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Abstract Our rapidly growing knowledge regarding genetic variation in the

human genome offers great potential for understanding the genetic etiology of

disease. This, in turn, could revolutionize detection, treatment, and in some cases

prevention of disease. While genes for most of the rare monogenic diseases have

already been discovered, most common diseases are complex traits, resulting from

multiple gene–gene and gene-environment interactions. Detecting epistatic genetic

interactions that predispose for disease is an important, but computationally

daunting, task currently facing bioinformaticists. Here, we propose a new evolu-

tionary approach that attempts to hill-climb from large sets of candidate epistatic

genetic features to smaller sets, inspired by Kauffman’s ‘‘random chemistry’’

approach to detecting small auto-catalytic sets of molecules from within large sets.

Although the algorithm is conceptually straightforward, its success hinges upon the

creation of a fitness function able to discriminate large sets that contain subsets of

interacting genetic features from those that don’t. Here, we employ an approximate

and noisy fitness function based on the ReliefF data mining algorithm. We establish
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proof-of-concept using synthetic data sets, where individual features have no

marginal effects. We show that the resulting algorithm can successfully detect

epistatic pairs from up to 1,000 candidate single nucleotide polymorphisms in time

that is linear in the size of the initial set, although success rate degrades as heri-

tability declines. Research continues into seeking a more accurate fitness

approximator for large sets and other algorithmic improvements that will enable us

to extend the approach to larger data sets and to lower heritabilities.

Keywords Evolutionary algorithms � Epistasis �
Single nucleotide polymorphisms � Data mining � Genome-wide association studies �
Complex traits � Feature selection

1 Introduction

The successful sequencing of an entire ‘‘representative’’ human genome [7, 29] and

development of methods for rapid and affordable genotyping [26] have stimulated

large-scale research efforts in identifying human genetic variability, and millions of

single nucleotide polymorphisms (SNPs) have now been identified [6, 8, 10]. Such

genomic information carries with it the potential for improved understanding

regarding the genetic etiologies of disease, and may revolutionize our abilities to

detect, treat, and even prevent disease [4, 13, 21]. Indeed, linkage studies have

already been highly successful in identifying the genes responsible for most of the

known rare monogenic diseases (i.e., those that are caused by mutations in a single

gene), including cystic fibrosis, Alzheimer’s disease, Hirschsprung disease, and

phenylketonuria [3, 13, 21]. But monogenic diseases are the exception, not the rule.

Our growing understanding of the complex interconnectedness of genetic [22, 28]

and metabolic [23] regulatory networks is spawning a new appreciation for the

ubiquity of non-linear epistatic genetic interactions in predisposing individuals for

disease [14]. In fact, most common diseases, including heart disease, obesity,

cancer, diabetes, and schizophrenia, are caused by complex interactions between

many genetic and environmental factors [3, 13, 30]. Because these complex diseases

do not follow Mendelian inheritance patterns, linkage studies are ineffective in

identifying which genetic variations are associated with these diseases [4].

Consequently, researchers are seeking new methods for conducting genome-wide

association studies to detect non-linearly interacting SNPs that are associated with

disease [4, 27, 30]. Detecting which handfuls of SNPs (from among hundreds,

thousands, or even hundreds of thousands of genotyped candidate SNPs) exhibit

non-linear epistatic interactions that predispose for disease is a computationally

daunting combinatorial optimization task, because individual SNPs may have little

or no detectable ill effects [17]. Solution of this important problem is further

exacerbated by low disease heritability, small sample sizes, and a lack of

information regarding how many, if any, SNPs interact. New methods, such as

multifactor dimensionality reduction [15, 16, 24], show promise for detecting

epistatic interactions, yet are still dependent on exhaustive search [12]. However,

exhaustive searches are not computationally feasible for large-scale association
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studies, and the optimal strategy for genome-wide analysis is still an open question.

Various statistical, data mining, and machine learning strategies have been applied

to the problem [5, 11, 20], and while several of these methods have shown

encouraging results for small to moderate problems (typically a few hundred SNPs

or less), none have emerged that are suitable for really large-scale genome-wide

association studies. There have been some recent attempts to apply evolutionary

algorithms to this problem [18, 31]. However, these approaches attempt to grow and

recombine small, high fitness building blocks into complete solutions. Conse-

quently, if there are no detectable effects until the correct combination of SNPs is

found, such approaches will be no better than random search [18, 31]. It has been

suggested that additional expert knowledge could be provided to bias the search

towards including more promising SNPs [18], but such knowledge may not be

available and also carries the risk of incorrectly biasing the search.

We propose a new type of evolutionary algorithm, inspired by the ‘‘random

chemistry’’ procedure outlined by Kauffman to identify small sets of auto-catalytic

molecules [9]. In this approach, we tackle this non-linear feature selection problem

by hill-climbing from larger to smaller sets of SNPs, rather than vice versa. The

proposed algorithm necessitates the creation of a different type of fitness metric that

(a) yields higher fitness for large sets of SNPs that contain all members of a target

subset of interacting SNPs, as compared to same-sized sets that do not contain all of

the members of the interacting subset, and (b) yields higher fitness for smaller vs.

larger sets of SNPs, both of which contain all members of a target interacting subset.

We propose two such fitness metrics, an accurate but computationally costly fitness

metric for evaluating small sets of SNPs, and a noisy but computationally tractable

fitness metric for evaluating large sets of SNPs. The former requires building cross-

validation directly into the fitness metric, and the latter requires noise compensation

techniques to be incorporated into the random chemistry algorithm. Although non-

deterministic, the resulting algorithm requires only h(log N) fitness evaluations to

detect a small subset of interacting SNPs from an initial set of N candidate SNPs.

We establish proof-of-concept using synthetic data sets of up to 1,000 candidate

SNPs, and with heritabilities of both 0.4 and 0.1, where heritability is the proportion

of disease cases attributable to genetic effects.

2 Random chemistry algorithm

Kauffman [9] outlined a simple procedure for detecting small auto-catalytic sets of

L molecules from a large number of N candidate molecules, as follows. Consider

putting a random half of the molecules in a test tube. Clearly, any given molecule

has a 0.5 probability of ending up in this tube, and the probability of all L desired

molecules being in this tube is nearly 0.5L. Thus, it is expected that one out of

almost every 2L such tubes will contain all L interacting molecules. By doubling the

number of tubes to 2L+1, the chance that at least one tube will be ‘‘positive’’ for all L
molecules is also doubled. Now, assuming that the L molecules interact in some

detectable way (e.g., by forming a by-product), one could simply screen for a

‘‘positive’’ tube, and repeat the process on the molecules in that tube, until only the

Genet Program Evolvable Mach (2007) 8:395–411 397

123



correct L molecules remain. Note that this process will require only 2L+1log2N/L
screening tests to pick out the L interacting molecules. This process can be viewed

as feature selection, where the features Kauffman sought were non-linearly

interacting molecules.

Our goal is to detect sets of L features that are epistatically interacting SNPs.

Unfortunately, we will not know a priori how big L is. However, the sample size

will provide an upper limit on the maximum degree of epistasis Lmax that can

feasibly be detected with a given statistical power, so final subsets can be restricted

to be of size Lmax or less. In Fig. 1, we generalize the ‘‘random chemistry’’

algorithm for detecting small sets of up to Lmax epistatically interacting features

from among N candidate features.

Note that lines 1–9 use the random chemistry approach to exponentially reduce

the candidate set size from N to Lswitch, and so require h(log N) fitness evaluations

with a noisy fitness approximation function ‘‘LargeSetFitness’’. The first few

“Random Chemistry” Algorithm: 
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14 : ENDFOR
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←

where:
N is the total number of features in the initial candidate set 
M is the number of features in the current child sets 
Lmax is the maximum number of interacting features to be detected 
Lswitch is the maximum set size practical for SmallSetFitness
q is the proportion of the parent set to put in each child set 
  is a safety factor > 1 

c

Fig. 1 Pseudo code for a generalized ‘‘random chemistry’’ algorithm for detecting small sets of up to
Lmax epistatically interacting features from among N candidate features
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iterations of the loop starting on line 2 are illustrated in Fig. 2. The size of the child

sets are designated to be not more than some proportion q of the size of the parent

sets, but not smaller than Lswitch. Noise in the LargeSetFitness function can be

partially compensated for by lowering selection pressure. This can be accomplished

by saving and recombining the top few children as indicated on line 8, rather than

simply selecting the fittest child, as described in more detail in Sect. 4. Here, we

simply choose Lswitch to be the size of the largest set that can be practically

computed with a more accurate, but more computationally intensive, fitness

function ‘‘SmallSetFitness’’, with the caveat that Lswitch ‡ Lmax. Once the best subset

of size Lswitch has been identified, lines 10–16 perform a final exhaustive search on

all possible subsets of size 2 to Lmax, thus requiring h
PLmax

M¼2

Lswitch

M

� �� �

fitness

evaluations with the function ‘‘SmallSetFitness’’.

In the general random chemistry algorithm (Fig. 1), the ratio of child set size to

parent set size is the proportion q. Thus, the expected number of ‘‘positive’’ child

sets in a given iteration (i.e., those containing all of the desired interacting features)

is:

E # positive child sets½ � ¼ qN � Lð Þ!N!

qNð Þ! N � Lð Þ! ð2:1Þ

For large N and small L, Eq. (2.1) approaches 1/qL. Since the creation of child

sets is non-deterministic, we allow the user to specify a safety factor r, which

specifies the approximate number of the child sets that are expected to be positive.

Thus, the number of child sets we generate during a given iteration is the ceiling of

r/qLmax, as indicated on line 4 of Fig. 1. The larger the proportion q, the fewer the

number of child sets that must be generated in order to expect r positive child sets,

2

N

X X X X X X X X X X X X X X X

XX X X X X XX X X X X X X X

X X X X X X X X X X X X X XX

N

4

N

8

N

maxLq

σ

X X X X X X X X X X X X X X XX X X X X X X X X X X X X X XX X X X X X X X X X X X X X X

XX X X X X XX X X X X X X XXX X X X X XX X X X X X X XX X X X X XX X X X X X X X

X X X X X X X X X X X X X XXX X X X X X X X X X X X X XX

N

Fig. 2 An illustration of the first few iterations of the ‘‘random chemistry’’ algorithm (Fig. 1) for a set
initially containing N features, illustrated here using a proportion q = 0.5, Lmax = 3, and r = 2. Thus, in
each iteration, an independently selected random 50% of the features are placed into each of 16 ‘‘test
tubes’’. One (of *2 expected) of the 16 tubes that screens ‘‘positive’’ for the desired interaction is
selected (black stippling) and the others are discarded (black X’s). This is repeated for h(log2N) levels
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but the more iterations that will be required in order to reduce the feature set size to

Lswitch. Thus, q can be optimally determined once the runtime requirements of the

LargeSetFitness approximator are known as a function of the size of the set being

evaluated, in order to minimize the overall time required for the loop on lines 2–9,

as long as qN does not exceed the maximum set size for which LargeSetFitness can

distinguish ‘‘positive’’ from ‘‘negative’’ sets. However, since research continues

regarding the best algorithm for the LargeSetFitness function, we simply set

q = 0.5, as suggested by Kauffman [9], for the experiments reported here. For

realistically sized data sets, Lmax will be bounded by a small constant and qN will be

bounded by a relatively large constant, depending on the power of the LargeSet-
Fitness function.

With our current implementations of the two fitness functions (described in the

following sections), the function LargeSetFitness scales linearly with M (the size of

the set being evaluated), while the function SmallSetFitness scales exponentially

with M. Consequently, we set Lswitch = 8, and the time complexity of the loop on

lines 10–15 always requires a constant amount of time, independent of N. Thus, the

time complexity of the overall algorithm is governed by the h(log N) fitness

evaluations with the noisy fitness approximator. The time complexity of the fitness

function is obviously a function of both the initial set size N and the sample size.

However, we are most interested in how the algorithm scales with the number of

features N in the initial set for a given sample size, and so treat sample size as a

constant for the purposes of this analysis. Since the current implementation of

LargeSetFitness is h(M), where M starts at N/2 and decreases exponentially for each

of the h(log N) iterations, the overall time complexity of the current implementation

is h(N).

The random chemistry algorithm can be considered as an evolutionary algorithm

with a variable sized (but strictly decreasing) genome and a (l = 1, k = r/qLmax)

generational strategy with truncation child selection, a random halving mutation

operator, and a recombination operator that is described in Sect. 4. However, unlike

a typical evolutionary algorithm, the random chemistry algorithm is bounded in

time, as described above. The success of this algorithm hinges on the ability of the

fitness functions to accurately predict the likelihood of whether or not a given set of

features is positive (contains all of the features in the interacting subset) or negative

(doesn’t contain all of the features in the interacting subset). In the next two

sections, we describe the two fitness functions currently employed.

3 Assessing the fitness of small feature sets

How does one evaluate whether a small set of SNP loci (the features in question)

contain a subset that interact to influence susceptibility to a given disease? This is a

non-trivial question, especially when heritability is low and epistatic interactions are

such that different genotypes at the same loci exhibit different penetrance values for

the same disease.

We borrow and modify an idea commonly employed in medical decision

making; i.e., the receiver operating characteristic (ROC) curve [1], described below.
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The ‘‘sensitivity’’ of a test is equivalent to the true positive fraction (TPF); that is,

the fraction of test subjects which have the disease and yield a positive test result.

On the other hand, the ‘‘specificity’’ of a test is simply 1 minus the false positive

fraction (FPF), where the FPF is the fraction of test subjects that do not have the

disease but still give a positive test result. An ROC curve is simply a plot showing

the trade-off between increasing sensitivity and decreasing specificity, as we vary

some cutoff criterion for when a test result is considered positive (e.g., Fig. 3).

Ideally, a good test will have both high sensitivity and high specificity, so will have

an ROC curve that passes close to the upper left hand corner of the plot. The area

under the curve (AUC) is frequently used as a measure of the predictive power of a

test. A test with no predictive power will simply have a diagonal ROC curve, with

AUC = 0.5. In the case of assessing the predictive power of a set of SNPs, we can

create an ROC curve as follows. First, we compute the ‘‘sample penetrance’’ pg for

each possible diploid genotype g at the specified SNP loci; i.e., the proportion of

subjects in the sample with genotype g that exhibit the disease. The ROC curve can

then be estimated by varying the cutoff of sample penetrance that is considered a

positive test result. Since there are only a small finite number of possible genotypes

for a given small set of loci, this is not a continuous curve, but rather is a set of

discrete points. Thus, it is not meaningful to try to calculate an AUC. Instead, we

use the maximum distance (MD) above the diagonal as a measure of the predictive

power of a set of SNPs. The ‘‘sample prevalence’’ P is the proportion of the sample

that exhibits the disease. The MD occurs at the point where the cutoff is P; that is,

where we consider all genotypes whose sample penetrance is greater than or equal

to the sample prevalence to be positively associated with the disease. Specifically
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Fig. 3 ROC curve for the data shown in Table 1, with the maximum distance (MD) fitness metric shown
for the two interacting A and B loci. Note that the specificity axis is shown in decreasing order
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MD ¼ TPF � FPF; 8g pg�P
�
� ð3:1Þ

This approach is consistent with the way in which high and low risk genotypes are

lumped in multifactor dimensionality reduction [15, 16, 24]. The computation of the

ROC curve and the maximum distance D metric is illustrated with a synthetic data set

generated from the penetrance model shown in Table 1. This data set contains 1,000

SNPs, each with two possible allele values, from 1,600 individuals, half of whom have

disease (so P = 0.50). Although none of the SNP loci are individually correlated with

the disease, the alleles at L = 2 loci interact epistatically to affect susceptibility to the

disease with 0.4 heritability. Suppose the two epistatically interacting SNP loci are

locus A, with 3 possible diploid genotypes AA, Aa, and aa, and locus B, with

genotypes BB, Bb, and bb. In this example, the calculated sample penetrance (pg) for

the nine possible genotype combinations is as shown inside the double lines in

Table 1, with the boldface values representing those genotypes with pg ‡ P that are

positively associated with the disease. Note that sample penetrance values for the A

and B loci taken individually (right column and bottom row, respectively) are all close

to the sample prevalence of P = 0.5 (bottom right value), indicating that there are no

marginal effects.

The ROC curve for this data is shown in Fig. 3, where the maximum distance

metric MD occurs when individuals with genotypes AABb, AAbb, AaBB, and aaBb are

considered positively associated with the disease and all others are considered

negatively associated with the disease. Also shown, for comparison, are the ROC

curves for the A and B loci alone, which are not significantly above the main diagonal

and hence indicate that these loci have no predictive power when viewed in isolation.

Unfortunately, the MD metric, by itself, is insufficient for use in the random

chemistry algorithm. Although MD is higher for ‘‘positive’’ sets containing the

correct subsets of epistatically interacting SNPs than for ‘‘negative’’ sets of the same

size, the MD metric continues to increase as additional ‘‘extra’’ SNPs are

considered. This is illustrated in Fig. 4a for the same synthetic 1,600 member data

set described above, for random sets containing both correct SNP loci (·‘s) and

Table 1 One sample table of penetrance pg for all nine genotypes of two loci, A and B, that interact

epistatically to influence susceptibility to a disease with heritability 0.4 in the synthetic data set described

in the text

BB Bb bb A alone 

AA 0.09 0.520.72 0.91

Aa 0.25 0.31 0.480.89

aa 0.12 0.16 0.530.88

B alone 0.48 0.52 0.48 P=0.50 

Genotype
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random sets containing 0 or 1 of the correct loci (•‘s). The reason for this is

two-fold; first, adding in additional loci does not lower the predictive power of

epistatically interacting loci also contained in the set, and second, as the number of

loci M in a set increases, the number of genotypes increases as 3M. As the number

of possible genotypes approaches the number of samples in the data set, the MD
metric simply over-fits the data and thus continues to rise.

In order to compensate for overfitting, we incorporate cross-validation directly

into the fitness metric. Specifically, we divide the sample in two, and compute

sample penetrance tables for each half of the data set. For each of these two tables,

we determine which of the 3M genotypes (a) were represented in both tables, (b) had

sample penetrance \ the sample prevalence (‘‘negatives’’), (c) had sample pene-

trance ‡ the sample prevalence (‘‘positives’’). We then define a cross-validation

value C to be the proportion of genotypes that ‘‘agreed’’ between the two tables (i.e.,

were either both positively or both negatively associated with the disease), and we

also define a metric of support S as the proportion of the 3M genotypes that had

representatives in both tables. We define MDmin to be the smallest MD above the

ROC diagonal that is considered to be more predictive than random (we used

MDmin = 0.1). If MD [ MDmin, then we repeat the cross-validation test for some

number of repetitions (we used 20), otherwise we do not repeat the cross-validation.

We define the fitness F as follows, where averaged quantities (averaged over either

the 1 or 20 repetitions) are indicated by horizontal bars:

F ¼ MD�MDmin

� �
� C � S0:25 ð3:2Þ

The average support S is raised to the 0.25 power to minimize the effects of the

strong non-linearity in this metric. While none of MD; �C; or �S alone satisfy the

criteria for our fitness function, the combined fitness metric F does, at least for sets

of size M £ 8 (Fig. 4b). Thus we can correctly distinguish larger sets of SNPs that

contain the correct loci from those that don’t, and hill-climb from larger sets to

smaller sets that contain fewer ‘‘extra’’ loci. Function F, shown in Eq. 3.2, is what is

currently implemented in the function SmallSetFitness (Fig. 1, line 13).

Since there are three possible diploid genotypes per each biallelic locus (the two

homozygotes and the heterozygote), there are 3M possible genotype combinations at

Fig. 4 (a) Maximum ROC distance metric MD from Eq. 3.1, and (b) fitness metric F from Eq. 3.2.
‘‘Positive’’ subsets of SNPs are shown with ·‘s (top trajectories), with the minimal true subset of two
interacting SNPs (circled). ‘‘Negative’’ sets containing 0 or 1 of the correct SNPs are shown with •‘s
(bottom trajectories)
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M loci for which the sample penetrance must be computed. Thus, computing the

maximum distance MD metric for M loci has time complexity h(3M), which is only

practical for small sets of M SNPs. Moreover, for sets of size 8 the support S is

already nearly zero. For these reasons, we did not apply Eq. 3.2 to sets with more

than Lswitch = 8 loci.

4 Assessing the fitness of large feature sets

The most difficult implementation detail required for the random chemistry

algorithm to be useful is the determination of an effective way to estimate the fitness

of large sets of SNPs. This remains a non-trivial problem and we are continuing to

seek better approaches. However, to date, the most effective fitness approximator

we have achieved is based on the ReliefF data mining algorithm [25], which has

previously been shown to have promise for a similar SNP problem [19]. The ReliefF

algorithm attempts to estimate importance of weights of each locus in discrimi-

nating between two classes (e.g., healthy and diseased) as shown in Fig. 5. We

define a ‘‘rough’’ fitness function Fr as:

Fr ¼ mean of top 25% of ReliefF weights W ð4:1Þ

For the results reported here, we used k = 1,600 (where we used each sample

individual exactly once) and nn = 10 (i.e., 10 nearest neighbors). The nearest

neighbors are determined by maximizing the number of loci with the same genotype

as the sample Ri. For large numbers of loci N, this fitness approximator gets

increasingly noisy because the ReliefF algorithm may pick the ‘‘wrong’’ nearest

neighbors (i.e., based on matching genotypes of irrelevant SNP loci). Nonetheless,

this fitness approximator works surprisingly well in distinguishing ‘‘positive’’ from

‘‘negative’’ sets up to a few hundred SNPs, although it becomes noisier as

heritability decreases, as shown in Fig. 6, where asterisks denote where the average

“ReliefF” Algorithm:

Weights Wj=0,  j {1..N} loci

FOR i = 1 to k (k = # random samples) 

   Select an individual Ri

   Hits = nn nearest neighbors from same class as Ri

   Misses = nn nearest neighbors from other class as Ri

   FOR j = 1 to N (for all loci) 

Hj = proportion of the nn Hitsj that matched value of Rij

Mj = proportion of the nn Missesj that matched value of Rij

Wj = Wj + (Hj – Mj)/k (estimate importance of each locus) 

   ENDFOR 

ENDFOR

Fig. 5 Pseudo-code for the ReliefF data mining algorithm [25]
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rough fitnesses of five trials of random ‘‘positive’’ sets and five trials of random

‘‘negative’’ sets were statistically different (P \ 0.05, 2-tailed t-test). Function Fr,

shown in Eq. 4.1, is what is currently implemented in the function LargeSetFitness
(Fig. 1, line 6).

Since Fr is a noisy approximate fitness function, we modified the step shown in

Fig. 1 Line 8 of the random chemistry algorithm to save the top t fittest children sets

(rather than just the single fittest child set), where t ¼ log4 Np

� �
and Np is the

number of SNPs in the parent set of the current iteration. These sets are then

recombined in an ad hoc fashion by saving all of the SNPs in the fittest set along

with all other SNPs that occurred in at least two of the remaining top sets
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Fig. 6 The differences in mean rough fitness using the approximator Fr from Eq. 4.1 between ‘‘positive’’
random sets (that contain the correct two interacting SNP loci) and ‘‘negative’’ random sets (without the
correct loci). Each data point represents the differences in the means of five repetitions using random sets
of the designated size; asterisks indicate that the means were statistically significantly different (P \ 0.5,
2-tailed t-test), whereas small circles indicate set sizes where the means were not statistically different
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Fig. 7 Decrease in SNP set sizes during a representative run of the random chemistry algorithm
compensated for noise, in which two epistatically interacting SNPs were correctly detected from 1,000
SNP loci, using the data set described in Sect. 2
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(i.e., parent / S1 [ (S2 \ S3 \ … St), where Si represents the ith fittest child set).

Thus, set sizes are no longer reduced by exactly ½ during each iteration, but were

only reduced by approximately ½ to ¼ (Fig. 7). In practice, this requires on the

order of log1.5N iterations (rather than log2N iterations, when the set size is strictly

halved) due to the merging of sets.

5 Experimental results

We demonstrate proof-of-concept using several sets of synthetic data. Each data

set had two loci generated using a distinct 2-locus epistatic penetrance table with

no marginal effects, created by a stochastic method designed to achieve specific

heritabilities that meet the criteria described in [2], with varying numbers of

extraneous loci added in that exhibit no association with the disease. Using

synthetic data sets with loci that exhibit no individual effects enables us to

validate the method under the most extreme conditions of pure epistasis. There

were 1,600 samples in each set with sample prevalence of 0.5, and major/minor

allele frequencies of 0.6/0.4, respectively, at each locus. Some of the data sets had

disease heritability of 0.4, and some had heritability of 0.1. A total of 250 test

runs were performed, as follows. We ran five repetitions of data sets from five

different penetrance tables with each of N = 200, 500, and 1,000 initial SNPs, for

a total of 75 test runs at 0.4 heritability. Since Fr is so much noisier for the 0.1

heritability data than at 0.4 heritability (Fig. 6) we tested more intermediate set

sizes for these lower heritability data sets. Specifically, we ran five repetitions of

data sets from five different penetrance tables with each of N = 100, 150, 200,

300, 400, 500, and 1,000 initial SNPs, for a total of 175 test runs at 0.1

heritability. For computational efficiency in running the experiments reported

here, we generated 12 child sets per iteration, corresponding to r = 3, q = 0.5, and

Lmax = 2 on line 4 of Fig. 1, although we used Lmax = Lswitch = 8 for the loop on

line 10 of Fig. 1, in order to ensure that we could hill-climb from 8 SNPs to the

correct 2 SNPS with the fine fitness function In preliminary experiments, we had

confirmed that using a higher Lmax on line 4 of Fig. 1 did not change the final

results for these data sets (where the true degree of epistasis is known to be 2), but

simply increased the computation time since the number of required child sets that

must be evaluated each iteration scales with 1/qLmax. In a real data set (where the

true degree of epistasis is unknown), one should use the highest Lmax that

statistical limitations of the sample size allow.

For the 0.4 heritability data, the overall percent of successful trials for all

repetitions on all penetrance tables (where success is defined as correctly identifying

the set of 2 epistatically interacting SNPs) declined from 68% to 40% as the size N
of the initial set increased from 200 to 1,000 SNPs (Fig. 8a, solid line, filled

squares). However, even with 1,000 initial SNPs, at least one of the five trials on a

given data set was able to correctly identify the 2 SNPs (Fig. 8b), illustrating how

repeated trials can further compensate for noise in the fitness function (resulting in

100% success for all five penetrance models with up to 1,000 SNPs, as shown in

Fig. 8a, solid line, open squares). For the 0.1 heritability data, the percent of
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successful trials for all penetrance models dropped more rapidly with increasing

initial set size N, to a minimum of only 8% success with 1000 SNPs (Fig. 8a, dashed

line, filled stars). For the lower heritability data, at least one of the five trials on a

given data set was able to correctly identify the 2 SNPs from initial set sizes up to

Fig. 8 (a) Power (% success) of the algorithm in correctly isolating the two epistatically interacting
SNPs from initial sets of varying initial sizes N for disease heritability 0.4 (solid lines, squares) and 0.1
(dashed lines, stars), where power is either calculated based on how many of the five penetrance models
had at least one successful trial (open markers), or on all 25 trials (five repetitions on each of five
penetrance models, filled markers). The same data is shown for the (b) 0.4 and (c) 0.1 heritability data
sets, where individual bars represent the number of successful repetitions out of five on the same data set
of a given size, with color coding representing the five distinct penetrance tables used to generate the
interacting SNPS in the data sets. Note that the x-axis is not uniformly scaled in panel c
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200 SNPs (Fig. 8c), indicating 100% success for all five penetrance models with up

to 200 SNPs (Fig. 8a, dashed line, open stars). However, for larger initial set sizes

there were some penetrance models for which none of the five trials found the

correct two SNPs (Fig. 8c), and at 1000 SNPs only one of the five penetrance

models had any successful trials (i.e., yielding only a 20% success rate on the five

data sets with 1,000 SNPs, Fig. 8a, dashed line, open stars). These results indicate

that some penetrance models may be inherently more difficult than others (e.g., note

in Fig. 8c that none of the five trials were successful with penetrance table 8, for

initial sets of size 300 or more) and/or that more trials are warranted at lower

heritabilities. Overall, these results are better than we would have predicted, given

the level of noise in the rough fitness approximator.

6 Discussion and future work

Detecting small sets of epistatically interacting SNPs that can influence an

individual’s susceptibility to disease is a difficult but important challenge facing

bioinformaticists. When smaller subsets of purely epistatically interacting sets of

SNPs have no effect, it is not possible to hill-climb from smaller to larger building

blocks in constructing these SNP sets. In this work we have presented proof-of-

concept for an alternative non-deterministic bounded time evolutionary approach

dubbed the ‘‘random chemistry’’ algorithm. This approach enables us to hill-climb

from larger to smaller sets of SNPs in only h(log N) fitness evaluations, for an

overall time complexity of h(N) in the current implementation, where N is the

number of candidate SNPs in the initial set. Furthermore, the algorithm is inherently

parallelizeable.

Evaluating the fitness of small sets of loci is accomplished using an ROC based

metric with built-in cross validation to penalize over-fitting. This fitness function,

while fairly accurate, is exponential in the set size and therefore not practical for

large sets. The main challenge in implementing the random chemistry algorithm is

in finding a reliable and computationally efficient way to approximate which large

sets contain the correct SNPs and which don’t. Herein we employ an approximate

and noisy fitness function based on the ReliefF data mining algorithm. Although this

fitness approximator is far from ideal, using it in combination with noise

compensation techniques has enabled us to pick out two epistatically interacting

SNP loci from up to 1,000 candidate loci, although not surprisingly the success rate

declines with declining heritability. Research continues into seeking a more

accurate fitness approximator for large sets that will enable us to extend the

approach to larger data sets and to lower heritabilities. For example, we are

investigating the use of artificial neural networks or support vector machines as

more accurate rough fitness approximators, although in preliminary studies these

have not performed as well as the ReliefF-based approach.

Regardless of which approximate fitness functions are developed for large sets,

there is no question that screening of large sets will be noisy. Consequently,

sometimes the most ‘‘fit’’ set will not be a true ‘‘positive’’ set, and above some upper

limit in size the approximate fitness function will not be able to distinguish
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‘‘positive’’ from ‘‘negative’’ sets at all. In the random chemistry approach described

earlier (Fig. 1), it is clear that, once a ‘‘negative’’ set is selected, the algorithm will

fail, since, once removed, SNPs are never added back into a set. In our current

implementation, we attempt to compensate for noisy fitness evaluation of large sets

in two ways: (1) by repeating the probabilistic algorithm a number of times on the

same data set, selecting the most ‘‘fit’’ solution of all trials, and (2) by saving and

merging the top few most fit subsets. However, there are several other promising

approaches that we plan to explore. For very large sets, we plan to start screening

random sets of sizes near the upper bound of the region in which the approximate

fitness function can begin to distinguish ‘‘positive’’ sets, rather than starting with a

single parent set containing all the loci. While this would mean that more sets would

need to be initially evaluated, the sizes of those sets would have been reduced to a

size for which fitness can be more accurately assessed and in a more computa-

tionally efficient manner. Additionally, rather than always creating a fixed number

of child sets, one could continue generating and testing child subsets until one is

generated with a sufficient fitness increase, in an attempt to ensure that the upper

(positive) trajectory of the noisy bifurcated fitness landscape is selected. One could

also add in the possibility of ‘‘repair’’ mutations, such as a random doubling

mutation operator (to try to jump from the negative to the positive trajectory) in

addition to the random halving mutation (to try to hill-climb the positive trajectory,

once there). Although the latter method would not be bounded in time complexity, it

would facilitate working with variable sized sets that stay small enough to be

evaluated relatively accurately and efficiently. This may prove to be more

computationally efficient and effective for very large-scale genome-wide associa-

tion studies. In all cases, it may be possible to reduce the size of the initial set of

SNPs by pre-filtering based on a priori information (e.g., as proposed in [20]),

although this approach carries the risk of precluding detection of unexpected

associations.

We are currently establishing collaborations with clinicians who are collecting

large-scale case-control SNP data sets for various diseases. In addition, a number of

such data sets are expected to become publicly available over the next few years.

We look forward to applying the random chemistry algorithm to these real data sets.

While motivated by the problem of detecting epistatically interacting SNPs that

predispose for disease, the proposed random chemistry algorithm could also be

applied to any non-linear feature selection problem. In the context of discovering

the etiology of various diseases, we plan to extend the algorithm to accommodate

candidate epistatic factors other than SNPs, including sex, race, diet, exposure to

toxins, or other environmental variables that may affect susceptibility to disease, as

these data become available.
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