed, as extinction is not possible in this case. As expected, increasing g or
decreasing pup generally increased the number of unsuccessful introductions. However,
no obvious relationship was observed between introduction success and neighborhood
radius (radiusN ), degree (k), or ρ.
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Figure 7: Influence of reversion probabilities g on the accuracy of the PA. Represen-
tative takeover dynamics with pup = 1 and μ = 1024, as estimated by the PA (dashed
black line) and as observed through direct simulation (solid black line), for the AT
population structure (top row, a–c) and for the M7 population structure (bottom row,
d–f). The three plots in each row correspond to g ∈ {0, 0.05, 0.1}, from left to right. The
dash-dot horizontal line denotes the saturation sill, as approximated by 1 − g/pup. The
scale of the vertical and horizontal axes are held fixed in each panel.

3.3.2 Sill Error
As g increases, the saturation sill decreases, as shown for representative population
structures AT and M7 in Figure 7a–c and Figure 7d–f, respectively. The dash-dot hori-
zontal line represents the expected sill, which can be accurately predicted by 1 − g/pup

for regular population structures with k > pup/g. For the simulation data, we plot the
proportion of nodes (Nt ) containing maximum fitness at time t , averaged over all of the
trials in which extinction did not occur. Note that the proportion of high fitness indi-
viduals observed at saturation using the PA (dashed lines) and direct simulation (solid
lines) are both in good agreement with the predicted sill (1 − g/pup). For each value of
pup, the absolute sill error (Equation (23)) was found to increase slightly as g increased
from 0.05 to 0.1. For all values of pup and g tested, the absolute sill error remained low,
with an average value of 1%. The worst sill error was observed on the VN1 population
structure, with absolute sill errors of 2.3% (μ = 6400 and pup = 0.5) and 7.5% (μ = 5184
and pup = 0.5), for g = 0.05 and g = 0.1, respectively.

3.3.3 Generation Error
Figure 7 shows that, as expected, increasing g slightly increases the number of gener-
ations required to reach the sill. This shifts both the PA and simulation curves to the
right, even though the height of the sill is reduced for g > 0. For the AT population
structure with μ = 1024, Figure 7a–c shows the PA becoming increasingly accurate as g

increases, whereas Figure 7d–f shows the PA becoming increasingly less accurate with
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increasing g on the M7 population structure. Similar to the changes in the PA observed
with decreasing pup (Figure 6), these improvements and degradations in accuracy are
the result of a shift in the dynamics predicted by the PA as g changes, relative to the
shift in the dynamics observed through simulation. Thus, those populations for which
the PA was predicting a slower spread of high fitness individuals than that observed
through simulation when g = 0 become more accurate as g increases, and vice versa.

Generation error was found to be more sensitive to changes in g than to changes
in pup. For a given value of pup, increasing g from 0 to 0.1 caused an average decrease
in generation error of 3.9% among those populations for which error decreased as g

increased and an average increase in error of 6.1% among those populations for which
error decreased as g increased. For a given value of g, decreasing pup from 1 to 0.5
caused an average decrease in error of 3.8% and an average increase of 5.6%.

4 Discussion

The aim of this study was to investigate whether the pair approximation (PA) could be
used to easily and accurately estimate takeover dynamics for evolutionary algorithms
that are spatially-structured on regular graphs. PAs were originally derived as a statisti-
cal mechanics formulation to approximate equilibrium conditions in spatially structured
biological populations, in order to determine conditions for the evolution of altruism
(Matsuda et al., 1992). PAs have since been widely applied in various biological appli-
cations, as reviewed in Section 1. In this manuscript, we first show that the takeover
dynamics of an advantageous allele are equivalent to the dynamics of the well-known
SIS model of disease spread. We then modify the epidemiological formulation of the
PA of Keeling (1999) to model takeover dynamics in this system.

The original presentation of the PA (Matsuda et al., 1992) incorporated a constant
coefficient of c = 2, and this value has since been used in numerous other studies. While
the value of this coefficient does not affect equilibrium frequencies, we show that it does
dramatically impact predictions of pre-equilibrium dynamics. Our results show that,
in all 10 population structures tested, a value of c = 2 caused the PA to dramatically
overestimate the rate of spread of advantages alleles, consistent with the results of
Petermann and De Los Rios (2004). Furthermore, we show that, if one is trying to predict
pre-equilibrium dynamics, the value of c that minimizes generational errors depends on
the interaction between (a) the structure of the local interaction neighborhood and (b) the
population size. We combine these two influences into a single parameter ρ (defined as
the ratio of the radius of the local interaction neighborhood to the radius of the entire
population) and show that the optimal value for the coefficient c can be estimated as a
logarithmic function of ρ. Using this formula for c in the PA, we systematically assessed
the accuracy of both equilibrium conditions and pre-equilibrium takeover dynamics
for 10 regular neighborhood interaction structures, at eight population sizes, and with
a variety of uptake and reversion probabilities. Parameterizing the coefficient c by ρ

effectively shifts the saturation curve predicted by the PA so that it intersects with
the simulation data at (or near) the inflection point, thereby minimizing generational
errors in the PA. In general, two primary sources of errors remain: (a) residual errors
introduced by using the regression curve to estimate c, and (b) errors introduced by the
simplifications in the PA itself.

If the optimal values of c were used for each specific ρ, the PA and simulation
takeover curves would intersect at the inflection point, thus balancing out positive
and negative area and generational errors and minimizing overall error. However, in
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general the optimal c would not be known for a particular neighborhood structure
and population size unless extensive simulations were first performed, which would
defeat the purpose of using the PA to rapidly and easily predict takeover dynamics
without simulations. Thus, the PA was assessed using the values of c predicted by the
empirically derived logarithmic fit relating c to ρ. Although this fit was quite good
(R2 > 0.88), individual values of c selected according to this formula did contain some
small residual error, which caused some predicted curves to intersect the simulation
curve a little before the inflection points, thus causing a slight net over-prediction in the
rate of spread, or a little after the inflection points, causing a slight net under-prediction
in the rate of spread. In general, decreasing the uptake probability or increasing the
reversion probability slows takeover time and has the effect of shifting the PA curve
slightly more to the right than the simulation curve. Whether this increased or decreased
overall error depended on where the two curves intersected at pup = 1, g = 0, relative
to the inflection point. We suspect that the coefficient c could be further parameterized
in terms of both pup = 1 and g = 0, to reduce this variability.

The PA uses differential equations to model the dynamics of states of neighbor-
ing pairs of vertices. Higher order interactions are not explicitly modeled, but must
be approximated using some method of closure. We employed the closure method of
Keeling (1999), which incorporates the proportion of closed to total triplets that exist
in the local interaction neighborhood (a.k.a. the clustering coefficient), thus closing the
system at the level of triplets. Interactions higher than triplets were ignored. Conse-
quently, the PA yielded less accurate predictions of dynamics on populations with von
Neumann neighborhoods, which have no closed triangles (and thus no clustering) but
do have a preponderance of closed quadruplets. To illustrate why this is a problem,
consider a closed wxyz quadruplet (i.e., a square) in the VN1 topology. While the state
of node y cannot directly affect the state of node w, it can have an affect on z, which
in turn may affect w. By ignoring quadruplet correlations and assuming no correlation
between distant ends of triplets, the PA treats the VN1 population structure as if it
were a regular random graph with degree k. This explains the more rapid saturation
predicted by the PA than that observed through direct simulation. Thus, if one wanted
to use the PA to estimate takeover dynamics in populations with von Neumann (or
other) neighborhoods with higher order interactions, accuracy could be improved by
explicitly accounting for these correlations. For example, Van Baalen (2000) presented a
closure method that captures quadruplet correlations, in order to improve the accuracy
of the PA in predicting the equilibrium dynamics of a simple birth-death-movement
process in lattice based population structures with von Neumann neighborhoods. Satō
and Iwasa (2000) introduced a closure method, referred to as variable discounting,
which similarly improves the accuracy of the PA in estimating pathogen invasion in
lattice based spatial structures with spatially adjacent interactions (i.e., von Neumann
and Moore). In contrast to these higher-order closure methods, Petermann and De Los
Rios (2004) developed a technique referred to as the “cluster approximation” that explic-
itly tracks higher order correlations up to a specified degree, improving the accuracy
of the approximation in estimating the dynamics of disease spread in lattice struc-
tured (Triangular and von Neumann) and random interaction topologies. Although the
higher order approximations of Petermann and De Los Rios (2004) are able to more
accurately predict equilibrium frequencies, the required number of coupled differential
equations grows exponentially in the size of the correlation being tracked and growth
rates are still over-predicted, especially in the lattice structured populations. While these
higher order methods have yet to be explored on different population sizes, our results
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suggest that the interaction between neighborhood size and shape and population size
will still need to be accounted for. Such higher order improvements could be used in
combination with a parameterized coefficient c as suggested in this paper, although the
best fit curve for this would need to be recomputed for a given approximation method.

The PA exhibits exponential growth below the inflection point, while the takeover
curves on lattices with local interactions increase only polynomially. Consequently,
the accuracy of the PA decreases exponentially with increasing ρ (i.e., with increasing
neighborhood interaction radii and/or decreasing population size), in part because
larger neighborhood radii have higher polynomial exponents, and in part because as
population sizes are decreased, individual neighborhoods cover a larger portion of the
population (and thus approach panmixia). Furthermore, as population size increases,
the exponential trend of the PA curve has more time to diverge from the polynomial
trend of the simulation curve, thereby increasing discrepancies between the two curves.
It is ironic that PAs, which were designed to model local interactions, actually work
better when interactions are far-ranging. It is also usually assumed that continuous
models of discrete systems work better as population sizes approach infinity, but in this
case the PA works better for small populations, a counterintuitive finding.

The “replace if better” selection mechanism employed herein is clearly a simplifica-
tion of the selection operators that are commonly used in evolutionary algorithms. How-
ever, PAs can be modified to employ much more complicated selection policies, such as
frequency dependence (Van Baalen and Rand, 1998) and game-theoretic payoff matrices
(Hauert and Doebeli, 2004; Ohtsuki et al., 2006). The PA could be similarly adjusted to
include a more sophisticated reversion mechanism as well (e.g., frequency dependence),
and recent work (Ellner, 2001) has demonstrated that the PA can even be adjusted to deal
with processes (e.g., selection and reversion) that operate on differing spatial scales.

One definite limitation of the PA is the assumption of topological regularity. For
example, while the proposed method for adjusting the PA as a function of ρ allows for
nonuniform lattice dimensions, the exponential trend of the PA will become increasingly
inaccurate as the dimensions of the lattice become more unequal; in the limiting case
of the ring topology, in which the actual saturation dynamics are linear (Rudolph,
2000), the PA would be extremely inaccurate in capturing the saturation dynamics. The
PA has been applied in a few population structures with mildly heterogeneous degree
distributions, such as random graphs (e.g., Petermann and De Los Rios, 2004). However
the extreme heterogeneity of other spatial structures of recent interest, including small-
world (Watts and Strogatz, 1998) and scale-free (Barabàsi and Albert, 1999) topologies,
prohibits the development of a PA for predicting dynamics on these networks. For
example, Ohtsuki et al. (2006) noted that the simple rule for the evolution of cooperation
in the graph-based prisoner’s dilemma, derived using a PA based on the assumption of a
regular graph, was inaccurate for populations structured on highly irregular topologies
(e.g., scale-free). While the extreme irregularity of some topologies may preclude the
development of such a generalized methodology for estimating takeover dynamics,
the recent results of Payne and Eppstein (2007b) suggest that it may be possible to
rapidly predict expected takeover times on arbitrary topologies, using only a few readily
computable metrics of the underlying spatial structure, and work is underway to refine
this empirical prediction approach (Payne and Eppstein, 2008).

The PA, as formulated herein, implicitly assumes synchronous updating. The choice
of synchronous vs. asynchronous updating can have a significant impact on takeover dy-
namics (Giacobini, Tomassini, and Tettamanzi, 2005; Giacobini, Tomassini, Tettamanzi
et al., 2005), and it has been reported that the PA produces more accurate results when
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the update policy is synchronous (Hauert and Doebeli, 2004). Thus, this represents a
further limitation of the PA.

5 Summary

In summary, takeover time analysis for evolutionary algorithms was reformulated in
terms of the well-known SIS model of disease spread. An analytical technique, referred
to as the pair approximation (PA), was then adapted to predict takeover dynamics and
parameterized by ρ, the ratio of the radius of the local neighborhood and the radius
of the graph. The accuracy of our parameterized reformulation of the PA was then
assessed on a total of 10 distinct types of regular population structures, each with dif-
ferent configurations of interaction neighborhoods, using eight population sizes, and
several combinations of selection and reversion probabilities. The results of this study
demonstrate that our parameterized formulation of the PA, using the closure method
of Keeling (1999), is a fast and reasonably accurate way to estimate both equilibrium
and pre-equilibrium takeover characteristics of synchronously updated populations
embedded on a variety of regularly structured graphs. A key result of this study is
that the coefficient c in the PA (which is commonly assumed to be c = 2) should be
parameterized by ρ if one is interested in approximating pre-equilibrium conditions.
PAs are not appropriate for heterogeneous graphs, unless the nodal degree is reason-
ably close to constant. Thus, in biological or epidemiological studies, where interaction
topologies are typically dynamic, heterogeneous, and difficult to ascertain, we caution
that PAs may produce misleading results. However, in evolutionary computation, pop-
ulation structures are user-defined, frequently regular, and their topological properties
are readily computable. We conclude that PAs can be a useful tool for rapidly estimat-
ing takeover dynamics in evolutionary algorithms on synchronously updated regular
graphs, as long as care is taken to assess the topological characteristics of the graph in
advance and the PA is appropriately formulated. Future work will seek to demonstrate
if such insights may prove useful for guiding choices of local neighborhood structures
in evolving populations, as a potential means of statically or dynamically optimizing
selection pressure and convergence.
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