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ABSTRACT 
The topological properties of a network directly impact the flow of 
information through a system. For example, in natural populations, 
the network of inter-individual contacts affects the rate of flow of 
infectious disease. Similarly, in evolutionary systems, the 
topological properties of the underlying population structure affect 
the rate of flow of genetic information, and thus affect selective 
pressure. One commonly employed method for quantifying the 
influence of the population structure on selective pressure is through 
the analysis of takeover time. In this study, we reformulate takeover 
time analysis in terms of the well-known Susceptible-Infectious-
Susceptible (SIS) model of disease spread. We then adapt an 
analytical technique, called the pair approximation, to provide a 
general model of takeover dynamics. We compare the results of this 
model to simulation data on a total of six regular population 
structures and discuss the strengths and limitations of the 
approximation. 

Categories and Subject Descriptors 
I.2.8 Artificial Intelligence [Problem Solving, Control Methods 
and Search]: Heuristic Methods 

General Terms 
Algorithms, Design, Experimentation, Performance 

Keywords 
Pair Approximation, Takeover Time, Networks, Selective Pressure, 
Spatial Structure 

1. INTRODUCTION 
Network topology plays a large role in governing the flow of 
information throughout a system. For example, in epidemiological 
models, the structure of the underlying contact network has a 
pronounced impact on the rate of flow of infectious disease 
[8][9][13][15]. One of the most commonly studied models of 
disease spread is the so-called Susceptible-Infectious-Susceptible 
(SIS) model. In this simplified formulation of infection dynamics, 

susceptible individuals (S) contract disease from infected individuals 
(I) at a given rate, and after a period of time, recover from the 
disease, again becoming susceptible. While early SIS models 
assumed that inter-individual contacts were made at random (e.g. 
see [1]), this mean-field assumption was later relaxed to 
accommodate more realistic contact networks [8][9][13][15]. One 
popular technique for modeling the transmission of disease 
throughout such structured populations is the pair approximation 
[8][9]. This analytical method implicitly models the local structure 
of the underlying contact network, and has been shown to produce 
results in better agreement with simulation data than corresponding 
mean-field formulations, when applied to specific forms of contact 
networks [9][22][23].  
In evolutionary systems, the spatial nature of the underlying contact 
network (i.e. population structure) has also been shown to have a 
large influence on emergent dynamics (e.g. [4][10][18] [25]). For 
example, the spatial localization of recombination events in 
evolutionary algorithms has been shown to mitigate selective 
pressure [5][19][21], relative to panmictic population structures, and 
thus enhance the exploratory power of evolutionary search [5]. One 
useful method for quantifying the influence of the underlying 
population structure on selective pressure is through the analysis of 
takeover time [6]. Takeover time is defined as the expected number 
of generations until a population consists entirely of copies of the 
best individual, starting with only one copy of the best individual in 
the initial population. Higher takeover times suggest lower selective 
pressure and vice versa. 
Takeover time analysis and the SIS model of disease spread share 
many similarities. While the SIS model is concerned with the flow 
of infectious disease throughout a population of susceptible 
individuals, takeover time analysis focuses on the spread of 
advantageous genetic information throughout a population of 
individuals that do not possess this beneficial trait. Thus, takeover 
time analysis can be viewed as a simplified form of SIS, where low 
fitness individuals correspond to the susceptible state and high 
fitness individuals correspond to the infected state. Despite the clear 
relationship between these two classes of models, this is the first 
time, to the best of our knowledge, that this correspondence has 
been explicitly made. While models of takeover dynamics have 
been previously derived for several regular population structures 
(e.g. [5][19]), each model has been specifically tailored to deal with 
the contact network under consideration, and therefore lacks 
generality. In this brief study, we reformulate takeover time analysis 
in terms of the SIS model of disease spread, and adapt the pair 
approximation to model takeover dynamics, providing a more 
general model. We compare the predictions of this model to 
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Table 1. Structural metrics of the spatial topologies 
Population 
Structure 

 
k 

 

φ 

 
radius 

CO 4 0 0.89 
C1 8 0.43 1.16 
C2 12 0.46 1.47 
C3 8 0.21 1.49 
C4 24 0.52 2.00 
C5 12 0.28 2.08 

simulation data on a total of six regular population structures and 
show that the pair approximation most accurately estimates takeover 
dynamics on contact networks that possess a preponderance of 
spatially-localized clustering, but exhibits increasing bias as the 
degree and locality of clustering deviate from this. 

2. METHODS 
2.1 Population Structure as a Graph 
While canonical evolutionary algorithms [7] typically allow mating 
interactions to occur between any pair of individuals, there has been 
a growing interest in imposing constraints upon the spatial scale of 
mating interactions [3][4][5][16][18][19][20][21]. Such spatial 
localization of recombination events has been shown to reduce 
selective pressure [5][20][21] and enhance the exploratory power of 
genetic search [5]. The most commonly employed, spatially 
localized interaction topologies are low-order, regular graphs such 
as one-dimensional (1D) and two-dimensional (2D) toroidal lattices. 
In such cellular [5][19][21] (also referred to as graph-based [3]) 
population structures, mating events are restricted to occur within 
spatially localized, overlapping neighborhoods.  
Representing such spatially-explicit population structures as a graph 
is straightforward. A graph, G = (V, E), is defined as a nonempty 
finite set of vertices (V) and a finite set of edges (E) connecting 
these vertices. Each individual in the population is represented by a 
vertex i ∈V, so that |V| = N, where N is the population size. An 
undirected edge <i, j> is added to E for each individual j in the 
mating neighborhood of individual i, for all i ∈ V. 1D and 2D 
toroidal lattices thus correspond to low-order regular graphs, 
wherein each vertex has the same degree (i.e. every individual has 
the same number of individuals in its mating neighborhood) and 
panmictic population structures correspond to complete graphs (i.e. 
fully connected regular graphs). 

2.2 Structural Metrics of Graphs 
When quantifying the structural properties of a graph, there are 
several metrics of potential interest. In this section, we briefly define 
the structural properties considered in the current study. The first 
metric, φ, captures the degree of clustering [24] in a graph G, stored 
as an adjacency matrix A, as the ratio of closed triangles to total 
triplets [8],  

3

2 2

# ( )
# ( )
triangles trace A
triplets A trace A

φ = =
−

                                (2.2.1)  

where the superscripts denote matrix exponentiation and ||A|| 
denotes the sum of all the elements in a matrix A. 

The second metric, referred to as radius [21], captures the level of 
dispersion present in an interaction neighborhood of size k centered 
on a vertex at (x,y). This metric has been shown to largely govern 
selective pressure in regular population structures, with smaller radii 
inducing lower selective pressure, and vice versa. Formally, this 
metric is defined as [21], 
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2.3 Population Structures 
In this study, we investigate takeover dynamics on a total of six 
population structures, each based on a square 2D toroidal lattice, but 
with different local interaction neighborhoods. The relevant 
topological characteristics of each population structure are provided 
in Table 1. The local neighborhood structures considered varied in 
both the number and the spatial locality of the individuals they 
contain, resulting in different clustering characteristics of the graphs 
as a whole. The naming conventions and corresponding schematic 
diagrams of these population structures are provided in Table 2. For 
convenience, we numbered these population structures according to 
their proportion of spatially localized clustering (C). For example, 
the neighborhood referred to as C0 (Table 2), which is more 
commonly known as the Von Neumann neighborhood, exhibits no 
clustering, the neighborhood referred to as C1 (Table 2, a.k.a. a 
Moore neighborhood) exhibits local clustering only, while the 
neighborhood referred to as C5 (Table 2) exhibits the highest 
proportion of non-local clustering (among vertices that are spatially 
distant to the center of the neighborhood).  

2.4 Takeover Time 
Consider a population with only two levels of fitness; i.e. let Λi(t) be 
the fitness value of vertex i ∈V at time t, where Λi(t) ∈ {0, 1} and 
1 is more fit than 0. In the initial population, Λi(0) = 1 for exactly 
one i ∈V and Λj(0) = 0 ∀  j ≠ i ∈ V. Let Nt denote the number of 
nodes with value 1 at time t: 

( )t i
i V

N t
∀ ∈

= Λ∑                                                                       (2.4.1) 

Following [19], we define the takeover time T = min{t | Nt = |V|} to 
be the minimum number of generations such that the most fit 
individual fully saturates the entire population. Typically, analyses 
of takeover time assume that Nt can never decrease. That is, once a 
vertex takes on the value 1, it never changes. However, this 
nonextinction assumption [20] can be relaxed by allowing vertices 
of value 1 to revert back to 0 with some probability g. This 
extinction probability is analogous to mutation, where genetic 
information is occasionally lost, or to recovery from infection in 
models of disease spread, where infected individuals either recover 
and become immune or again become susceptible. 
Êi[T] is defined as the empirical estimate of the expected takeover 
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Table 2. Naming conventions and schematic diagrams of population structures considered in this study. The numbering 
convention employed corresponds to the amount and locality of clustering. We also provide the colloquial names of each 
population structure and the names as they appear in [21]. Each vertex in the interaction neighborhood (black circles) centered 
around a given vertex (×) shares a link with this center vertex.  For clarity, only one representative interaction neighborhood is 
shown for each type of graph. 

Name a.k.a. Degree of Local Clustering Schematic Diagram 

 
 

C0 

 
 

Von Neumann, 
L5 

 
 

No local clustering 

 

 
× 

 
 

 
 

C1 

 
 

Moore (d = 3), 
C9 

 
 

Local clustering only 
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C2 

 
 

C13 
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C3 

 
 

L9 
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C4 

 
 

Moore (d = 5) 

  

 
× 

 
 

 
 

C5 

 
 

L13 

 
 

       Highest proportion of 
        non-local clustering 

 

 
× 

 
 

time given that the initial best individual is located in vertex i. Thus, 
the overall empirically estimated expected takeover time is simply 

1[ ] [ ]
| |

i
i V

E T E T
V ∀ ∈

= ∑                                                           (2.4.2) 

assuming that the initial best individual is equally likely to appear in 
any given node. 

2.5 Selection 
In this study, we adopt a simple “replace if better” selection 
mechanism, where nodes are updated synchronously, as follows. 
For each node i ∈V, a node j is selected at random with uniform 
probability from the mating neighborhood of node i, with 
neighborhood size ki. Thus, if there are x nodes containing the fittest 
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value in the mating neighborhood of node i, then the probability of 
selecting one of them is simply x/ki. With uptake probability pup, the 
value of the selected node j then replaced the value of node i if Λj(t) 
> Λi(t). Selective pressure can thus be relaxed by simply decreasing 
pup. 

2.6 The SIS Model and Takeover Time 
In the SIS model, a population of N individuals are 
compartmentalized into two discrete states: susceptible (S) and 
infected (I). This model evolves according to the following rates 

upp g

S I S→ →                                                                        (2.6.1) 

where pup governs the rate at which infection occurs and g governs 
the rate of recovery from infection. Once a node has recovered, it 
again becomes susceptible. In a spatially structured population, the 
transmissibility of disease across a connection is typically assumed 
to be τ = pup/k [8][9]. 
In essence, the SIS model and models of takeover dynamics are one 
and the same. The susceptible state represents low fitness 
individuals and the infected state represents high fitness individuals. 
According to the selection mechanism outlined in section 2.5, 
transmissibility across a connection occurs at a rate τ=pup/k. That is, 
there is a 1/k chance of a given high fitness individual being selected 
to spread into a node of degree k, and then, if selected, this 
individual will spread with probability pup.    
While takeover time analysis typically assumes that high fitness 
individuals never again become low fitness individuals (i.e. g = 0), 
this assumption is occasionally relaxed (e.g. [20]). Although g = 0 in 
all results reported herein, the formulas presented in the subsequent 
sections accommodate non-zero g. 

2.7 Pair Approximations 
Pair approximations, originally borrowed from statistical mechanics 
[11], are analytical methods for modeling the dynamics of spatially-
structured epidemiological systems [8][9]. Instead of modeling the 
dynamics of the states of nodes in a contact network, pair 
approximations model the dynamics of states of neighboring pairs 
of nodes. By capturing the correlations between pairs of vertices, 
some aspects of the structure of the interaction topology are 
implicitly modeled.  
The pair approximation works as follows. Consider a population of 
size N structured on an interaction topology wherein every node has 
k neighbors, on average. It is important to point out that pair 
approximations therefore assume that the underlying contact 
network is regular, or at least possesses a well defined average 
degree k. Following [8], let [X] denote the number of nodes in state 
X, [XY] denote the number of pairs of nodes in state XY, and [XYZ] 
denote the number of triplets in state XYZ, such that XY pairs are 
always counted once in each direction (e.g. [XY] = [YX]) and XX 
pairs are counted twice (e.g. [XX] is always even). Pair 
approximations work by tracking the changes in the numbers of all 
possible combinations of pairs. Since the interaction topology is 
regular (i.e. k is the same for all nodes), the number of singles can 
always be recovered from the number of pairs 

1[ ] [ ]
Y

X XY
k

= ∑                                                                      (2.7.1) 

Therefore, the only quantities that need to be tracked are pairs. 
However, one fundamental characteristic of this approach is that the 

rates of change in the number of pairs depend upon the numbers of 
configurations larger than pairs.  For example, consider a system 
with two states X and Y, such that nodes in state X spread to adjacent 
nodes in state Y with transmissibility τ and nodes in state X revert 
back to state Y at rate g. The rate of change in [XX] is therefore 
given by 

[ ] 2 [ ] 2 [ ] 2 [ ]d XX g XX YX XYX
dt

τ τ= − + +                              (2.7.2) 

where the first term on the right hand side of the equation denotes 
the rate at which [XX] changes to [XY] or [YX], the second term 
denotes the rate at which [YX] or [XY] change to [XX], and the third 
term denotes the rate at which either of the neighbors of Y spread 
into Y, changing [XYX] to [XXX]. The rate of change in [XX] 
therefore depends on the number of triplets of the form [XYX], 
which is information that is not being maintained. Even if this 
information was maintained, the rates of change in the number of 
triplets would similarly depend upon the numbers of even larger 
configurations. Thus, in order to model the dynamics in terms of the 
numbers of pairs, the numbers of configurations larger than pairs 
must be approximated. This is referred to as “closing” the system 
[22][23].  
The most straightforward closure strategy [8] is to assume that such 
triplets are composed of two independent pairs sharing a common 
central node. For example, consider [XYZ] 

( 1)[ ][ ] ( 1) [ ][ ][ ]
[ ] [ ]

W

k XY YZ k XY YZXYZ
YW k Y

− −
≈ =

∑
                       (2.7.3) 

While this assumption closes the system at the level of pairs, it may 
introduce a significant amount of error. For example, consider the 
takeover dynamics of a population structured on a regular 2D lattice 
with 3×3 (Moore) interaction neighborhoods (i.e. Table 2, C1). In 
the early stages of the dynamics, only a few of the most fit 
individuals (i.e. 1’s) are present in the topology and they are 
propagating locally through a sea of less fit individuals (i.e. 0’s). 
Under this closure assumption, the number of [101] triplets would 
be approximated by ((k-1)/k)([10][01]/[0]). Since both [10] and [01] 
can be expected to be quite small (and [0] quite large) during the 
early stages of the takeover dynamics, the approximation of [101] 
will consequently be very small. However, since the fit individuals 
are spreading only locally, [101] can actually be expected to be 
much larger than the number estimated by this approximation. This 
is especially true if the interaction topology has a preponderance of 
triangular paths, in which case it is not safe to assume that X and Z 
are independent of one another in an [XYZ] triplet. Therefore, a 
more sophisticated closure method is needed. 
One such method [8] explicitly takes into consideration the number 
of triplets in the interaction topology that form triangles. This ratio 
of closed triangles to total triplets (φ; eq. 2.2.1) is then incorporated 
directly into the closure method as follows, 

( )( 1) [ ][ ] [ ][ ] 1
[ ] [ ][ ]

k XY YZ N XZXYZ
k Y k X Z

φφ⎛ ⎞−
= − +⎜ ⎟

⎝ ⎠
               (2.7.4) 

Thus, this closure method captures the correlation between nodes at 
the opposing ends of a triplet in proportion to the ratio of the 
number of closed triangles to total triplets inherent in the underlying 
population structure. 
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Figure 1. Takeover dynamics observed through direct simulation (o and □ symbols; average of 50 trials) and as predicted by 
the pair approximation (PA, solid and dashed lines) for pup = 1 (black) and pup = 0.5 (grey), respectively, on the (a) C3, (b) C1, 
and (c) C0 population structures. The legend and y-axis label apply to all figures.   

2.8 Modeling Takeover Dynamics using Pair 
Approximations 
In this section, we develop a pair approximation of takeover 
dynamics that closely follows the SIS pair approximation proposed 
in [8]. Our model has only two states, 0 for low fitness individuals 
and 1 for high fitness individuals, and is parameterized by the 
population size (N), the average vertex degree (k), the ratio of closed 
triangles to total triplets (φ), the extinction probability (g), and the 
uptake probability (pup). With only two states, there exist four 
distinct types of pairs. However, due to symmetry ([01]=[10]), only 
three differential equations are required: 

[00] 2 [001] 2 [01],

[01] ([001] [101] [01]) ([11] [01]),

[11] 2 ([101] [01]) 2 [11]

d g
dt

d g
dt

d g
dt

τ

τ

τ

= − +

= − − + −

= + −

                         (2.8.1) 

where triplets are closed at the level of pairs using equation 2.7.4 
and τ = pup/k. 

2.9 Experimental Design  

The population size was held constant in all experiments at 1024 
individuals (i.e. |V|=1024). For each of the six population structures 
considered, we performed 50 independent takeover time 
simulations, starting with the copy of the best individual in a 
randomly chosen node. Since each of the population structures 
considered in this study are regular (i.e. each individual has the 
same number of potential mates in its local neighborhood), this 
random initial placement should not introduce any bias into the 
experimental design (i.e. [ ] [ ]iE T E T i V= ∀ ∈ ). Further, the 50 
independent simulations performed for each population structure 
should be sufficient to mitigate the stochasticity inherent in the 
selection policy. 
The coupled differential equations of the pair approximation (eq. 
2.8.1) were solved via numerical integration using the values of k 
and φ outlined in Table 1. For each population structure, we 
considered pup ∈{0.5, 1}. As previously stated, all experiments 
reported here were nonextinctive [19][20]; i.e., g = 0. 

3. RESULTS 
Figure 1 depicts the observed takeover dynamics using both the pair 
approximation and direct simulation on a square 2D lattice with the 
C3 (Figure 1a), C1, (Figure 1b), and C0 (Figure 1c) neighborhoods. 
For the simulation results, we plot the number of nodes containing 
maximum fitness at time t (Nt), averaged over all 50 independent 
simulations. All takeover curves are sigmoidal, exhibiting 
exponential growth followed by saturation. For both the C3 (Figure 
1a) and C1 (Figure 1b) neighborhoods, the dynamics predicted by 
the pair approximation are in reasonable agreement with the 
simulation data. However, for the C0 neighborhood, the pair 
approximation estimates a more rapid spread of the high fitness 
individual than that observed through direct simulation (Figure 1c).  
Table 3 displays, for each population structure considered, the times 
to complete saturation observed through direct simulation and as 
predicted by the pair approximation. For both pup = 0.5 and pup = 1, 
the observed saturation time decreased as the spatial locality of the 
interaction neighborhood decreased, with C0 exhibiting the longest 
time to saturation, followed by C1, C2, etc., with C5 the most rapid. 
Figure 2 depicts the absolute error between the time to complete 
saturation estimated by the pair approximation and observed 
through direct simulation. The absolute error is quite high for C0 
(e.g. Figure 1c), but drops quickly for C1 through C3, and rises 
again for C4 through C6. For p = 1, C0 exhibits the largest absolute 
error, but for p = 0.5, this trend changes, with C6 exhibiting the 
largest absolute error overall. In all cases, increasing pup decreased 
the absolute error, with the smallest amount of change observed 
using the C0 and C1 population structures. Note that the C2 and C3 
population structures were found to have almost identical saturation 
times (Table 3) and absolute error (Figure 2). 

4. DISCUSSION AND CONCLUSIONS 
For all population structures considered herein, the average time to 
saturation decreased as the degree of clustering among spatially 
distant vertices increased (i.e. C0 exhibited the largest saturation 
time, and C5 the lowest). This qualitative categorization of the 
neighborhood structures is directly correlated with the radius metric 
presented in [21] (see Table 2). Population structures with local 
neighborhoods of large radii have been shown to saturate more 
quickly than those with smaller radii in some cases [21]. Our 
simulation results are in good agreement with this finding. It is 
worth noting that the nearly identical saturation times of the C2 and 
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Table 3. Takeover times as observed through direct simulation (average of 50 trials) and as predicted using the pair 
approximation (PA) for uptake probabilities pup = 1 and pup = 0.5 on each population structure. The absolute error (in 
generations) between the observed and predicted takeover times are also provided. 

pup = 1 pup = 0.5 Population 
Structure Simulation PA Error Simulation PA Error 

CO 55.20 42.88 12.32 99.10 85.75 13.35 
C1 42.92 41.27 1.65 78.82 82.68 3.86 
C2 35.06 36.92 1.86 63.78 73.81 10.03 
C3 34.30 36.21 1.91 62.32 72.43 10.11 
C4 26.46 33.69 7.23 48.74 67.37 18.63 
C5 26.08 33.87 7.79 48.40 67.75 19.35 

C0 C1 C2 C3 C4 C5
0

5

10

15

20

Population Structure

A
bs

ol
ut

e 
E

rro
r

pup= 1

pup= 0.5

 
Figure 2. Absolute error (in generations) between 
takeover times observed through direct simulation 
(average of 50 trials) and predicted by the pair 
approximation on all population structures for pup = 1 
(black) and pup = 0.5 (grey). Data corresponds to absolute 
errors presented in Table 3. 

C3 population structures were also observed in [21] (referred to 
therein as C13 and L9, respectively), and that this similarity was 
captured well using the pair approximation (e.g. compare C2 and C3 
in Table 3 and Figure 2). In all cases, increasing pup decreased the 
absolute error between the saturation times predicted by the pair 
approximation and those observed through simulation. Absolute 
error is relatively insensitive to pup for the Von Neumann (C0) and 
3×3 Moore (C1) neighborhoods (Figure 2), most likely resulting 
from the regularity and locality inherent in these interaction 
neighborhoods. 
The results of this study demonstrate that the accuracy of the pair 
approximation presented in section 2.8 depends heavily upon the 
amount and locality of clustering in the underlying population 
structure. The accuracy of the pair approximation was found to be 
the highest for population structures possessing a large proportion of 
spatially localized clustering in the mating neighborhood (i.e. C1, 
C2, and C3), and for these graph structures the approximation is a 
fast way to estimate takeover dynamics for arbitrary pup and g on 
graphs of various sizes. In contrast, when the interaction 
neighborhood had no clustering (i.e. C0), or a large proportion of 
clustering among spatially distant vertices (i.e. C4 and C5), the pair 
approximation was found to perform poorly.  These limitations 
should be taken into account when applying the pair approximation 
to takeover times in evolutionary algorithms as well as in 
epidemiological models. 

To understand the degradation in accuracy observed using 
population structures possessing no clustering, consider the Von 
Neumann neighborhood (C0). Since φ = 0, there are no closed 
triangles present in the contact network. The pair approximation 
thus assumes that there are no correlations between distant ends of 
triplets and the closure method of equation 2.7.4 reduces to equation 
2.7.3. While it is certainly correct to assume that there are no closed 
triangles in this population structure, there are a large number of 
closed quadruplets, and these can significantly impact the emergent 
dynamics. Making the assumption that the distant ends of a triplet 
are completely uncorrelated with one another therefore leads to a 
significant amount of error. For instance, consider an ijkl 
quadruplet. While the state of node k cannot directly affect the state 
of node i, it can have an affect on l, which in turn may affect i. By 
ignoring quadruplet correlations and assuming no correlation 
between the distant ends of triplets, the pair approximation treats the 
C0 population structure as if it were a random graph (e.g. [14]) of 
average degree k. This explains the more rapid saturation predicted 
by the pair approximation than that observed through direct 
simulation (Figure 1c). While the pair approximation can be altered 
to deal with closed quadruplets [12], or other spatial configurations 
[22][23], the resulting models become more cumbersome (e.g. see 
[12]) and far less general. 
In the case of population structures possessing a large proportion of 
clustering among spatially distant vertices in their local mating 
neighborhoods, the degradation in accuracy can be best understood 
by considering the C5 topology. Since the pair approximation does 
not take into account the spatial distance of links between 
individuals, this approximation assumes that all of the clustering 
occurs between purely spatially local vertices. The pair 
approximation is thus unable to predict the effects of information 
spread between non-local vertices, which dramatically impacts the 
emergent dynamics (e.g. [18]), and the resulting predictions are 
therefore much slower than that observed through direct simulation. 
To the best of our knowledge, a general analytical model that 
captures the spatial scale of clustered interactions has not yet been 
developed.  
Thus, the pair approximation presented in section 2.8 can be viewed 
as a generalized model of takeover dynamics, applicable to a 
specific class of population structures; in particular, those exhibiting 
primarily localized clustering. While the naming conventions of the 
population structures considered herein (Table 2), based on a 
qualitative assessment of the spatial locality of clustered vertices, 
allowed for a verbal classification of each interaction topology, it 
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would be useful to explicitly quantify this metric. For example, the 
global degree of clustering (φ) could be altered to account for the 
proportion of clustered nodes found at various spatial distances. 
This may allow for a more concrete classification of the regular 
spatial topologies in which takeover dynamics can be accurately 
modeled using the pair approximation.  
We posit that the derivation of a generalized analytical model of 
takeover dynamics for all population structures is precluded by the 
heterogeneity inherent in some of the non-regular population 
structures of recent interest (e.g. small-world [24] and scale-free 
[2]). These contact networks have large variance in their underlying 
topological properties and it does not seem likely that a model of 
takeover dynamics applicable to lattice-based topologies, which 
have a well-defined average degree, would be equally applicable to 
scale-free topologies, which possess a degree distribution following 
a power law. While the derivation of a generalized model of 
takeover dynamics may be out of reach, a recent study [17] has 
demonstrated that it may be possible to predict the expected 
takeover times on disparate topologies, using only a few readily 
computed metrics of the underlying population structure.  

5. Acknowledgements 
This work was supported in part by a graduate research assistantship 
and a Pilot Award funded by DOE-FG02-00ER45828 awarded by 
the US Department of Energy through its EPSCoR program. We 
would like to thank Dr. Peter Dodds for helpful discussions 
regarding the use of pair approximations.  

6. References 
[1] Anderson, R.M., & May, R.M. Infectious Diseases of Humans. 

Oxford University Press, 1995. 
[2] Barabàsi, A.L. & Albert, R. Emergence of scaling in random 

networks. Science, 286 (1999), 509-512. 
[3] Bryden, K.M., Ashlock, D., Corns S., Wilson, S. Graph based 

evolutionary algorithms. IEEE Transactions on Evolutionary 
Computation, 10, 5 (2005), 550-567. 

[4] Giacobini, M., Tomassini, M., & Tettamanzi, A. Takeover 
time curves in random and small-world structured populations. 
In Proc. Genetic and Evolutionary Computation Conference. 
ACM Press, New York, NY, 2005, 1333-1340. 

[5] Giacobini, M., Tomassini, M., Tettamanzi, A., & Alba, E. 
Selection intensity in cellular evolutionary algorithms for 
regular lattices. IEEE Transactions on Evolutionary 
Computation, 9, 5 (2005), 489-505. 

[6] Goldberg, D.E., & Deb, K. A comparative analysis of selection 
schemes used in genetic algorithms. In Proc. Foundations of 
Genetic Algorithms. Morgan-Kauffman, San Mateo, CA, 1991, 
69-93. 

[7] Holland, J. Adaptation in Natural and Artificial Systems. MIT 
Press, Cambridge, MA, 1992. 

[8] Keeling, M.J. The effects of local spatial structure on 
epidemiological invasions. Proc. R. Soc. Lond. B, 266 (1999), 
859-867. 

[9] Keeling, M.J., & Eames, K.T.D. Networks and epidemic 
models. J. R. Soc. Interface, 2 (2005), 295-307. 

[10] Kerr, B., Riley, M.A., Feldman, M.W., & Bohannan, B.J.M. 
Local dispersal promotes biodiversity in a real life game of 
rock-paper-scissors. Nature, 418 (2002), 171-174. 

[11] Matsuda, H., Ogita, N., Sasaki, A., & Soto, K. Statistical 
mechanics of population: the lattice Lotka-Volterra model. 
Prog. Theor. Phys. 88 (1992), 1035-1049. 

[12] Morris, A.J. Representing spatial interactions in simple 
ecological models. PhD Thesis. University of Warwick, UK. 

[13] Newman, M.E.J. Spread of epidemic disease on networks. 
Phys. Rev. E, 66 (2002), 016128. 

[14] Newman, M.E.J. The structure and function of complex 
networks. SIAM Review, 45 (2003), 167-256. 

[15] Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in 
scale-free networks. Physical Review Letters, 86, 14 (2001), 
3200. 

[16] Payne, J.L., & Eppstein, M.J. Emergent mating topologies in 
spatially structured genetic algorithms. In Proceedings of the 
Genetic and Evolutionary Computation Conference. ACM 
Press, New York, NY, 2006, 207-214. 

[17] Payne, J.L., & Eppstein, M.J. Takeover times on scale-free 
topologies. In Proceedings of the Genetic and Evolutionary 
Computation Conference, 2007, to appear. 

[18] Payne, J.L., Eppstein, M.J., & Goodnight, C.J. Sensitivity of 
self-organized speciation to long-distance dispersal. 
Proceedings of the IEEE Symposium on Artificial Life, 2007, 
1-7. 

[19] Rudolph, G. On takeover times in spatially structured 
populations: array and ring. In Proc. 2nd Asia-Pacific 
Conference on Genetic Algorithms and Applications. Global-
Link Publishing Company, Hong Kong, 2000, 144-151. 

[20] Rudolph, G. Takeover times of noisy non-generational 
selection rules that undo extinction. In Proc. 5th International 
Conference on Artificial Neural Networks and Genetic 
Algorithms. Springer-Verlag, Heidelberg, 2001, 268-271. 

[21] Sarma, J. & De Jong, K. An analysis of the effect of the 
neighborhood size and shape on local selection algorithms. In 
Proc. Parallel Problem Solving from Nature Conference. 
Springer-Verlag, Heidelberg, 1996, 236-244. 

[22] Satō, K., & Iwasa, Y. Pair approximations for lattice-based 
ecological models. In The Geometry of Ecological 
Interactions: Simplifying Spatial Complexity. Cambridge 
University Press, 2000, 341-358. 

[23] Van Baalen, M. Pair approximations for different spatial 
geometries. In The Geometry of Ecological Interactions: 
Simplifying Spatial Complexity. Cambridge University Press, 
2000, 359-387. 

[24] Watts, D.J., & Strogatz, S.H. Collective dynamics of ‘small-
world’ networks. Nature, 393 (1998), 440-442. 

[25] Werfel, J. & Bar-Yam, Y. The evolution of reproductive 
restraint through social communication. PNAS, 101, 30 (2004), 
11019-11024. 

 
 

2563



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


