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Abstract. High throughput sequencing technologies now routinely measure over
one million DNA sequence variations on the human genome. Analyses of these
data have demonstrated that single sequence variants predictive of common human
disease are rare. Instead, disease risk is thought to be the result of a confluence
of many genes acting in concert, often with no statistically significant individual
effects. The detection and characterization of such gene-gene interactions that pre-
dispose for human disease is a computationally daunting task, since the search space
grows exponentially with the number of measured genetic variations. Traditional ar-
tificial evolution methods have offered some promise in this problem domain, but
they are plagued by the lack of marginal effects of individual sequence variants.
To address this problem, we have developed a computational evolution system that
allows for the evolution of solutions and solution operators of arbitrary complex-
ity. In this study, we incorporate a linkage learning technique into the population
initialization method of the computational evolution system and investigate its in-
fluence on the ability to detect and characterize gene-gene interactions in synthetic
data sets. These data sets are generated to exhibit characteristics of real genome-
wide association studies for purely epistatic diseases with various heritabilities. Our
results demonstrate that incorporating linkage learning in population initialization
via expert knowledge sources improves classification accuracy, enhancing our abil-
ity to automate the discovery and characterization of the genetic causes of common
human diseases.

1 Introduction

Recent technological advances have allowed for inexpensive and dense mappings
of the human genome, making genome-wide association studies (GWAS) a standard
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form of analysis in the detection of common human disease. The goal of GWAS is to
identify genetic markers that differ significantly between diseased and healthy indi-
viduals, through a comparison of allele frequencies at specific loci. One commonly
employed genetic marker is the single nucleotide polymorphism (SNP), which is a
single location in the genome that varies between people. To provide sufficient cov-
erage of the human genome for GWAS, it is estimated that over one million SNPs
have to be considered [8], and samples of this size are now readily provided by
high-throughput technologies. However, analyses of these data have rarely identi-
fied single sequence variants that are predictive of common human disease. Given
the robustness and complex structure of metabolic and proteomic networks [18], it is
reasonable to assume that such monogenic diseases are the exception, not the rule,
and that many diseases are caused by two or more interacting genes. Such gene-
gene interactions, or epistasis, dramatically increase the difficulty of using GWAS
to uncover the genetic basis of disease [13]. For one million candidate SNPs, there
are 5 × 1011 pairwise combinations and 1.7× 1017 three-way combinations. For
higher order interactions, the number of possible combinations is enormous. A ma-
jor charge for bioinformatics is to develop efficient algorithms to navigate through
these astronomical search spaces, in order to detect and characterize the genetic
causes of common human disease.

Due to the combinatorial nature of this problem, algorithms designed to discover
gene-gene interactions in GWAS will need to rely on heuristics. Methods that em-
ploy exhaustive search will not be feasible. Statistical and machine learning tech-
niques, such as neural networks [10], have been applied in this problem domain,
but have only proven successful for cases with a small number of SNPs. Alternative
approaches, such as multifactor dimensionality reduction [17] and random chem-
istry [3], have also shown promise, though they are similarly limited to data sets
with only a small number of SNPs. Artificial evolution techniques, such as genetic
programming, have been investigated in this problem domain, but they have had
limited success because individual SNPs often show little or no marginal effects,
and as such, there are no building blocks for evolution to piece together. However,
recent results have demonstrated that the inclusion of expert knowledge, such as
information gained from feature selection methods, can be used to bias such nature-
inspired classification algorithms toward SNPs that are suspected to play a role in
disease predisposition [6, 7, 14, 11, 15].

One source of expert knowledge that has proven useful in this domain is a family
of machine learning techniques referred to as Relief [5, 9, 16]. These algorithms
are able to detect SNPs that are associated with disease via independent or main
effects, although they cannot provide a model of the genetic architecture of disease.
However, the information provided by Relief can be used to supply artificial evolu-
tion with the building blocks needed to successfully generate such an architectural
model. For example, improvements in classification power have been obtained by
using Relief variants to bias mutation operators [6] and population initialization [7]
in genetic programming. Such feature selection techniques are a form of linkage
learning, where potential interactions between SNPs are inferred and subsequently
exploited to bias evolutionary search.
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Though classical artificial evolution methods, such as genetic programming, have
shown promise in this problem domain if guided by expert knowledge [6, 7, 14,
11, 15], it has been suggested that the inclusion of a greater degree of biological
realism may improve algorithm performance. Specifically, Banzhaf et al. [1] have
called for the development of computational evolution systems (CES) that embrace,
and attempt to emulate, the complexity of natural systems. To this end, we have
developed a hierarchical, spatially-extended CES that includes evolvable solution
operators of arbitrary complexity, population memory via archives, feedback loops
between archives and solutions, hierarchical organization, and environmental sens-
ing. In a series of recent investigations [4, 7, 11], this system has been successfully
applied to epistasis analysis in GWAS for human genetics.

Here, we investigate the inclusion of linkage learning via sensible initialization
in CES for the detection of epistatic interactions in GWAS. Specifically, we de-
velop an expert-knowledge-aware initialization method that uses the feature weights
provided by a machine learning technique to bias the selection of attributes for
the initial population. We compare this initialization method to both random and
enumerative initialization on synthetic data sets generated to exhibit representative
characteristics of GWAS.

2 Computational Evolution System

In order to directly infer the influence of the initialization strategy on algorithm
performance in the absence of other confounding effects, we use a simplified version
of the computational evolution system (CES) discussed in [11]. In this section, we
describe the CES as it is employed in this study.

In Fig. 1, we provide a schematic diagram of the system. Solutions are orga-
nized on a lattice at the bottom layer of the hierarchy, where competition between
solutions occurs locally among adjacent lattice sites (Fig. 1D). At the second layer
of the hierarchy is a lattice of solution operators of arbitrary size and complexity,
which are used to modify the solutions (Fig. 1C). At the third layer, is a lattice of
mutation operators that modify the solution operators (Fig. 1B). At the fourth layer
is the mutation frequency, which governs the rate at which the mutation operators
are modified (Fig. 1A).

2.1 Solution Representation, Evaluation, and Selection

Solutions are represented using stacks, where each element in the stack con-
sists of a function and two input arguments (Fig. 1D). The function set contains
+,−,∗,/,%,<,≤,>,≥,==, �=, where % is a protected modulus operator. The
input arguments are SNPs.

Each solution produces a real valued output Si when applied to an individual i
in a SNP data set. These outputs are used to classify individuals as healthy or dis-
eased using symbolic discriminant analysis (SDA) [12], as follows. The solution is
applied to all healthy individuals in the data set and a distribution of outputs Shealthy
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Fig. 1 Schematic diagram of the simplified computational evolution system considered in
this study. The hierarchical lattice structure is shown on the left and specific details of each
layer are provided on the right. At the lowest level (D) is a two-dimensional toroidal lattice of
solutions, where each lattice cell contains a single solution. Solutions are represented using
stacks. In the above example, the Boolean output of x0 > x1 will be tested for inequality with
x7 via the stack (denoted by st) and this Boolean result will be an operand of the modulus
operator (again, via st). At the second level (C) is a grid of solution operators that each consist
of some combination of the building blocks ADD, ALTER, COPY, DELETE, and REPLACE.
The top two levels of the hierarchy (A and B) generate variability in the solution operators.
The experiments considered herein used a solution lattice of 32×32 cells. A 12×12 lattice
is shown here for visual clarity

is recorded. Similarly, the solution is applied to all diseased individuals in the data
set and a distribution of outputs Sdiseased is recorded. A classification threshold S0

is then calculated as the arithmetic mean of the medians of the Shealthy and Sdiseased

distributions. The classification rule then assigns an individual i healthy status if
Si > S0 and diseased status if Si ≤ S0.

The classification rule of a given solution can be used to calculate the number
of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN), through a comparison of the predicted and actual clinical endpoints. This
information can then be used to calculate a measure of solution accuracy

A =
1
2

(
T P

T P+ FN
+

T N
T N + FP

)
. (1)

The fitness f of a solution is given by its accuracy, weighted by solution length to
encourage parsimony

f = A +
α
L

, (2)
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where L is the number of elements in the solution stack and α is a tunable parameter
(for all experiments considered here, α = 0.001).

The population is organized on a toroidal, two-dimensional lattice where each so-
lution resides in its own cell. Selection is synchronous and occurs within spatially-
localized, overlapping neighborhoods. Specifically, each solution competes with
those solutions residing in the eight surrounding cells (Moore neighborhood) and
the solution with the highest fitness is selected to repopulate that cell for the next
generation. Reproduction occurs using the evolvable solution operators described in
the next section.

2.2 Solution Operators

One of the simplifying assumptions of traditional artificial evolution methods is that
genetic variation is introduced via point mutations and linear recombination events.
However, the variation operators of biological systems are myriad, with insertions,
deletions, inversions, transpositions, and point mutations all occurring in concert.
In order to better mimic these salient features of natural systems, our CES allows
for the evolution of variation operators of arbitrary complexity. This is achieved by
initializing the solution operator lattice (Fig. 1C) with five basic building blocks,
ADD, ALTER, COPY, DELETE, and REPLACE, which can be recombined in any
way to form new operators.

These operators work as follows. ADD places a new function and its arguments
into the focal solution stack. ALTER randomly chooses an element of the focal so-
lution stack, and mutates either the function or one of its input arguments. COPY
inserts a random element of the focal solution stack into the stack of a randomly
chosen neighboring solution. DELETE removes an element from the focal solution
stack and REPLACE extracts a sequence of random length from a neighboring so-
lution stack and overwrites a randomly chosen sequence of the focal solution stack
with that information.

In the extended version of CES [11], each solution operator also has an associ-
ated vector of probabilities that determine the frequency with which functions and
attributes are modified at random, via expert knowledge sources, or archives. In the
simplified CES considered here, all modifications occur at random.

Similar to the solutions, the solution operators reside on a two-dimensional lattice
(Fig. 1C). However, the granularity of the solution operator lattice is more coarse
than the solution lattice, such that each solution operator is assigned to operate on
a 3× 3 sub-grid of solutions. The solution operators are also under selective pres-
sure, and are assigned a fitness score based on how much change they evoke in the
solutions they control [11]. Competition among solution operators occurs locally in
a manner similar to the competition among solutions.

2.3 Mutation Operators

The solution operators are modified by mutation operators that reside in the third
layer of the hierarchy (Fig. 1B). The granularity of this lattice is further coarsened,
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with each cell controlling one quarter of the solution operator lattice below. We
consider four mutation operators. The first (DeleteOp) deletes an element of a so-
lution operator. The second (AddOp) adds an element to a solution operator. The
third (ChangeOp) mutates an existing element in a solution operator. The fourth
(ChangeOpArg) alters the probability vectors associated with a solution operator.
(In the simplified CES considered herein, this is a null operation.)

A four-element vector is used to store the probabilities with which each muta-
tion operator is employed (Fig. 1B). These probabilities undergo mutation at a rate
specified by the highest level in the hierarchy (Fig. 1A). The probability vectors of
the four lattice cells are in competition with one another, with fitness assessment
analogous to the solution operators.

3 Population Initialization

We consider three forms of population initialization. In each case, all initial solu-
tions begin as a single, randomly chosen function with two input arguments, which
can subsequently evolve into arbitrarily complex functional forms. The selection
of the initial input arguments varies between the three methods. The first form
of initialization is the approach taken in most artificial evolution systems, where
the population is initialized at random. In CES, this entails choosing the attributes
for each initial function with uniform probability from all available attributes, with
replacement.

The second initialization method attempts to maximize diversity in the popula-
tion, by ensuring that all attributes are represented at least once. This enumerative
initializer works by selecting attributes at random from the pool of all attributes,
without replacement, until all attributes have been selected. The attribute pool is
then refreshed and the process continues until all initial solutions possess their
required input arguments.

The third initialization method capitalizes on the expert knowledge gained from
a member of the Relief family of machine learning algorithms. This algorithm is
referred to as Spatially Uniform ReliefF (SURF) [5], an extension of Tuned ReliefF
[16] that has proven effective in detecting interacting SNPs in GWAS with noisy
data sets and small interaction effects. In brief, SURF provides weights to each SNP
based on how likely that SNP is to be predictive of disease. Weights are adjusted
by iteratively selecting individuals that are within a specified similarity threshold,
and then increasing the weights of common SNPs if these individuals have different
disease status or decreasing their weights by the same amount if the individuals
have the same disease status. These SNP weights are then used to bias the selection
of attributes in the expert-knowledge-aware initialization function. Each attribute is
selected with probability proportional to its weight, with the caveat that the same
attribute cannot be included twice in the same function.
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4 Data Simulation

The artificial data sets considered in this study were generated to exhibit pure epista-
sis (i.e., no marginal effects) and specific heritabilities, where heritability is defined
as the proportion of disease cases attributable to genetic effects. We consider heri-
tabilities of 0.025, 0.05, 0.1, 0.2, 0.3, and 0.4. For each heritability, we created five
two-locus penetrance functions according to the method described in [2], and from
each penetrance function we generated 100 data sets. Each data set consists of an
equal number of diseased (800 cases) and healthy (800 controls) individuals and
possesses 1000 SNPs. Of the 1000 SNPs, only two are predictive of disease and the
other 998 are generated at random to exhibit no correlation with clinical endpoint,
other than by chance alone.

5 Experimental Design

To facilitate a fair comparison between the three initialization methods, we ensure
that for each replicate the same functions are used to seed all three initial popula-
tions. Specifically, for each cell in the solution lattice we choose a random initial
function to place in that cell. These initial functions are held constant across the
three initialization methods; only the selected attributes differ.

To assess the performance of CES using each initialization method, we report (i)
the evolutionary dynamics of the best training accuracy and (ii) the testing accuracy
obtained using the best model found by CES. The latter is calculated by applying
the best model found during training to another data set generated for that particular
penetrance table. Thus, for each heritability, we have 500 independent training and
testing pairs. Both training and testing accuracy are calculated using Eq. 1.

6 Results and Discussion

In Fig. 2 we depict the evolutionary dynamics of the best training accuracy for the
CES using random, enumerative, and expert-knowledge-aware initializers, for the
six heritabilities considered in this study. For all heritabilities, the best training ac-
curacy found in the initial population was highest when expert-knowledge-aware
initialization was used (in each panel of Fig. 2, compare the height of the symbol
types at generation zero). The random and enumerative initializers produced initial
populations with nearly identical best training accuracies.

In most cases, the CES improved the training accuracy of the models supplied in
the initial population by each of the initialization methods. For example, the insets
of Fig. 2 depict the distributions of improvements in training accuracy obtained by
the CES using the expert-knowledge aware initializer. The distributions are always
bimodal, with one peak at zero and another centered between 0.05 and 0.15. The
lower mode indicates that in some cases, the CES is unable to improve upon the
best solution provided in the initial population. However, the higher mode indicates
that in the majority of cases, some improvement in training accuracy is observed
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Fig. 2 Evolutionary dynamics of best training accuracy for CES using random (black
squares), enumerative (gray triangles), and expert-knowledge-aware (open circles) initializers
for the six heritabilities considered in this study. The data presented in each panel correspond
to a single replicate. The insets depict the distributions of improvements in training accuracy
for CES with expert-knowledge-aware initialization, measured as the difference between the
training accuracy at generation 0 and 400
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Fig. 3 Testing accuracy of the best models found by CES using the random (Rand), enumer-
ative (Enum), and expert-knowledge-aware (EK) initialization methods, for the six heritabil-
ities considered in this study. The insets depict the testing accuracy (y-axis) as a function of
the training accuracy (x-axis) for CES with expert-knowledge-aware initialization, across the
500 data sets considered for each heritability
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using the CES. This indicates that SURF is able to correctly identify SNP linkage
and that CES can exploit this information to build an architectural model of genetic
predisposition to disease.

Using the expert-knowledge-aware initializer, the best training accuracy found in
the initial population generally increased with increasing heritability. In contrast, us-
ing the random and enumerative initialization methods, the best training accuracy of
the initial population remained approximately constant across heritabilities. These
observations stem from the frequency with which the three methods supplied the
two target SNPs to the initial population. Of the 500 replicates considered for each
heritability, the percentage of trials in which the two interacting SNPs were cor-
rectly identified within a single solution by the expert-knowledge-aware initializer
increased linearly from 41% at a heritability of 0.025 to 100% at a heritability of 0.2
(r2 = 0.99). For heritabilities greater than or equal to 0.2, the two target SNPs were
always identified within a single solution. Using the random and enumerative ini-
tializers, less than 1% of all trials contained the two target SNPs in a single solution,
a figure that remained consistent across heritabilities.

In Fig. 3, we depict the testing accuracies of the best solutions obtained by the
CES, using random, enumerative, and expert-knowledge-aware initialization. For
all heritabilities, the testing accuracies of the best solutions found using the expert-
knowledge-aware initializer were significantly higher than those obtained using ei-
ther random or enumerative initialization. Following the trends of the training data
(Fig. 2), the testing accuracies obtained with expert-knowledge-aware initialization
increased as heritability increased, whereas the testing accuracy of the random and
enumerative methods remained consistently low. The insets of Fig. 3 depict the test-
ing accuracy of the best solution found by CES with expert-knowledge-aware ini-
tialization, as a function of its training accuracy. For low heritabilities, the data is
clustered into two distinct groups, one in which testing accuracy is not correlated
with training accuracy and another in which testing accuracy is positively correlated
with training accuracy. As heritability increases, the data begin to migrate toward
the cluster that exhibits positive correlation between testing and training accuracy,
indicating a reduction in overfitting.

7 Concluding Remarks

We have investigated the influence of population initialization on the ability of a
computational evolution system (CES) to detect epistatically interacting single nu-
cleotide polymorphisms (SNP) in genome-wide association studies (GWAS). Our
results demonstrate that the CES finds solutions of higher quality, both in terms
of training and testing accuracy, when the population is initialized using an expert
knowledge source than when it is not. Specifically, we found that biasing the selec-
tion of attributes in the initial population using a machine learning algorithm called
Spatially Uniform ReliefF (SURF) [5] is superior to both random and enumerative
initialization schemes.
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These results complement those presented in [7], where it was shown that expert-
knowledge-aware population initialization can improve the classification power of
genetic programming for detecting gene-gene interactions in GWAS. Taken to-
gether, these results further highlight the critical need for expert knowledge sources
in this problem domain [15]. Alternative approaches to incorporating expert knowl-
edge sources, such as their inclusion in fitness assessment, selection, and mutation
have also proven valuable [6, 14, 15]. Future work will investigate the combina-
tion of these expert-knowledge guided operators with expert-knowledge-aware ini-
tialization. Of particular interest is the utilization of alternative sources of expert
knowledge, such as the causal information provided by metabolic and proteomic
interaction networks. The incorporation of the many available sources of expert
knowledge into artificial and computational evolution systems offers the poten-
tial to improve our ability to detect and characterize the genetic causes of human
disease.
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