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ABSTRACT

Pair approximations have often been used to predict equi-
librium conditions in spatially-explicit epidemiological and
ecological systems. In this work, we investigate whether this
method can be used to approximate takeover dynamics in
spatially structured evolutionary algorithms. Our results
show that the pair approximation, as originally formulated,
is insufficient for approximating pre-equibilibrium dynam-
ics, since it does not properly account for the interaction
between the size and shape of the local neighborhood and
the population size. After parameterizing the pair approxi-
mation to account for these influences, we demonstrate that
the resulting system of differential equations can serve as a
general and rapid approximator for takeover dynamics on
a variety of spatially-explicit regular interaction topologies
with varying population sizes. Strengths, limitations, and
potential applications of the pair approximation to evolu-
tionary computation are discussed.
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1. INTRODUCTION

Most natural populations exhibit some form of spatial
structure, and the important influence of the spatial scale
of inter-individual interactions has thus become increasingly
appreciated in many recent modeling efforts related to evo-
lutionary biology, ecology, and epidemiology (e.g., [2, 4, 7, 8,
9,10, 11, 12, 13, 14, 23]). Spatially-localized interaction net-
works have also received an increasing amount of attention
for use as population structures in evolutionary algorithms
(e.g., [1, 5, 15, 17, 19]), because spatially localized interac-
tions can help to maintain diversity by mitigating selection
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pressure. One commonly employed method for quantifying
selective pressure in evolutionary algorithms is through the
analysis of the dynamics with which a single favorable mu-
tation spreads throughout the population (a.k.a. "takeover
time analysis”)[6]. While models of takeover dynamics have
been developed for various types of regular (i.e., constant
degree) local interaction neighborhoods embedded in Carte-
sion 2D space [5, 17, 18], all of these models are specific
to the particular interaction topologies for which they were
designed.

Pair approzimations (PAs) were originally derived as a
statistical mechanics formulation of spatially structured bi-
ological populations, in order to determine conditions nec-
essary for the evolution of altruism [11]. This technique has
gained popularity in theoretical biology, ecology, and epi-
demiology [2, 7, 8, 9, 13, 16, 20, 21, 22, 23] due to its pur-
ported generality and the rapidity with which the resulting
analytical expressions can be solved. In most cases, the PA
has been used to predict equilibrium frequencies, in accor-
dance with their original intent, although there have been
some attempts to use them for estimating pre-equilibrium
dynamics (e.g., [8, 16]), with varying degrees of success.

Our intent is to investigate whether the PA can be used
as a rapid and general method for approximating takeover
dynamics of evolutionary algorithms structured on regular
topologies with local interaction neighborhoods, based on a
few readily computable metrics of the interaction network.
Previously, we presented a PA of takeover dynamics [15],
but this study was limited to a single population size. We
have since determined that the PA, as originally formulated
[11] and used by many others since, over-predicts the rate
of spread of information, since it does not properly account
for the interaction between the size and shape of the local
neighborhood and the population size. After parameterizing
the PA to account for these influences, we demonstrate that
the resulting PA is an efficient approximator of takeover dy-
namics on a variety of spatially-explicit regular interaction
topologies. We discuss the strengths, limitations, and poten-
tial improvements to the PA, and suggest how this approach
may be useful to practitioners of evolutionary computation.

2. METHODS

A population structure is a graph G of potential interac-
tions between p individuals located on vertices of the graph.
If the population structure is regular, every vertex has the
same degree k. In this study, we investigate takeover dynam-
ics on ten distinct types of regular population structures,



each based on 2D toroidal lattices, but with different local
interaction neighborhoods (Table 1).

The clustering metric (¢) of a graph G can be computed
as the ratio of closed triangles to total triplets [8], as follows:
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where the superscripts denote matrix exponentiation, | A?||
denotes the sum of all of the elements in the square of the
adjacency matrix A, and trace denotes the sum of the ele-
ments on the main diagonal. The radius of an interaction
neighborhood N captures the level of dispersion present in
that neighborhood [19]. For an interaction neighborhood N
of size k, centered on a vertex located at (z,y) in Cartesian
space, this metric is formally defined as,
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The radius of the entire graph (radiusa) can be calculated
using equations (2) and (3) by assuming that the central

vertex (z = 47 Yy = 4) of graph G is connected to every
other vertex in the topology (i.e., kK = pu — 1). The ratio of
neighborhood to graph radius is denoted:

__ radiusy
radiusg

(4)

Table 2 presents the topological chacteristics of the ten types
of neighborhood interaction structures used in this work, in
order of increasing radius. These topologies represent the
most commonly implemented regular, locally interacting,
population structures used for spatially explicit evolutionary
computation [5, 19], and modeling of ecological [4, 22] and
evolutionary [7, 23] systems. We also implemented common
variations of some of these, with larger interaction neighbor-
hoods, such as extended Moore neighborhoods (M5, Table
1 and M7, not shown) and extended Von Neumann neigh-
borhoods (VN2, Table 1, and VN3, not shown).

In this study, we employ local uniform selection, where
nodes are updated synchronously, as follows. For each node
i, a node j is selected at random with uniform probability
from the mating neighborhood of node i, with neighborhood
size k. Thus, if there are x nodes containing the fittest value
in the mating neighborhood of node i, then the probability
of selecting one of them is simply Pse; = % With uptake
probability pup, the value of the selected node j then replaces
the value of node i if node j has higher fitness. High fitness
individuals can also be allowed to mutate back to low fitness
with some probability g [18]. Due to space constraints, the
results reported are restricted to pu, = 1 and g = 0, but
this is not an inherent limitation of the pair approximation.

Each initial population comprises a single high fitness in-
dividual and g — 1 low fitness individuals. If N; denotes
the proportion of high fitness individuals at time t, then the
takeover time of an individual experiment T' = min{t|N; =
1} is defined as the minimum number of generations such
that copies of the most fit individual fully saturate the en-
tire population, starting with only one such individual in

Table 1: Naming conventions and schematic di-
agrams of the (a) rectangular and (b) triangular
neighborhood structures considered in this study.
(M7 and VN3 are not shown, but can be easily in-
ferred). In (a), the links between vertices are im-
plicit; each vertex in the interaction neighborhood
(black circles) centered around a given vertex (x) is
connected to this center vertex. In (b), the links be-
tween individuals are shown explicitly (solid lines).
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the initial population [17]. E;[T] is defined as the empirical
estimate of the expected takeover time given that the initial
best individual is located in vertex i, and the overall em-
pirically estimated takeover time E[T] is computed as the
average of F;[T] over all vertices ¢ in the graph.

Instead of estimating the dynamics of the states of nodes
in a contact network, pair approximations (PAs) estimate
the dynamics of states of neighboring pairs of nodes. By
capturing the correlations between pairs of vertices, some
aspects of the structure of the interaction topology can be
accounted for. Consider a population of size p structured
on an interaction topology wherein every node has k neigh-
bors. (It is important to note that PAs assume that the
underlying contact network is regular, or at least possesses
a well defined average degree k.) Following [8], let [X] denote
the number of nodes in state X, [XY] denote the number of
pairs of connected nodes in state XY, and [XY Z] denote the
number of connected triplets of nodes in state XY Z, such



Table 2: Structural metrics of the spatial interaction
topologies considered in this study, presented in or-
der of increasing radius of the local neighborhoods.

Population Structure k 10] radiusnN
VN1 4 0 0.89
ST 5 03 1.06
AT 6 04 1.11

T 6 04 1.16
M3 8 043 1.23
MVN 12 0.46 1.47
VN2 8 0.21 1.49
M5 24 0.52 2.00
VN3 12 0.27 2.08
M7 48 0.54 2.83

that XY pairs are always counted once in each direction
(i.e., [XY] = [Y X]) and XX pairs are counted twice (i.e.,
[XX] is always even). PAs work by tracking the changes
in the numbers of all possible combinations of pairs [XY7].
Since the interaction topology is regular with constant de-
gree k, the number of singles can always be recovered from
the number of pairs, as follows [§]:

X] =3 S (5)
w

However, the rates of change in the number of pairs de-
pend upon the numbers of configurations larger than pairs,
such as triplets. Thus, in order to estimate the dynamics in
terms of the numbers of pairs, the numbers of configurations
larger than pairs must be approximated to some degree of
accuracy; this is referred to as "closing” the system [8, 11,
22]. 'We employ the closure method proposed in [8], which
incorporates the clustering coefficient (Equation 1), account-
ing for the proportion of triplets in the interaction topology
that form closed triangles [8], as follows:

. (k—1) XYY Z] op [XZ]

Spatial structure beyond triplets, however, is not considered
in equation (6).

We modify the 5-equation Susceptible-Infectious- Recovered
(SIR) PA proposed by [8] into a 3-equation model of takeover
dynamics (which is equivalent to an SIS model [15]), as fol-
lows:

% = C(—]%[SSIHQ[SIng[U])
% = 0‘50(]%([55-’] — [IS1] = [S1]) + g([IT] - [51]))
% = o(BEUSI +[S1) - glI1) - g°[11)) (7)

where vertices can be in either state I for high fitness (i.e.,
Infectious) or S for low fitness (i.e., Susceptible), and the fac-
tor of 0.5 in the second equation accounts for the symmetry
between [SI] and [IS]. In the original derivation of the PA
[11], designed for the prediction of population densities at
equilibrium, the value of the coefficient ¢ was proposed to be
the constant 2, and this value has since been used in numer-
ous other studies (e.g., [8, 16, 21, 22]). In fact, it is trivial
to show that equilibrium conditions are independent of the

particular choice of the coefficient ¢, as long as the relative
values of the coefficients of the equations for [SS]:[ST]:[I]]
are 2:1:2. However, if one is to use the PA to approximate
pre-equilbrium dynamics, then the absolute value of ¢ also
becomes important. As will be shown in Section 3, our re-
sults clearly demonstrate that the optimal choice of ¢ is a
function of p (Equation (4)), which depends on both the
local neighborhood of interactions and the population size.

For each combination of the ten population structures (Ta-
ble 2) and eight population sizes (u €{576, 1024,1600, 2304,
3136, 4096, 5184, 6400}), takeover dynamics were observed
by placing a single copy of the best individual in only one
node and then observing the rate with which this advanta-
geous allele spreads through the population. For each of the
80 distinct combinations of population structure and pop-
ulation size, 50 such simulations were performed and av-
eraged, in order to mitigate the stochasticity inherent in
the selection policy. Takeover dynamics were also approxi-
mated by solving the coupled differential equations of the PA
(System of Equations (7)) via numerical integration, using
a Runga-Kutta method with adaptive step size (Matlab’s
oded5 function). Since the PA is a continuous approxima-
tion, the expected takeover times of both the simulation data
and the PA predictions were calculated as the first genera-
tion in which N; was within 1% of the maximum saturation
value of 1. Generation error is defined as the maximum
absolute generation difference, for the same degree of satu-
ration V¢, between the PA and simulation curves, expressed
as a percentage of the takeover time observed through sim-
ulation (E[T]sim)-
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¢=1.86+0.95 log(p)
R2=0.92

10°
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Figure 1: The values of ¢ that minimized generation
error as a function of p, along with the best logarith-
mic fit. The dash-dot horizontal line, representing
c = 2, is provided as reference.

3. RESULTS

The optimal values for ¢ which minimize generation er-
rors increase logarithmically with p (R? = 0.92, Figure 1),
according to the best-fit equation:

¢~ 1.86 + 0.95l0g(p) (8)

This relationship is consistent with the findings of [19],
who reported that the rate of saturation increased logarith-
mically with the ratio of local neighborhood radius to grid
radius. The value of ¢ = 2, used in previous studies, is
shown for reference (Figure 1, horizontal dash-dot line); in
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Figure 2: Takeover dynamics as predicted by the PA using equation (8) (dashed black lines) and as observed
through direct simulation (solid black lines) on six regular population structures using u = 1024. For reference,
we also show the dynamics predicted by the PA using ¢ = 2 (dash-dot lines). The legend and vertical axis
applies to all panels. Note the change in scale among the horizontal axes of each panel.

all cases, the optimal coefficient values for ¢ were well be-
low 2. Equation (8) was used in all subsequent experiments,
to assess the accuracy of the PA (System of Equations (7))
with the coefficient ¢ parameterized by p.

Takeover time was found to decrease as the radius of the
local neighborhood increased, in concurrence with the re-
sults of [19]. Figure 2 shows takeover dynamics predicted
by the PA (dashed black lines) and observed by direct simu-
lation (solid black lines) on six representative regular popu-
lation structures with p = 1024. When plotting simulation
results here and elsewhere in this paper, we depict the pro-
portion of nodes (N¢) containing maximum fitness at gen-
eration t, averaged over all 50 independent simulations on
that combination of graph type and population size.

Takeover curves for the PA are sigmoidal, exhibiting expo-
nential growth (R? > 0.95 for an exponential fit below the
inflection point, for all PA curves) followed by saturation.
In contrast, takeover curves on 2D lattice topologies with
local interaction neighborhoods are known to be polynomial
[5] below the inflection point. Polynomial exponent varied
from 1.9 to 2.8 (R2 > 0.96, for all topologies and population
sizes considered herein), where the exponent increased lin-
early with increasing radiusy (R? > 0.96 for all population
sizes). Thus, the PA is not an actual mechanistic model of
the governing dynamics of this system, but is more appropri-
ately characterized as an approximation, and all PA curves
were statistically different from the corresponding simula-
tion curves (p < 0.001, Xz). However, in most cases the
resulting curves are in reasonably good agreement with the
data observed through simulation (Figure 2c-f). In contrast,

the curves resulting from the PA using ¢ = 2, shown in Fig-
ure 2 as dash-dot lines, always dramatically overestimate the
rate of spread of the advantageous allele.

If the optimal ¢ were used, the simulation and PA curves
would intersect at the inflection point. However, the use
of equation (8) to estimate ¢ introduces a small amount of
error, sometimes causing the curves to intersect a little too
early (as for VNI, Figure 2a), or a little too late (as for T,
Figure 2b), thus resulting in an over- or under-estimate of
the rate of takeover, respectively. Other errors are due to
simplifications in the PA itself, causing the PA to be least
accurate on the VNI topology, and most accurate for popu-
lations with large neighborhood radii and small population
sizes. These results are quantified below and discussed in
Section 4.

Generation error (Figure 3) was found to decrease approx-
imately exponentially as a function of p for each distinct
population structure (0.83 < R? < 0.99, with an average
of R? = 0.91). The exponential decrease of generation er-
ror as p increases has the ironic implication that the PA,
even after the formulation has been adjusted to compensate
for p, becomes more accurate for estimating saturation dy-
namics as the system approaches the well-mixed case, where
population growth becomes sigmoidal. This finding also has
the important implication that for any given local interac-
tion neighborhood, the accuracy of the PA depends heav-
ily upon population size (u), with smaller population sizes
yielding more accurate results. For example, as population
size was increased from p = 1024 to p = 6400 on the M3
topology, generation error increasing from 10% to 18%, be-



cause as takeover times increase the exponential growth of
the PA curve has more time to diverge from the polynomial
growth of the simulation curve.
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Figure 3: Generation error as a function of (p), for
all population sizes and population structures. The
solid line depicts the best exponential fit to the data
for all population structures, and is provided as a
visual aid only. Note the logarithmic scale on the
vertical axis.

4. DISCUSSION

The aim of this study was to investigate whether a pair
approximation (PA) could be used to easily and accurately
estimate takeover dynamics for evolutionary algorithms that
are spatially-structured on regular graphs. The original pre-
sentation of the PA [11], which was designed to approximate
equilibrium conditions in spatially structured biological pop-
ulations in order to determine conditions for the evolution
of altruism [11], incorporated a constant coefficient of ¢ = 2.
This value has since been used in numerous other studies (see
Section 1). While the value of this coefficient does not affect
equilibrium frequencies, we show that it does dramatically
impact predictions of pre-equilibrium dynamics. Our results
demonstrate that, in all ten population structures tested, a
value of ¢ = 2 caused the PA to dramatically overestimate
the rate of spread of advantages alleles, consistent with the
results presented by [16] on three population structures with
fixed population sizes. Furthermore, we show that, if one is
trying to predict pre-equilibrium dynamics, the value of the
PA coefficient ¢ that minimizes generational errors depends
on the interaction between (a) the structure of the local
interaction neighborhood and (b) the population size. We
combine these two influences into a single parameter p (de-
fined as the ratio of the radius of the local interaction neigh-
borhood to the radius of the entire population) and show
that the optimal value for the coefficient ¢ can be estimated
as a logarithmic function of p. Parameterizing the coeffi-
cient ¢ by p effectively shifts the saturation curve predicted
by the PA so that it intersects with the simulation data at
(or near) the inflection point, thereby minimizing genera-
tional errors in the PA. In general, two primary sources of
error remain: (a) residual errors introduced by using the re-
gression curve to estimate ¢, and (b) errors introduced by
the simplifications in the PA itself, as discussed below.

The PA was assessed using the values of ¢ predicted by
the empirically derived logarithmic fit relating ¢ to p. Al-
though this fit was quite good (R? > 0.92), individual val-
ues of ¢ selected according to this formula did contain some

small residual error, which caused some predicted curves to
intersect the simulation curve a little before the inflection
points, thus causing a slight net over-prediction in the rate
of spread, or a little after the inflection points, causing a
slight net under-prediction in the rate of spread.

The PA uses differential equations to model the dynamics
of states of neighboring pairs of vertices. Higher order in-
teractions are not explicitly modeled, but must be approx-
imated using some method of closure. We employed the
closure method of [8], which incorporates the proportion of
closed to total triplets that exist in the local interaction
neighborhood (a.k.a. the clustering coefficient), thus clos-
ing the system at the level of triplets. Consequently, the PA
yielded less accurate predictions of dynamics on populations
with Von Neumann neighborhoods, which have no closed
triangles (and thus no clustering) but do have a preponder-
ance of closed quadruplets. By ignoring quadruplet correla-
tions and assuming no correlation between distant ends of
triplets, the PA treats the VNI population structure as if it
were a regular random graph with degree k. This explains
the more rapid saturation predicted by the PA than that
observed through direct simulation. Thus, accuracy could
be improved by explicitly accounting for these correlations
using higher order closure methods [20, 22] or higher order
approximations [16]. While these higher-order methods have
yet to be explored on different population sizes, our results
suggest that the interaction between neighborhood size and
shape and population size will still need to be accounted for.
Such higher-order improvements could be used in combina-
tion with a paramterized coefficient ¢, as suggested in this
manuscript, although the best fit curve for this would need
to be recomputed for a given approximation method.

The accuracy of the PA decreases exponentially with in-
creasing p (i.e., with increasing neighborhood interaction
radii and/or decreasing population size), in part because
larger neighborhood radii have higher polynomial exponents,
and in part because, as population sizes are decreased, indi-
vidual neighborhoods cover a larger proportion of the popu-
lation and thus the system more closely approaches random
mixing. Furthermore, as population size increases, the ex-
ponential growth of the PA curve has more time to diverge
from the polynomial growth of the simulation curve, thereby
increasing discrepancies between the two curves. It is ironic
that PAs, which were designed to model local interactions,
actually work better when interactions are far-ranging. It
is also usually assumed that continuous models of discrete
systems work better as population sizes approach infinity,
but in this case the PA works better for small populations,
a counter-intuitive finding.

The local uniform selection mechanism employed herein
is clearly a simplification of the selection operators that are
commonly used in evolutionary algorithms. However, PAs
can be modified to employ much more complicated selection
policies. For example, PAs have been developed using fre-
quency dependent selection [23] and game-theoretic payoff
matrices [7, 13]. The PA could be similarly adjusted to in-
clude a more sophisticated reversion mechanism as well (e.g.,
frequency dependence), and recent work [3] has demonstrated
that the PA can even be adjusted to deal with processes that
operate on differing spatial scales.

In summary, the results of this study demonstrate that
our parameterized formulation of the PA is a fast and rea-
sonably accurate way to estimate both equilibrium and pre-



equilibrium takeover characteristics of synchronously updated
populations embedded on a variety of regularly structured
graphs. A key result of this study is that the coefficient ¢
in the PA (which is commonly assumed to be ¢ = 2) should
be parameterized by p, if one is interested in approximating
pre-equilibrium conditions. In evolutionary computation,
population structures are user-defined, frequently regular,
and their topological properties are readily computable. We
conclude that PAs can be a useful tool for rapidly estimat-
ing takeover dynamics in evolutionary algorithms on syn-
chronously updated regular graphs, as long as care is taken
to assess the topological characteristics of the graph in ad-
vance and the PA is appropriately formulated. Future work
will seek to demonstrate if such insights may prove useful for
guiding choices of local neighborhood structures in evolving
populations, as a potential means of statically or dynami-
cally optimizing selection pressure and convergence.
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