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Abstract

Gene expression is commonly modulated by a set of regu-
lating gene products, which bind to a gene’s cis-regulatory
region. This region encodes an input-output function, re-
ferred to as signal-integration logic, that maps a specific com-
bination of regulatory signals (inputs) to a particular gene
expression state (output). The space of all possible signal-
integration functions (genotypes) is vast and highly redun-
dant: for the same set of inputs, many functions yield the
same expression output (phenotype). Here, we exhaustively
characterize signal-integration space within a computational
model of genetic regulation. Our goal is to understand how
the inherent redundancy of signal-integration space affects
the relationship between robustness and evolvability in reg-
ulatory circuits. Among a number of results, we show that
robust phenotypes are (i) evolvable, (ii) easily identified by
random mutation, and (iii) mutationally biased toward other
robust phenotypes. We then explore the implications of these
results for mutation-based evolution by conducting an ensem-
ble of random walks between randomly chosen source and
target phenotypes. We demonstrate that the time required to
identify the target phenotype is independent of the properties
of the source phenotype.

Introduction

Living organisms exhibit two seemingly paradoxical prop-
erties: They are robust to genetic change, yet highly evolv-
able (Wagner, 2005). These properties appear contradictory
because the former requires that genetic alterations leave the
phenotype intact, while the latter requires these alterations to
be used for the exploration of new phenotypes. Despite this
apparent contradiction, several empirical analyses of living
systems, particularly at the molecular scale, have revealed
that robustness often facilitates evolvability (Bloom et al.,
2006; Ferrada and Wagner, 2008; Isalan et al., 2008). In the
cytochrome P450 BM3 protein, for example, increased pro-
tein stability — defined as the tendency of a protein to adopt
its native structure in the face of mutation — increases the
probability that mutants can exploit new substrates (Bloom
et al., 2006).

To clarify the relationship between robustness and evolv-
ability, several theoretical models have been proposed (e.g.,
Newman and Engelhardt (1998); Wagner (2008a); Draghi

et al. (2010)). A common feature of these models is the
concept of a genotype network (a.k.a. neutral network).
In such a network, each node represents a genotype and
edges connect genotypes that share the same phenotype
and can be interconverted via single mutational events. In
the case of RNA, for example, nodes represent DNA se-
quences and two nodes are connected if their corresponding
sequences confer the same secondary structure, yet differ
by a single nucleotide (Schuster et al., 1994). Large geno-
type networks thus correspond to robust phenotypes, where
most mutations are neutral and therefore leave the pheno-
type unchanged. Phenotypic robustness confers evolvabil-
ity because a population can diffuse neutrally throughout
the genotype network (Huynen et al., 1996) and build up
genetic diversity, which allows access to novel phenotypes
through non-neutral point mutations into adjacent genotype
networks (Wagner, 2008a).

Genotype networks have been used to explore the rela-
tionship between robustness and evolvability in a variety of
biological systems, ranging from the molecular (Schuster
et al., 1994; Cowperthwaite et al., 2008; Ferrada and Wag-
ner, 2008; Wagner, 2008b) to the cellular level (Aldana et al.,
2007; Ciliberti et al., 2007a,b; Mihaljev and Drossel, 2009).
In the latter case, the phenotype of interest is typically a
gene expression pattern and its corresponding genotype is
a gene regulatory network, which consists of a structured
set of gene products that activate and inhibit one another’s
expression. Gene expression is controlled by a gene’s cis-
regulatory region (Fig. 1A), which can be thought to per-
form a computation (Fig. 1B), using the regulating gene
products as inputs. The regulatory program that encodes this
computation is referred to as signal-integration logic.

Previous studies of the robustness and evolvability of gene
regulatory networks have focused on the specific case where
genetic perturbations alter network structure by adding or
deleting regulatory interactions (Aldana et al., 2007; Cilib-
erti et al., 2007a,b; Mihaljev and Drossel, 2009). In this case,
two gene regulatory networks are connected in the genotype
network if they confer the same gene expression pattern, yet
differ in a single regulatory interaction. The correspond-
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ing genotype network is therefore a “network of networks”
(Ciliberti et al., 2007b). These analyses have revealed sev-
eral general properties of gene regulatory networks. First,
robustness is an evolvable trait (Ciliberti et al., 2007b; Mi-
haljev and Drossel, 2009). Second, phenotypes are made up
of vast genotype networks that span throughout the space
of all possible genotypes (Ciliberti et al., 2007a; Mihaljev
and Drossel, 2009); and third, highly robust phenotypes are
often highly evolvable (Aldana et al., 2007; Ciliberti et al.,
2007a).

While these studies have helped to elucidate the relation-
ship between robustness and evolvability in gene regulatory
networks, they are limited by their assumption that genetic
perturbations primarily affect network structure. It is well
known that the presence or absence of regulatory interac-
tions is not the only determining factor of gene expression
patterns (Setty et al., 2003; Mayo et al., 2006; Kaplan et al.,
2008; Hunziker et al., 2010). By altering the arrangement
of promoters and transcription factor binding sites (Fig. 1A,
shaded boxes) in a gene’s cis-regulatory region, the signal-
integration logic of gene regulation can be dramatically in-
fluenced. For example, by simply rearranging the location of
transcription start sites in the promoter region of a reporter
gene in the galactose network of Escherichia Coli, it is pos-
sible to generate 12 out of the 16 possible Boolean outputs
(Hunziker et al., 2010). Thus, it is not only the structure
of regulatory interactions that affects robustness and evolv-
ability, but also the logic of signal-integration used in the
cis-regulatory region of each gene. When genetic perturba-
tions correspond to changes in the signal-integration logic,
two gene regulatory networks are connected in the genotype
network if they are topologically identical and confer the
same gene expression pattern, yet differ in a single element
of their signal-integration logic. The extent to which genetic
perturbations in the signal-integration logic of gene regu-
latory networks affect robustness and evolvability remains
largely unexplored. Further, the ease with which a pheno-
type is accessed by blind mutation, and how this relates to
robustness and evolvability in the signal-integration logic of
gene regulation, has not been addressed.

Here, we investigate the relationship between robustness
and evolvability in the signal-integration logic of model
gene regulatory circuits. These small circuits are ideal for
this investigation because their genotype networks are ex-
haustively enumerable, which allows for a full characteri-
zation of the relationship between robustness and evolvabil-
ity. To understand how robustness and evolvability influ-
ence mutation-based evolution, we conduct an ensemble of
random walks between randomly chosen source and target
phenotypes. We discuss the implications of our results and
present directions for future work.
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Figure 1: (A) Schematic of genetic regulation, where gene
products a and b serve as regulatory inputs, attaching to
their respective binding sites (gray shaded boxes) in the cis-
regulatory region of gene c to influence its expression. The
input-output function encoded in this regulatory region is
called signal-integration logic and can be modeled as (B)
a discrete function that explicitly maps all of the 2z input-
output combinations of a z-input function. Here, z = 2.
(C) All interactions between gene products a, b, and c can
be represented as a Random Boolean Circuit (RBC) with
N = 3 nodes. Gene product c possesses the same regula-
tory inputs and signal-integration logic as in (A) to clearly
depict how the RBC abstraction captures genetic regulation.
(D) The signal-integration logic of every node in the RBC
can be simultaneously represented with a single rule vector
by concatenating the rightmost columns of each node’s look-
up table. (E) The dynamics of the RBC begin with an initial
state (e.g., h011i) and eventually settle into an attractor (gray
shaded region).

Methods

Random Boolean Circuits

We use Random Boolean Circuits (RBCs) to model genetic
regulation (Kauffman, 1969). RBCs are composed of nodes
and directed edges (Fig. 1C). Nodes represent gene prod-
ucts and edges represent regulatory interactions. Two nodes
a and c are connected by a directed edge a ! c if the ex-
pression of gene c is regulated by gene product a. Node
states are binary, reflecting the presence (1) or absence (0)
of a gene product, and dynamic, such that the state of a node
at time t + 1 is dependent upon the states of its regulating
nodes at time t. This dependence is captured by a look-up
table associated with each node, which explicitly maps all
possible combinations of regulatory input states to an out-
put expression state. This look-up table is analogous to the
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signal-integration logic encoded in cis-regulatory regions.
The signal-integration logic of all of the nodes in the net-
work can be simultaneously represented using a single rule
vector (Fig. 1D).

The dynamics of RBCs occur in discrete time with syn-
chronous updating of node states (Fig. 1E). The dynamics
begin at a pre-specified initial state, which can be thought to
represent regulatory factors upstream of the circuit (Cilib-
erti et al., 2007a; Martin and Wagner, 2009). The dynamics
then unfold according to the circuit’s structure and signal-
integration logic. Since the system is both finite and de-
terministic, its dynamics eventually settle into an attractor
(Kauffman, 1969), which represents the gene expression
pattern, and is referred to as the phenotype. We refer to the
combination of circuit structure, rule vector, and initial state
as an instance of a RBC.

While simple, the Boolean abstraction has proven capable
of precisely replicating specific properties of genetic reg-
ulation in natural systems. For example, variants of the
model have emulated the expression patterns of the fruit
fly Drosophila melanogaster (Albert and Othmer, 2003), the
plant Arabidopsis thaliana (Espinosa-Soto et al., 2004), and
the yeast Saccharomyces pombe (Davidich and Bornholdt,
2008). Due to their accuracy in capturing the dynamics of
genetic regulation, and because the signal-integration logic
of each gene is explicitly represented, RBCs are ideal syn-
thetic systems for investigating the relationship between ro-
bustness and evolvability when genetic perturbations corre-
spond to changes in signal-integration logic.

Dynamical Regimes of RBCs

An important feature of RBCs is that they exhibit three dy-
namical regimes: ordered, critical, and chaotic (Kauffman,
1969). In the ordered regime, gene expression patterns are
relatively insensitive to perturbations, while in the chaotic
regime they are highly sensitive. The critical regime de-
lineates these two extremes. For randomly constructed cir-
cuits, the transitions between regimes are controlled by two
parameters: the average in-degree z and the probability ⇢
of gene expression (i.e., the probability of observing a 1 in
the rule vector). Letting S = 2⇢(1 � ⇢)z, the RBC lies in
the ordered regime when S < 1, the critical regime when
S = 1, and the chaotic regime when S > 1. When there is
an equal probability of observing a 0 or a 1 in the rule vector
(⇢ = 0.5) the dynamical regime is determined solely by the
average in-degree, with z < 2 yielding the ordered regime,
z = 2 the critical regime, and z > 2 the chaotic regime. In
this study, ⇢ = 0.5.

Genotype Networks

We refer to the signal-integration logic of a RBC, as repre-
sented by its rule vector (Fig. 1D), as the genotype. There
are a total of 2L unique genotypes for a given combination of
circuit structure and initial state, where L = N2z . We refer

to this set of genotypes as the genotype space, or equiva-
lently, as the signal-integration space. For the RBCs consid-
ered here, the size of the genotype space ranges from 26 for
the ordered regime to 224 for the chaotic regime.

These genotypes map to a significantly smaller set of phe-
notypes. This high level of redundancy is a general feature
of RBCs, and can be formalized using a genotype network,
in which rule vectors are represented as nodes, and edges
connect rule vectors that differ by a single bit, yet yield
the same gene expression pattern (i.e., phenotype). Thus,
we define a neutral point mutation as a single change to
an element of the genotype that does not lead to a change
in phenotype. Such a mutation is analogous to a change
in the position of a transcription factor binding site in the
cis-regulatory region that leaves the gene expression pattern
unchanged. Genotype networks are measured using an ex-
haustive breadth-first search, thus discovering all genotypes
that yield the same phenotype and are accessible via neutral
point mutations, starting from the original genotype of the
RBC instance.

The quantity vij captures the number of unique non-
neutral point mutations to genotypes in the genotype net-
work of phenotype i that lead to genotypes in the genotype
network of phenotype j. We call phenotypes i and j adjacent
if vij > 0. By enumerating all of the phenotypes that are ad-
jacent to phenotype i, and their corresponding genotype net-
works, we capture the mutational biases between adjacent
phenotypes.

Robustness, Evolvability, and Accessibility

Several definitions of robustness and evolvability have been
proposed, at both the genotypic and phenotypic scales (Al-
dana et al., 2007; Wagner, 2008b; Mihaljev and Drossel,
2009; Draghi et al., 2010). Here, we focus on these prop-
erties at the level of the phenotype. We define robustness
Ri as the proportion of signal-integration space occupied by
the genotype network of phenotype i. This metric is inde-
pendent of rule vector length L, and captures the fraction
of all genotypes that yield the same phenotype and can be
accessed via neutral point mutations.

We define evolvability using two metrics. The first E
1,i

is simply the number of phenotypes that can be accessed
through non-neutral point mutations from the genotype net-
work of phenotype i (Wagner, 2008b). The second E

2,i

captures the mutational biases that exist between the geno-
type networks of adjacent phenotypes (Cowperthwaite et al.,
2008). Letting

fij =
vijP
k 6=i vik

(1)

denote the fraction of non-neutral point mutations to geno-
types of phenotype i that result in genotypes of phenotype j,
we define the evolvability E

2,i of phenotype i as

E
2,i = 1�

X

j

f2

ij . (2)
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Since
P

j f
2

ij captures the probability that two randomly
chosen non-neutral point mutations to genotypes of pheno-
type i result in genotypes with identical phenotypes, its com-
plement E

2,i captures the probability that these same mu-
tations result in genotypes with distinct phenotypes. This
metric takes on high values when a phenotype is adjacent to
many other phenotypes and its non-neutral point mutations
are uniformly divided amongst these phenotypes. The met-
ric takes on low values when a phenotype is adjacent to only
a few other phenotypes and its non-neutral point mutations
are biased toward a subset of these phenotypes.

In addition to measuring evolvability, which captures the
uniformity of non-neutral mutations from phenotype i into
adjacent phenotypes, we also consider accessibility

Ai =
X

j

fji, (3)

which captures the propensity to mutate into phenotype i
(Cowperthwaite et al., 2008). This metric takes on high val-
ues if the phenotypes adjacent to phenotype i are mutation-
ally biased toward i and low values otherwise.

Lastly, we measure the robustness of all phenotypes that
are adjacent to phenotype i, in proportion to the probability
that these phenotypes are encountered through a randomly
chosen, non-neutral point mutation from phenotype i (Cow-
perthwaite et al., 2008). We refer to this quantity as adjacent
robustness,

Bi =
X

j

fij ⇥Rj . (4)

This metric takes on high values when a phenotype is mu-
tationally biased toward robust phenotypes and low values
otherwise.

Simulation Details and Data Analysis

For all RBC instances, the rule vector and initial state are
generated at random with ⇢ = 0.5. The circuit structure
is also generated at random, but subject to the constraint
that each node has exactly z inputs. Self-loops are per-
mitted, mimicking autoregulation. We separately consider
RBCs in the ordered, critical, and chaotic regimes by set-
ting z = 1, 2, 3, respectively. The initial state and circuit
structure are held fixed for each RBC instance. To ensure
that all of the genotype networks considered in this study
are amenable to exhaustive enumeration, we restrict our at-
tention to RBCs with N = 3 nodes. While small, sensitiv-
ity analysis (Derrida and Pomeau, 1986) confirms that these
RBCs exhibit the same dynamical regimes as larger net-
works, albeit with shorter attractors. To assess the strength
and significance of the trends in our data, we employ Pear-
son’s correlation coefficient.

Results

Characteristics of Genotype Networks

To characterize the genotype networks of signal-integration
space in RBCs, we randomly generate 2500 RBC instances
for each dynamical regime and exhaustively characterize the
genotype networks of their corresponding phenotypes, and
the genotype networks of all adjacent phenotypes.

The range of phenotypic robustness R varies with dy-
namical regime, with ordered RBCs spanning the small-
est range (3.12 ⇥ 10�2  R  1.25 ⇥ 10�1), critical
RBCs spanning an intermediate range (4.88⇥ 10�4  R 
1.25⇥ 10�1), and chaotic RBCs spanning the largest range
(1.19 ⇥ 10�7  R  1.25 ⇥ 10�1). The maximum
value of phenotypic robustness is independent of dynami-
cal regime, and corresponds to fixed-point attractors. Since
these attractors comprise a single state, only N bits of the
rule vector are accessed during the RBC’s dynamics, leaving
L � N bits unused. Thus, the corresponding genotype net-
work is of size 2L�N , with phenotypic robustness R

max

=
2�N = 1.25 ⇥ 10�1. The average phenotypic robustness
decreases from the ordered (R = 9.44 ⇥ 10�2) to the crit-
ical (R = 4.12 ⇥ 10�2) to the chaotic (R = 3.02 ⇥ 10�2)
regime.

Evolvability E
1

and phenotypic robustness R are posi-
tively correlated (Fig. 2A), and the strength of correlation in-
creases from the ordered (r = 0.75, p ⌧ 0.01) to the critical
(r = 0.90, p ⌧ 0.01) to the chaotic (r = 0.98, p ⌧ 0.01)
regime. This indicates that, in this system, no trade-off exists
between robustness and the number of phenotypes accessi-
ble via non-neutral point mutations; the more robust the phe-
notype, the higher its evolvability. Average evolvability E

1

increases faster than linearly with increasing z, indicating a
rapid increase in the number of adjacent phenotypes as the
dynamical regime shifts from ordered to chaotic (Fig. 2A,
inset).

When mutational biases between adjacent phenotypes are
taken into account using E

2

, a slightly different relationship
is observed between evolvability and phenotypic robustness
(Fig. 2B). RBCs in the ordered regime exhibit a weak and
insignificant correlation between E

2

and R (r = 0.02, p =
0.41). In contrast, RBCs in the critical and chaotic regimes
exhibit weak, but significant correlations, with the strength
of correlation increasing from the critical (r = 0.10, p ⌧
0.01) to the chaotic regime (r = 0.42, p ⌧ 0.01). The
average value of E

2

increases approximately linearly as z
increases (Fig. 2B, inset). Thus, the average probability that
two randomly chosen, non-neutral point mutations lead to
distinct phenotypes is only ⇡ 15% higher in chaotic RBCs
than in ordered RBCs, despite the four order-of-magnitude
difference in the absolute number of adjacent phenotypes
(Fig. 2A, inset).

Accessibility A and phenotypic robustness R are posi-
tively correlated (Fig. 2C), with the strength of correlation
again increasing from the ordered (r = 0.88, p ⌧ 0.01)
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Figure 2: (A,B) Evolvability, (C) accessibility, and (D) adjacent robustness as a function of phenotypic robustness R for each
of the three dynamical regimes: ordered (z = 1), critical (z = 2), and chaotic (z = 3). Each data point represents one of 2500
RBC instances for each dynamical regime. The insets depict the corresponding averages, as a function of z. Lines are provided
as a guide for the eye.

to the critical (r = 0.94, p ⌧ 0.01) to the chaotic (r =
0.98, p ⌧ 0.01) regimes. This implies that, for all three
dynamical regimes, random point mutations are more likely
to lead to robust phenotypes than to non-robust phenotypes.
Average accessibility increases faster than linearly as z in-
creases (Fig. 2C, inset), indicating a rapid increase in the
relative ease with which phenotypes are found by random
mutation as the dynamical regime shifts from ordered to
chaotic.

Adjacent robustness B and phenotypic robustness R are
positively correlated, with the strength of correlation de-
creasing from the ordered (r = 0.81, p ⌧ 0.01) to the
critical (r = 0.66, p ⌧ 0.01) to the chaotic regimes (r =
0.35, p ⌧ 0.01). This implies that non-neutral point mu-
tations to genotypes within robust phenotypes often lead to

other robust phenotypes, but that the strength of this ten-
dency weakens as RBCs approach the chaotic regime. The
average adjacent robustness B decreases approximately lin-
early as z increases (Fig. 2D, inset), indicating that the
expected robustness of a phenotype encountered via non-
neutral point mutation decreases as the dynamical regime
shifts from ordered to chaotic.

Taken together, these results suggest that a series of ran-
dom point mutations will tend toward phenotypes of in-
creased robustness (Fig. 2D) and correspondingly increased
evolvability (Fig. 2A,B). Further, the ease with which such a
blind evolutionary process identifies an arbitrary phenotype
should increase with that phenotype’s robustness (Fig. 2C)
and as the dynamical regime shifts from ordered to critical
to chaotic (Fig. 2C, inset).
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Random Walks Through Signal-Integration Space

To investigate how robustness, evolvability, and accessibil-
ity influence blind, mutation-based evolution, we conduct
an ensemble of random walks. For each dynamical regime,
we randomly generate 1000 RBC instances and identify the
phenotype of each instance as a source phenotype. For each
instance, we then sample the genotype space at random un-
til we discover a genotype that yields a different phenotype
from the source phenotype, and we identify this as the target
phenotype. For each pair of source and target phenotypes,
we then perform a random walk, starting from the instance’s
genotype and ending when the random walk reaches any
genotype in the target phenotype. Each step in the random
walk corresponds to a single point mutation to the geno-
type. We record the number of steps S required to reach
the target phenotype, which we normalize by the size of the
signal-integration space 2L, and refer to as the waiting time
T = S/2L.

Waiting time T decreases faster than linearly as z in-
creases (Fig. 3A, inset). For all three dynamical regimes,
waiting time is strongly negatively correlated with the ac-
cessibility A of the target phenotype (Fig. 3A), and the
strength of correlation increases from the ordered (r =
�0.41, p ⌧ 0.01) to the critical (r = �0.67, p ⌧ 0.01)
to the chaotic (r = �0.82, p ⌧ 0.01) regime. In contrast,
the correlation between waiting time T and the evolvabil-
ity E

1

of the source phenotype is weak and insignificant
(z = 1 : r = �0.03, p = 0.38; z = 2 : r = 0.01, p = 0.82;
z = 3 : r = �0.02, p = 0.56) (Fig. 3B). Similarly weak
and insignificant correlations were observed between wait-

ing time T and other characteristics of the source phenotype,
such as E

2

, A, and B. These results indicate that the time
required for a blind evolutionary search to identify a tar-
get phenotype is independent of the phenotypic properties
of the starting point and solely dependent upon the pheno-
typic properties of the target.

Discussion

This study has provided the first characterization of geno-
type networks in the signal-integration space of Random
Boolean Circuits (RBCs), highlighting the relationship be-
tween robustness and the evolvability and accessibility of
phenotypes. We found a positive correlation between ro-
bustness and evolvability, as measured by either the absolute
number of adjacent phenotypes E

1

(Fig. 2A) or by the prob-
ability that two non-neutral point mutations lead to distinct
phenotypes E

2

(Fig. 2B). Our results corroborate the ob-
servation made in previous studies that gene regulatory net-
works can simultaneously exhibit robustness and evolvabil-
ity (Aldana et al., 2007; Ciliberti et al., 2007a,b). Further,
our analyses extend these previous studies by providing an
explicit description of this relationship and by considering
genetic perturbations that alter the signal-integration logic
encoded in cis-regulatory regions, instead of genetic pertur-
bations that alter circuit structure.

We also found a positive correlation between robustness
and accessibility (Fig. 2C), a measure that captures the
relative ease with which a phenotype can be identified by
mutation-based evolution. This result supports the intuitive
notion that phenotypes comprising many genotypes are eas-
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ier for evolution to identify than those comprising few geno-
types. In addition, robust phenotypes are mutationally bi-
ased toward other robust phenotypes (Fig. 2D), indicat-
ing that the robustness of phenotypes encountered by blind
mutation-based evolution should, on average, tend to in-
crease.

To understand how phenotypic robustness, evolvabil-
ity, and accessibility in signal-integration space influence
mutation-based evolution, we considered an ensemble of
random walks between pairs of source and target pheno-
types. We found that the number of random mutations re-
quired to reach the target phenotype was entirely dependent
upon its accessibility (Fig. 3A) and independent of any prop-
erties of the source phenotype (Fig. 3B). This suggests that a
random walk through signal-integration space quickly loses
any memory of its starting location. Consequently, extant
evolvability metrics cannot be expected to predict the dura-
tion of a random walk between phenotypes.

The majority of our results are consistent with those
made in RNA systems (Cowperthwaite et al., 2008; Wag-
ner, 2008b). However, there is one difference worth em-
phasizing: the correlation between robustness and evolv-
ability E

2

is negative in RNA (Cowperthwaite et al., 2008).
Since the relationship between robustness and adjacent ro-
bustness B is positive in RNA systems, Cowperthwaite et al.
(2008) concluded that robust phenotypes act as “evolution-
ary traps.” That is, random mutation will tend toward phe-
notypes of higher robustness, which in turn are less evolv-
able, and therefore stagnate evolutionary search. Since
we observed a positive correlation between (i) robustness
and evolvability E

2

and (ii) robustness and adjacent robust-
ness B, we conclude that robust phenotypes in the signal-
integration space of RBCs are not evolutionary traps, but
instead facilitate the discovery of novel phenotypes. Such
contrast between model systems highlights the fact that the
relationships between robustness, evolvability, and accessi-
bility are system dependent.

Evolvability increased monotonically as z increased (Fig.
2A,B, insets) and the maximum achievable robustness was
independent of z (R

max

= 2�N ). Taken together, these
results indicate that robustness and evolvability can be si-
multaneously maximized in chaotic RBCs. This result con-
trasts with previous analysis (Aldana et al., 2007), which
found robustness and evolvability to be simultaneously max-
imized in critical RBCs. This discrepancy can be under-
stood by considering the two primary differences between
the analyses. First, Aldana et al. (2007) focused on ge-
netic perturbations that altered circuit structure (and conse-
quently, in some cases, signal-integration logic) while we
focused solely on genetic perturbations that altered signal-
integration logic. Second, and of greater importance, the
measures of robustness and evolvability considered by Al-
dana et al. (2007) were not based on genotype networks. In-
stead, robustness was defined as the ability of a single mu-

tated genotype to maintain the phenotypic landscape (i.e.,
the set of all phenotypes observed across all possible ini-
tial states), and evolvability was defined as the capacity of
the mutated genotype to expand the phenotypic landscape
(i.e., add new phenotypes to the set of existing phenotypes).
Thus, Aldana et al. (2007) focused on robustness and evolv-
ability at the level of the genotype rather than the pheno-
type (Wagner, 2008b). While these definitions are reason-
able and insightful, our departure from their use precludes
any direct comparison between the two studies. That said,
our observation that chaotic RBCs simultaneously optimize
robustness and evolvability must be interpreted with caution.
For all dynamical regimes, robustness is maximal for fixed
point attractors, and these occur with decreasing frequency
as z increases. Thus, while it is only possible to simultane-
ously observe maximal robustness and maximal evolvability
in chaotic RBCs, this case represents the exception rather
than the rule.

Future work will seek to understand how evolution navi-
gates signal-integration space. Is it possible for mutation and
selection to identify the high-robustness, high-evolvability
phenotypes of chaotic RBCs? If so, can they out-compete
critical and ordered RBCs in static (Oikonomou and Cluzel,
2006) or dynamic (Greenbury et al., 2010) environments?
How are these evolutionary outcomes affected by mutation
rate (Wilke et al., 2001) or recombination (Martin and Wag-
ner, 2009)? Future research will also focus on larger sys-
tems, moving from an analysis of circuits to entire networks.
To accomplish this, Monte Carlo sampling methods will
be required (Jörg et al., 2008), as the increased size of the
signal-integration space will prohibit the exhaustive enumer-
ation of genotype networks. In addition, future work will
seek to understand both the influence of canalyzing func-
tions (Kauffman et al., 2004) and the probability of gene
expression ⇢ on the size and structure of genotype networks.
These directions, among others, will lead to a more thorough
understanding of how the genetic flexibility of cis-regulatory
regions influence evolutionary processes.

Acknowledgements

The authors would like to thank Davnah Urbach and Dov
Pechenick for their insightful comments, which greatly
improved the clarity and presentation of this manuscript.
This work was partially supported by NIH grants R01-
LM009012, R01-LM010098, and R01-AI59694. J.L.P. was
supported by NIH grant K25-CA134286.

References

Albert, R. and Othmer, H. G. (2003). The topology of the regu-
latory interactions predicts the expression pattern of the seg-
ment polarity genes in Drosophila melanogaster. Journal of
Theoretical Biology, 223:1–18.

Aldana, M., Balleza, E., Kauffman, S., and Resendiz, O. (2007).
Robustness and evolvability in genetic regulatory networks.
Journal of Theoretical Biology, 245:433–448.

644 ECAL 2011



Bloom, J. D., Labthavikul, S. T., Otey, C. R., and Arnold, F. H.
(2006). Protein stability promotes evolvability. PNAS,
103:5869–5874.

Ciliberti, S., Martin, O. C., and Wagner, A. (2007a). Innovation
and robustness in complex regulatory gene networks. PNAS,
104:13591–13596.

Ciliberti, S., Martin, O. C., and Wagner, A. (2007b). Robustness
can evolve gradually in complex regulatory gene networks
with varying topology. PLoS Computational Biology, 3:e15.

Cowperthwaite, M. C., Economo, E. P., Harcombe, W. R., Miller,
E. L., and Meyers, L. A. (2008). The ascent of the abundant:
how mutational networks constrain evolution. PLoS Compu-
tational Biology, 4:e10000110.

Davidich, M. I. and Bornholdt, S. (2008). Boolean network model
predicts cell cycle sequence of fission yeast. PLoS ONE,
3:e1672.

Derrida, B. and Pomeau, Y. (1986). Random networks of automata:
a simple annealed approximation. Europhysics Letters, 1:45–
49.

Draghi, J. A., Parsons, T. L., Wagner, G. P., and Plotkin, J. B.
(2010). Mutational robustness can facilitate adaptation. Na-
ture, 463:353–355.

Espinosa-Soto, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R.
(2004). A gene regulatory network model for cell-fate de-
termination during Arabidopsis thaliana flower development
that is robust and recovers experimental gene expression pro-
files. The Plant Cell, 16:2923–2939.

Ferrada, E. and Wagner, A. (2008). Protein robustness promotes
evolutionary innovations on large evolutionary time-scales.
Proceedings of the Royal Society London B, 275:1595–1602.

Greenbury, S. F., Johnston, I. G., Smith, M. A., Doye, J. P. K., and
Louis, A. A. (2010). The effect of scale-free topology on the
robustness and evolvability of genetic regulatory networks.
Journal of Theoretical Biology, 267:48–61.
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